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Linear response theory for detectors consisting of discrete arrays

Michael Albert and Andrew D. A. Maidment®
Thomas Jefferson University, Department of Radiology, Suite 3390, Gibbon Building,
111 South 11th Street, Philadelphia, Pennsylvania 19107-5563

(Received 17 March 2000; accepted for publication 5 May 2000

The optical transfer functiofOTF) and the noise power or Wiener spectrum are defined for
detectors consisting of a lattice of discrete elements with the assumptions of linear response,
Gaussian statistics, and stationarity under the discrete group of translations which leave the lattice
fixed. For the idealized classification task of determining the presence or absence of a signal under
signal known exactly/background known exadBKE/BKE) conditions, the Wiener spectrum, the
OTF, along with an analog of the gray-scale transfer characteristic, determine the signal-to-noise
ratio (SNR), which quantifies the ability of an ideal observer to perform this task. While this result

is similar to the established result for continuous detectors, such as screen-film systems, the theory
of discrete lattices of detectors must take into account the fact that the lattice only supports a
bounded butin the limit of a detector of arbitrarily great extergontinuous range of frequencies.
Incident signals with higher spatial frequencies appear in the data at lower aliased frequencies, and
there are pairs of signals which are not distinguishable by the detglb®SNR vanishes for the

task of distinguishing such signal$-urther, the SNR will in general change if the signal is spatially
displaced by a fraction of the lattice spacing, although this change will be small for objects larger
than a single pixel. Some of the trade-offs involved in detectors of this sort, particularly in dealing
with signal frequencies above those supported by the lattice, are studied in a simple model.
© 2000 American Association of Physicists in Medicir&0094-2408)0)00908-1
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[. INTRODUCTION of translations. This symmetry is approximate due to the fi-

_ _ _ _ o nite extent of physical detectors. However, as in the theory
The importance of signal detection theory in quantifying theof screen-film systems, corrections for the limited extent of
performance of medical imaging systeixsray screen-film e detector are negligible for many practical applications.
imaging being perhaps the best exammé/es impetus to  thys one can apply Fourier techniques to put the signal
applying the same techniques to the digital radiographic iMmgetection theory of such devices in a form which is both
aging systems which are now coming into clinical use. ASy, taple and similar to the theory of screen-film systems.
applled to screen-fllm systems, signal detectlon. theory Mehstead of using a continuous Fourier transform, one uses a
quires three assumptions to be at_Ieast approxmjately_fulaiscrete space Fourier transform, which recodes the data ac-
filled: that the detector responds linearly to the incoming _ . . . . .

quired by the detector at a discrete lattice of positions in

signal, and is both stationary and homogengaes both the : .
" X . erms of a bounded and continuous range of spatial frequen-
detector response and the additive noise are translatlonalhzIe
S_

invariany. One can then summarize the response of the sy F il ‘ the OTE di i the i
tem in terms of the gray-scale transfer characteristic, the op- or screen-iim systems, the lagonalizes the finear

tical transfer functiofOTF), and the noise power or Wiener operator which relates the input signal to the output. As de-
spectrum tailed below, for discrete-array detectors the effects of alias-

The digital x-ray imaging systems which are now appear-ing introduc_:e a null space, differenF for ea_ch devi_ce, Which
ing generally behave as a lattice of discrete detector eldlrevents this operqtor from being diagonalized using a basis
ments. Although digital, these detectors are generally opeic®mmon to all devices, but the OTF represents the operator
ated under conditions such that the effects of quantization af® @ basis in which it is sparse in the sense that all terms
negligible. When compared to screen-film systems, these dé@nish except those between input and output spatial fre-
tectors tend to be linear over a wider range of exposuregjuencies which are equal or aliased. The Wiener spectrum is
Like screen-film, for low-contrast signals the noise is ap-the discrete space Fourier transform of the discrete autoco-
proximately additive and Gaussian. However, as the size ofariance function, and thus is also defined in the region of
the imaging elements is now comparable to the size of som&equency space which the lattice supports. As in the case of
of the smaller objects which are of clinical inter¢atound ~ continuous detectors, for low-contrast obje¢t® that re-

0.1 mm), these detectors are not strictly homogeneous in thagponses are approximately lingahese quantities determine
translations by a fraction of the lattice spacing result in thethe signal-to-noise ratidSNR) which is an appropriate
signal being recorded in a different manner. As these devicefigure-of-merit for the classification task of discriminating
generally consist of a regular lattice of sensitive elementsbetween the presence or absence of an exactly known signal
they still possess a symmetry with respect to a discrete grouagainst an exactly known backgrou(®KE/BKE).
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To make notation definite, it is necessary to review the . y(logpe)
relevant parts of signal detection theory for screen-film im- <D(f)>:|—
aging systemgSec. |) and the relevant Fourier techniques
(Sec. Ill). Subsequently, the OTSec. IV) and Wiener spec- where f represents a two-dimensional vector in frequency
trum (Sec. ) of discrete detectors can be studied leading ugsPace and,, the optical transfer functiofOTF), is the Fou-
to the calculation of SNR for the case of SKE/BKBec. rier transform of the PSF. The functidd(f) is the Fourier

TH( (), )

0o

VI). transform of the dat®(r), following the convention that for
As discussed below, the effects of aliasing on the interany suitabl@ function g,

pretation of the OTF have been noted in the literature, and

the definition of the Wiener spectrum given here has ap- @(f)=J J d?r g(r)e 2™

peared before. However, this paper presents a systematic

theory of signal detection for discrete-array x-ray detectors. o Ao omirf

The approach here differs from the more general theoretical 9(")= df g(fe ™, ©)
approach of cross-talk matrides that the work reported hatf is | its of | it h The f f
here uses the additional assumptions of infinite extent?Ot atf Is In units of cycles per _un|t ength. The gctor(_)
Gaussian statistics, and discrete translational symmetr)?.’(k)glo_e)/ I, serves to co_nvert unl_ts (.)f x-ray bgam mte_nsny
There are many imaging systems for which these assum;ﬁr-]to units of Ch?‘”ge of film d‘?”s'_ty in the region of linear
tions are not appropriatfe.g., three-dimensiondBD) to- response, gIIOW|ng the porm.allzatlc“erO):l.. .
mographic reconstructidh However, the work presented edlizations of the imaging process will be subject to
here has certain advantages in that so long as the additionap'se which can be characterized by the autocovariance func-
assumptions are approximately true, the quantities involvedon

are closely related to those used with screen-film systems C(rq,r,)=C(r,,r{)=(D(r;)D(r,)), (4)

and are similar or identical to measured quantities relating t?hat for Gaussian noise, completely determines the statis

digital systems which have appeared in the literature. : : i
9 Y PP gcal nature of the noise process. For stationary processes, the

To demonstrate the use of this theoretical structure and tautocovariance function depends onlv uoon the displace-
investigate some of the trade-offs inherent in discrete-arra}q1ent P y up P

systems, Sec. VIl presents a simple model of a detector. In
particular, this gives the opportunity to investigate how the C(rq,r,)=C(r,—r4), (5)
detector's response to high spatial-frequency signals affectsso that the autocovarian€Xr) is now a function of a single

the detection of objects in terms of SNR, and in particular : ) .
L . . S vector, the displacement The Wiener spectrum is the Fou-
the effect which is sometimes called “noise aliasing” is ad-

rier transform of the autocovariance function, and
dressed.

_ i 2 72‘n-ir-f2
W(f)= lim Al <U JAd rD(r)e (6)

|A]—o
shows that the Wiener spectrum can be estimated in terms of

The theory of SKE/BKE detection and classification for the Fourier components of signal-fré&lat-field” ) images
screen-film-like systems has been expounded in d&tail, over regionsA of sufficiently large aredA|.
and is reviewed here in order to establish notation for later For Gaussian noise it can be shdvinat the optimal strat-
comparison with discrete-array detectors. The input signal iegy for SKE/BKE signal detection or classification consists
the x-ray intensity per unit area and the output signal is thef choosing a mask functiog(r) and a cutoff value for the
film density, both as a function of position. The interestingstatistic
and tractable case is the search for low-contrast variations
[(r) in an x-ray beam whose baseline intenslty, is such ag:f f d?rg(r)D(r). 7
that the changes in film densif(r) are a linear function of
I(r). The additional assumption of translational invarianceThe efficacy oféy for discriminating between hypothesis |

II. REVIEW

then gives (e.g., signal absenand hypothesis I{e.g., signal presenis
measured by the signal-to-noise ratio
y(logyee) 5, ) )
<D(r)>=|— dor’'P(r—r"){I(r")), (1) ({0 —{ Oghn )2
° SNR=—— ——, 8)
Var(6y)

whereP(r—r"), the point spread functiofPSh, is the den-
sity increase of the film at position due to a given x-ray where the numerator is the difference between the expecta-
intensity atr’. The brackets()) represent ensemble aver- tion values of¢, under the two hypotheses and the denomi-
ages, i.e., averages over many exposures. Sifigeand nator is the variance in the statistiy, which for additive
D(r) are here defined as variations relative to baseline valnoise is independent of the hypothesis.
ues,({I(r))=0 and(D(r))=0 in the absence of a signal. While only real-valued functiongy(r) are needed for
Because the PSF is translationally invariant, the convoluealculating decision statistics, it will be useful to extend
tion operator is diagonalized in frequency space, giving  the definition of 5 to complex valuedg(r), in which
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2419 M. Albert and A. Maidment: Linear response theory 2419

case the variance df; is the sum of the variances of the real tions defined for all frequencies, namely the Fourier trans-
and imaginary parts. The variance of the statistjds given  form defined by Eq(3). For the digital x-ray detectors of

by interest in this paper, the input is still a continuous distribu-
Var(8) = (85— (65)) (85— (6))*) ) tion of x-rays, but the output signal consists of data with

g 9 ATeATe AT values assigned only at a discrete set of lattice points. The

B ) - , s size of the array is assumed to be sufficiently large so that

_J J d rf J dr'g(r)C(r,r)g(r’) (100 poundary effects play no part, and thus is treated as being of

infinite extent. To analyze these data it is appropriate to use

_ 260 6y Ak a Fourier technique based on the discrete translational sym-
ffd fa(hg=(Hwie), a3 metry of the detectors. Mathematically, this transform is

as can be seen by substitution of E(8.and(4) into Eq.(9) similar to the Fourier series, but with the roles of the space
[indeed, Eq(10) can be taken as the definition of the auto-and frequency domains reverséd-ollowing Giger,® this is
covariance functioh It can be shown, for example using the called the “discrete” space Fourier transfor®FT). The
Schwarz inequality®!! that the optimal choice of mask “f|n|t_e” Fou_n_er transform (FFT)'* is th(_e Fourler_ technique _
function is given by applied to finite sequences of data points that is customarily

. . implemented using an algorithm known as the “fast Fourier

oo () =) T(T) transform.” For practical purposes, one always deals with

9:(h)= W(f) ' finite data sets, and the discrete space Fourier transform is a
for which the SNR is given by limiting case of the finite Fourier transform. As the number

of equally spaced data points used in calculating a finite
y2(logpe)? |<f(f)>n—<T(f)>||2|T(f)|2 Fourier transform increases, the discrete set of frequencies
SNR%:J J d*f | 2 W(f) ' calculated fill more and more densely a bounded region of
° (13 frequency space, so that in the limit one obtains a function of
a continuous range of frequencies. The function obtained by
this limiting process is the discrete space Fourier transform
of the spatial data.

To deal with the two-dimensional arrangements of sensi-
tive elements which are of interest, it will be convenient to
introduce the ideas of vectors generating a lattice and of dual
basis vectors. A two-dimensional lattice of points can be

oo el A enls specified by vectory,; andv, such that every point in the
j f drGo(r)=1, f f d*f[G(h|*=1, (14 J|attice can be represented as

12

where the subscriff indicates that this represents the opti-
mal or ideafl observer given the detector and task at hand.

Returning momentarily to the task of estimating the
Wiener spectrum from flat-field images, if in E§) one sets
g(r)=G(r)e? o’ whereG(r) is a window function with
normalization

then calculating 6463 ) by Eq.(11) one obtains Mmy m,= M1V1+MyVy, (17
j j d2f|é(f_f0)|2\/\/(f) wherem; andm, are integers. The vectovg andv, are said
to generate the lattice, but the choice of vectors for a given

, 2 lattice is not unique. For the common case of a square grid
=<f f d’rG(r)e 2™ "D(r) > (15  the choice ofv; as lying along thec-axis andv, as lying
- along they-axis is natural. The plane containing the lattice
which, since|G(f—f.)|* will be sharply peaked neaf,,  can be tiled in such a way that each tile contains a total of
shows that for finite length data sets one actually estimategne |attice point. Each tile is then called a “unit cell.” For
the Wiener spectrum convolved with the square of the Fouthe case of a square grid of detectors with spacinghe
rier transform of the window function. In particular, for a most natural choice of a unit cell would be the square cen-
rect window so thaG is chosen to vanish outside of a squaretered at the coordinate origin extendingtm/2 along both
region of aregA|=L? and to have value A inside that axes. A small region of a plane containing a square lattice

region, and one of the unit cells is drawn in Figial The reciprocal
R sin(wrLf,)sin(7Lf,)\2 vectors denoted by, andw, are defined by the require-
|G(f)|2=A el Y ments
mLof,fy
=Asind(Lf,)sin¢(Lf,), (16) Viow =8 = é: ;&}’ (18
wheref,, f, are the components déf For large areas, this
becomes increasingly like a delta-function, giving Eg). and serve as a basis for frequency space and as generators of

the reciprocal lattice. In the case of the rectangular grid men-
tioned above, eaclv; would be parallel tov; and scaled
lll. MATHEMATICAL PRELIMINARIES appropriately as illustrated in Fig(H), which also shows a

In the case of screen-film, described above, we studied anit cell of the reciprocal lattice. To help clarify these ideas,
mapping of functions defined for all spatial positions to func-Fig. 1(c) shows a hexagonal lattice with two choices of the

Medical Physics, Vol. 27, No. 10, October 2000



2420 M. Albert and A. Maidment: Linear response theory 2420

Ax x  x  x Bx x x x sinc functionsle.g., Ref. 16, p. 230 Direct calculation from
Eq. (21) gives
G A e G(H=a(f+myw; +mywy), (22
R X ok x which shows thag is periodic in Fourier space for displace-
' ' ments in the dual lattice and one need only consider values
x ox ox o0x x ox oxox of g on one unit cell of this lattice. Any frequendyoutside
b of this unit cell is an alias of a frequendy inside the cell,
x with f—f’ in the reciprocal lattice. Viewed another way, the
Cx  x  x  x x reciprocal lattice divides points in the_ frequgncy pla_\ne intq
x x equivalence classes of points, two points being equivalent if
x x X and only if they are separated by a vector in the reciprocal

lattice. Any unit cell will contain exactly one point from each
equivalence clas@xcept for boundarigsand knowledge of

x x N N g on the unit cell detetmineé on the entire plane. Alterna-
" tively, one can consideg as being defined on the topological
x “quotient space,” a torus, just as one can consider a function
on the real line with period 2 as defined on the unit circle
E x v, x L W, x (Ref. 17, p. 15k
=45 The exponential functions in the discrete Fourier transfor-
T TR N S mation satisfy a simple orthogonality condition
x x 3 x X x JJK dzfe’Z”if'rml,m2e2ﬂ'if'rn1,n2= | K| 6m1,n16m2,n21 (23)

Fic. 1. (@) a rectangular lattice(b) The reciprocal lattice ofa). (c) A
hexagonal lattice(d) the reciprocal lattice ofc). Note that(a), (b), (c), and ~ whereK is the region corresponding to the unit cell of the

(d) represent a finite region of a lattice which covers the entire plEné reciprocal lattice in the frequency plane dm is the area of
3x%3 finite rectangular latticgf) The circles represent the frequencies used ,, . . ..
this region, thus giving

in the finite Fourier transform ofe). For comparison, a unit cell of the full
reciprocal lattice is shown. See Sec. lll for details.

g(ml,mz):HKde g(f)e?™'m;.m, (24)

as the inverse transform. The complex exponentials form a
andv, is perpendicular tav,). The aredA|=|v,xv,| of a complete set of orthogonal functions, so that any appropriate
periodic function of frequency can be represented in terms

unit cell is independent of the choice of unit cell, since fh Th let 150 b din t f
it is fixed by the average density of lattice points over Iargeo em. 1he CompIeleness can also be expressed In terms o

regions. The area of the unit cell of the reciprocal lattice,@ comb function as

K|=|w;Xws,|, is inversely pr rtional toA n o
K]=Iwyxw, s inversely proporional (94], as Gan be 5\ corit-1'tmme K| S, B(1-F1,,,) (29
seen by my.my K1k 1

|A||K|= de<(Vl)x (Vl)y)de<(wl)x (WZ)X>

(VZ)X (V2)y (Wl)y (W2)y

Vi-Wp  Vi-Wp
=|de

unit cell (parallelogram or hexagorand Fig. 1d) shows
the reciprocal latticelnote thatv, is perpendicular tow,

where the equality is interpreted in terms of distributions and
(19 the sum on the right-hand side is over the frequencies in the
reciprocal latticé:1®1’

For actual finite data sets, one applies the finite Fourier
transformation. The discrete space Fourier transformation
can be interpreted as a limit of the finite Fourier transforma-
10 tion as the number of equally spaced points in the data set is

=|de increased. Specifically, consider a bounded subset of the

0 1
) _ {rn. n.} such as% of the form
making use of the fact that the determinant of a product 12

of matrices is equal to the product of the determinants and 2={rn, n,IN1=<N;<Ni,Np=<n,<Nj}, (26)
Eq. (18).

For any functiong(m,,m,) of the lattice, the discrete
space Fourier transform is defirféd® as

Vo-Wi VoW

- -

for which the finite Fourier transform and its inverse are
given by

| g(ll)= 2 g(ny,npe >ty foum, 27
g(H=[A] 2 g(my,my)e 2 mm, ! (2D "y =
my.m; 1
for all spatial frequencie$. This definition is equivalent to g(n;,n,)= ANANS Z Mcj(ll,lZ)ez””llvlz‘rnlvnz, (28
evaluating thez-transform on the unit circle in the complex 122 ,e 7
plane!®*® It is also equivalent to the Fourier transform of where AN;=N/—N;. The points in the Fourier space are
the function obtained from the data set by interpolation withgiven by

Medical Physics, Vol. 27, No. 10, October 2000
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I I, view, this follows automatically as the aliases correspond to
fi,1,= A_NlW1+ an, 2 (299 asingle point in the quotient space. Alternatively, one might
weigh each frequency by a fact@t/2 for frequencies lying
and on edges and 1/4 for cornerso that each class of aliased

frequencies has a total weight of(dimilar to counting frac-
tional atoms when reckoning the number of atoms in a unit
cell of a crystal).

The results pertaining to Fourier transformations and dual
lattices which are reviewed in this section have direct gener-
alizations to any number of dimensions, but as the statement

.%:{f|1’|2|Ll$|1<L1,L2$I2<Lé}, (30)

where thel’s are chosen so that/ —L;=N; —N;. The re-
ciprocal relationshiplEq. (18)] between the basis vectors
{v;} and the dual basis vectofw/} gives

I Iy of the results for arbitrary finite dimension would be nota-
fiyty Tnyn,= AN, V1T AN, Ve SUACRUPITY tionally cumbersome, only the two-dimensional results have
been explicitly stated. For notational convenienceaep-
_ HﬂJr I2n; (3  resent the ordered paim;,m,, so thatg(m)=g(m;,m,)
AN; ANy’ andrp,=rpn m,, and similarly fork, e.g.,fy=fy .

which, along with choosingN{ = —N;=N,/2 andL;=—L/

=N,/2 for N, even, produces a more conventional represen-
tation of the finite Fourier transform. IV. TRANSFER FUNCTION

As the number of data pointAN;AN, increases, the The analog of the optical transfer function, which relates
spacing between the frequencigs,, decreases, so that in the response of the detector to the input signal in frequency
the limit the data points on the lattice extend across the entirgpace, can now be defined. The input sighalis a continu-
plane and the frequency values fill a unit cell of the recipro-ous function of the plane. Aél) is defined relative to the
cal lattice. The finite sum in the FHEQ. (27)] approximates  “flat-field,” it is reasonable to assume thét) has compact
(with a factor of|A|) the infinite sum in the DFTEQ. (21)],  support, or at least vanishes sufficiently quickly at infinity to
and for the inverse transform the sum in EB8) (with the  |eave the quantities considered here well defined. Thus the

introduction of a factor ofA||K|=1) becomes Fourier transform(1) is a continuous function of the entire
IK| frequency plane. The dak(r,,) are well-defined only at the
Orer(Ny N = > Mm(|A|gFFT(|1,|2)) discrete lattice points,, so that the discrete space Fourier
fiyg,e S N1A N2 transform(D(f)) is determined by its values in one unit cell
X @271, 1, Ty n,, (32) of the reciprocal lattice. Values g¢D) outside of the first

unit cell are determined by the periodicity relative to the

which approximates the integral used in the inversion of theeciprocal lattice and contain no new information. For spatial
discrete space Fourier transform, EB4). To illustrate this  frequencies inside the first unit cell, the detector responds at
concept, Fig. (e) shows a small rectangular latti¢eorre-  the same frequency as the input signal. For frequencies out-
sponding toN;=—1, N/ =2). The circles in Fig. {f) repre-  side of the first unit cell, the detector responds at an aliased
sent the corresponding frequency vectors for use with théequency, so it is impossible to uniquely determine the input
finite Fourier transform. The box shows the region whichsignal without additional information, although it will be ar-
would correspond to a unit cell of the reciprocal lattice if thegued in later sections that for reasonable tasks this is not a
lattice in Fig. Xe) were extended to an infinite lattice. If the significant problem.
finite lattice shown in Fig. (e) were extendedbut still fi- Each point on the detector grid is assumed to respond
nite), the corresponding frequency vectors of the finite Foudinearly to the incident signal, so that the analog of H.is
rier transform would fill the unit cell more and more densely.

It should be noted that i N, or AN, are even, then some <D(rm)>:rf f dzr’P(rm,r’)(I(r’)>, (33
of the frequencies at which the finite Fourier transform is
defined[shown as the circles in Fig.(fl] would lie on the  whereP, the analog of the point spread function, represents
boundary of the unit cell, and such frequencies would havehe response of the detectorrgtto x-ray light incident at’,
aliases which also lie on the boundary. For example, in thandT is a constant for converting x-ray intensity into digital
square lattice considered in Figf)l if one of the frequen- values, generally chosen so that the integrd® efith respect
cies at which the finite Fourier transform is defined fell ontor’ is unity. With a discrete detector, one no longer has full
the edge of the unit cell, an alias of that frequency would lietranslational invariance, but there remains an invariance un-
on the opposite edge, and a frequency on any corner woulder translations which take lattice points to lattice points,
be aliased with all of the other corners. In certain sums oveassuming that each pixel is identical except for position.
frequency components, such as E2f), it is useful to adopt Thus we can write
the convention that such sums include exactly one represen- P(r ') =P(r—1") (34)
tative from each class of aliased frequencies, so that frequen- m’ m ’
cies falling on the boundary of the unit cell are not countedto indicate that the response of a detector element to an input
multiple times. If one uses the “quotient space” point of signal depends upon the displacement of the detector ele-

Medical Physics, Vol. 27, No. 10, October 2000



2422 M. Albert and A. Maidment: Linear response theory 2422

ment from the region to_ yvhich the signal is applied, but not|atticg)_ For such a frequenchy, [noting thatT(f)=T*(—f)
upon the absolute position of the detector element or th@nd (| (f))=(1*(~f)) for real-valuedP(r) and(I(r))] it is

H ; ; 8,19
signal, from which it follows®*® that possible to choose the phase(off,)) so that

<D(rm)>:1~ffdzr,p(rm_r,x,(r,» 35 T(fo)(1(fo)) +T(—fo)(1(—fo))=0, (39
showing by Eq.(38) that a sinusoidal signal concentrated
for each positiorr,, of the sensitive elements on the lattice. at frequencyf, and displaced by an appropriate offset rela-
While the dateD(r,,) are only available at the lattice points, tive to the lattice(as determined by the phase @f(f,)))
the convolution can be calculated at any point, so that would be indistinguishable from the flat-field signal. Return-
ing to the simple one-dimensional model of pixels spaced at

@(r):rf f d2r’P(r—r’)<|(r’)>, (36) 1 cm, this result means that for some displacement relative
to the lattice the input of a sinusoidal wave of frequency
@(f):ﬂs(f)d(f)), (37) 1 cycle/cm would give vanishing output. If the detector ele-

ments were assumed to integrate over 1 cm intervals, then
serves as a definition a(r) for any positionr. Although  the output vanishes for all relative phases of the sinusoidal
(1) is equal to the datéD(r,)) at the lattice points where jnput wave and the lattice. If, alternatively, the detectors
r=rpy, atother points(r) is an interpolation which will not  integrated over only 0.5 cm regions but still were spaced at
in general represent a physical quantity, although it is somet .0 cm intervals, then the sinusoidal wave would have van-
times useful to think of(r) as the response of a virtual jshing output only when the nodes of the sinusoid fell upon
sensitive element added to the detector at positiamsuch  the centers of the 0.5 cm sensitive regions of the detectors
a manner as to not perturb or be perturbed by the other elemd would otherwise change each digital value by a phase-
ments. The discrete space Fourier transforn{@(r,,)) can dependent offset from the flat-field value.

now be calculated usingD(rm))=(ry,) for g(ry) in Eq. The optical transfer function has been written in terms of
(21), giving a Fourier transform using complex exponentials. Since
. complex-valued exponential inputs are not readily available,
(D(f))= |A|E e 2T r ) it is necessary to ask howcan be experimentally measured.
m

In principle, phantoms machined to produce sinusoidal pat-
- _ , terns of x-ray intensity could be used, and by repeated mea-
=AY J’ f d?f (f")e?m m (10 surements with different offsets one could separate the posi-
" « tive and negative frequency components. A more practical
- ~ method is the well-known slanted edge technigfl, in
:Z y(f+fk):rZ T(f+Hf)(F+R)), (838 which images are acquired under flat-field conditions except
« “ that one half-plane of the detector is shielded so as not to
which follows from expressing% in terms of its Fourier receive any input Signa|_ The detector respobDsas a func-
transform and using the completeness relationship expressg@n of distance from the edge is referred to as the edge-
in Eq. (25). spread function ESF, which can be differentidtet give
Comparison of Eq.(38) with its screen-film analog, the line spread function, LSF. Alternatively, by providing an
Eq. (2), helps to clarify the interpretation of the OTF(f).  appropriate input the LSF can be acquired dire€tlfthe
The spacings in the discrete lattice introduce new length SF represents integrals through the PSF along lines parallel
scales which occur explicitly in the summation over aliasesto the edge, so that by acquiring data with the edge at mul-
In the limit of a very finely grained lattice, so th#&—0,  tiple angles one obtains the radon transform of the PSF. One
the spacing of the reciprocal lattice points gets larger, untitan reconstruct the PSF, but it is more common to stop after
only the one unaliased term contributes Significantly to Equmputing the Fourier transform of the ESF, which gi\/es
(38), and the screen-film case is recovered. values of the OTF for spatial frequencieahich are normal
When frequencies higher than those supported by the lato the edge. For discrete-array detectors it is desirable that
tice are present in the signal, the summation in BB8)  the slope of the edge is not commensurate with the lattice
introduces “aliasing,” that is, there exist multiple spatial spacing(for example, on a square grid, if the edge is not
input frequencies whose output is at the same frequency anshrallel to one of the axes and does not have a slope which is
are thus not distinguishable. For example, considering a ongy ratio of small whole numbers like 1/2 or 2/3Nhen this
dimensional lattice with pixel-pitch of 1 cm, oscillations at a condition is satisfied, for a given region of interest the dis-
rate of 0.5 cycles per cm can not be distinguished from ostances of the lattice points ,, from the edge will be distrib-
cillations at a rate of 1.5 cycles per cm. From E8g), two  yted sufficiently densely and evenly so that the ESF is said to
components of the input signal generate the same componepé “super-sampled,” i.e., sampled at a rate significantly
of the output signal if and only if their spatial frequencies higher than the reciprocal of the lattice spacing, so that it is

differ by an elementf, , of the reciprocal lattice. possible to measure values of the OTF for input frequencies
More generally for any lattice there are frequencigs beyond those supported by the lattice.
such that—f, is an alias off, (for example, iff and —f are For discrete-array detectors, rotational symmetry will

on opposite boundaries of the first unit cell in the reciprocalgenerally be only approximately valid at low spatial frequen-
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cies, so it is desirable to make measurements at multiplence of these aliased signals in the output is desirable will
angles relative to the lattice. When the E3¥t a given angle  depend upon the task at hand. For example, it might be de-
0 is acquired, it is often the case that the precise position o$irable to detect a high-frequency signal even if one can't
the edge relative to the lattice is not known, so that ondlistinguish it from a low-frequency signal, or the resulting
actually acquires data for Egfz+z,), wherez, represents ambiguity might be unacceptable.

the lack of knowledge of the exact position of the edge. The question of what, if anything, should be identified as
Upon taking the Fourier transform of the ESF, this intro-either the OTF or MTF for digital systems has been ad-
duces a phase uncertainty of the foed7'!"12¢ into the value  dressed in several ways in the literature. For example,
of T(f). While this phase uncertainty also occurs in measureDobbing* discusses the “pre-sampled OTROTF,,, our
ments of screen-film systems, for discrete-array system3) as measured via the LSEbut then emphasizes the fact
summations over aliased frequencies generally are not pofhat the response to an input signal with either sinusoidal or
sible given uncertainties in the relative phases of valu€B of delta-function spatial variation will change if the input signal
at different spatial frequencies. In general one can removes shifted by a fraction of the lattice spacing. This depen-
this phase uncertainty by redefining the lattice positions talence, which follows from Eq(38) when the input is ex-
correspond to the “centers-of-mass” of the response funcpanded into Fourier components, confounds attempts to de-

tions of the sensitive elements. More specifically, if fine the MTF either in terms of the frequency response to a
single delta function or as the ratio of output-to-input ampli-
f f d2rP(r)=J dzESF,(z+2,)>0, (40) tude for a sinusoid. Dobbins addresses this issue by defining

then it is possible to redefine the lattidey a shify so that
each lattice point sits at the center of mass of the response
function of the associated detector element, giving

OTFd(f)=Z OTF,df+f), (43)

and defining EMTH) as the amplitude of the detector re-
ff dxdy xF(r):f f dxdy yRr)=0. (41)  sponse at frequendyto a delta-function input averaged over
all positions of the delta function. Giger and Bbincluded
With this redefinition of the lattice position, each LSF ac- such a summation of OTF over aliased frequencies in their
quired corresponds to a radon projection of the P&%o a  study of data acquisition and display for digital systems.
line perpendicular to the edgand thus the center of mass of Both OTFK; and EMTF can be computed in terms of the OTF,
each LSF should be at the origin. This corresponds to shiftbut it can be seen that neither is sufficient for calculating

ing the acquired LSKadjustingz,) so that SNR. MetZ® approaches the problem in essentially the same
manner as discussed in this paper, and indeed @§sand
f dzESF,(2)z=0 (42) (30 of that paper essentially give our E(88), but for a
slightly more specialized case. Metz then brings up the point
for each angle. that a shift by a fraction of the lattice spacing in the input

As a practical matter this results in an increase in thesignal does not result in a simple shift in the output data, and
amount of data it is desirable to report for a given detector. Itoncludes that “the effect is accounted for mathematically,
one can assume an inversion symmetry, P&r)=P(—r), but it prevents us from defining a unique ‘transfer function’
then the imaginary part of the transfer function will vanish of the sampling process.”
identically, so that only the real part need be reported. The Experimentally, Sones and BarAésecognized the desir-
absolute value of the OTF, traditionally called the modu-ability of measuring the transfer function above the maxi-
lation transfer function(MTF), gives enough information mum frequency supported by the sampling lattice in their
to calculate quantities such as the spatial average of?’SNRwork with a digital radiography unit. This measurement was
(Sec. VI, but does not give enough information to explore performed using a novel technique based upon a phantom
other aspects of the detector, such as the spatial variation obnsisting of periodically arranged wires, the distance be-
SNFR? as the test object is moved relative to the lattice. Retween the wires chosen to be incommensurate with the dis-
searchers should also note that with the slanted edge tectance between samples acquired by the detector. Fujita, Doi,
nique, when combining raster lines to plot the edge spreadnd Gigef® measured the “pre-sampling analog MTF”
function, the independent variable of interest is the distancabove the maximum frequency supported by their sampling
from the edge, which for square lattices differs from thelattice via a slanted slit technique and recognized that
distance along a raster line by a factor of the cosine of th&éknowledge of the pre-sampling analog MTF ... will be use-
angle between the raster line and the normal to the edgéul in the determination of signal-to-noise ratiSNR) [and]

This factor becomes significant when trying to measure théhe evaluation of digital systems,” a statement with which
transfer function at angles away from the detector axeswe heartily agree.

Based upon the experience of the authors, one can generally Working from a complementary theoretical perspective,
measure values of the OTF at frequencies several times tHgarrett et al! uses the “cross-talk” matrix to address the
highest frequency supported by the lattice. One is, of coursanore general case of any detector whose response is linear,
measuring the response of the detector at low frequencthen proceeds to more specialized cases. In Batett, the
aliases to higher frequency input signals. Whether the presnput to the system is defined as the object being imaged
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parameterized in terms of the coefficients of its three-s an immediate result. With the assumption of stationarity,
dimensional Fourier series, while for our purposes the inputhe autocovariance depends only upon the displacement
is the x-ray fluence incident on the detector. For projectiorr,,—r,, SO we can write
radiogra_phy_, which is our primary interest, the incide_nt X-ray Clromrn)=C(fn—r,) (46)
fluence is directly related to the integrated attenuation coef-
ficient of the object along rays diverging from the x-ray fo- without ambiguity. Note that the difference between two
cus, at least to a first approximation. As our goal is to at-vectors corresponding to lattice points is again a vector cor-
tempt to quantify the detector response independently ofesponding to a lattice point, <0 on the right-hand side of
other technical factors, this approximation is adequate. BarEq. (46) is defined at precisely the lattice points.
rett et al. is concerned with detectors which may have rela- The Wiener spectrunW(f) is defined as the discrete
tively few sensitive elements, so the application of Fourierspace Fourier transforriEq. (21)] of the autocovariance
techniques to the acquired data is not considered. Barrefginction C(r,). As with any discrete space Fourier trans-
et al. applies the cross-talk matrix to the case of a oneform, the Wiener spectrum is periodic in frequency space
dimensional array of detector elements with aperture siz€EQ. (22)] so that one need only consider the value¥\gf)
equal to the element spacing, and finds that the cross-ta®n @ single unit cell of the reciprocal lattice. It is noteworthy
between components of the input at separate frequencies déat both the autocovarian¢@ and the Wiener spectrui
creases as the length of the array is increased, so long as tAee real-valued and even. As with screen-film systems, one
frequencies are not aliases of each other. Thus in the limit ogonsiders statistics which are linear functions of the data, so
a homogeneous detector of infinite extent one recovers thié g(my,m,) is a set of realor compley numbers defined on
fact that the transfer function behaves as a sparse matrix, #fi€ lattice points, one defines
which all terms vanish except those on the diagonal or relat-
ing aliased frequencies. 0y= |AIY g(m)D(r,,). (47)

In order to use Eq(38) to calculate the response of the fm
detector to a given input, it would be necessary to know thérhe variance ofy (for g complex valued, the sum of the
position of the object being imaged with a precision finervariances of the real and complex paitsgiven by
than the Igtticg spacing..StrictIy speakilng, to calculate th%/ar(a )=(6,6%) (48)
response in either the discrete or continuous case requires = 9 979
that the input be “perfectly known.” However, in the case of ) .
a continuous detector, a shift in position of the input will =[Al (% g(m)D(rm))<§n: 9 (”)D(rn))
result in a corresponding shift in position of the output, while (49)
for a discrete detector the ‘“shape” of the output would
change. In many cases, such as predicting the detectability of _ |A|22 2 g(m)C(r,—ry)g* (n) (50)
randomly placed objects, one would need to calculate for an m “n
ensemble of objects displaced with random phases relative b
the lattice, as will be illustrated below in calculating the SNR
of small objects.

R terms of real space. Expressing the autocovariance matrix
as the inverse discrete space Fourier transfid@m (24)] of
the Wiener spectrum one obtains

V. NOISE Varwg):lA'z% zn: g(m)f dezf

Indlividual .rea_li_zation.s of an imaging process hgve an ir- X W(f)e2m! (= Tmg* (n) (51)
reducible variability which sets a fundamental limit on how
effectively the detector can distinguish between various in-
puts. For discrete-array systems, as for screen-film systems,
the noise can be quantified in terms of the autocovariance

function. If the noise is additive and Gaussian, then the auyvhere the second step follows from the definition of the dis-

. . . .crete space Fourier transforfaq. (21)].
tocovariance matrix completely summarizes the stochastic : .
Thus one can calculate the variance of a statistjc

process which generates the noise. If the system is also St\z/iv_hich depends in a linear manner upon the data, using either
tionary, then Fourier techniques can be used to define th’% P P ! g
Wiener spectrum.

The discrete autocovariance function is giverf*dy

- f dezf@m@*(f)wa), (52

e autocovariance function or the Wiener spectrum. Statis-
tics of this form, forg(m) real-valued, will be seen to cor-

respond to decision variables of ideal observers in Sec. VI.
C(rm ) =(D(r,)D(ry)), (44) As in the screen-film case, it is useful to consider functions

wherer,, andr, are points in the lattice of detectors, the g(rr:j) cqrre?ponQing t?}_t?‘e proguct 9f a plane wave and a
angled brackets represent averaging over an ensemble of fid{i"4oWing uncuon,.w ich can be written as
field images, and as discussed ab@ikér,,))=0 in the ab- gfo(m)=G(m)e2”'f0"m, (53

sence of a signal. Symmetry under interchange of positions . ) ) )
whereG(m) is a real-valued window function with normal-

C(rmrn)=C(rn,rm) (45) ization
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A variance in the spatially averaged optical density of ilm
|A|§ G(m)G*(m)=1, f desz(f)G*(f): 1, 59  comparing Eq(61) to Eq.(52), one can interpret E461) as
the statement that the integrated response over large regions
where the two normalizations are equivalent by Parseval'f the detector depends only upon the low-frequency com-
theorem. Applying Eq(49) and Eq.(52), ponents of the Wiener spectrum. Viewed spatially, this result
) means that the digital values averaged over sufficiently large
> (55) disjoint regions are approximately independent, so that the
variance of the average ovBrlarge subregions scales with
1/N«1/M lM 2.
:J J d2f|é(f—f0)|2W(f). (56) As with th_e _C_)TF, the results_ pf the _screep-film thgqry
K appear as a limiting case for sufficiently fine lattices. Writing
Egs.(59) and(60) as

Var(6,) = |A|2<

> G(m)e 2o 'mD(r )

For suitable windowing functionss, |(A3(f—fo)|2 will be
strongly peaked nedy so that one obtains an estimate of the

Wiener spectrum at the specified frequendy(f,). In par- W(f)= lim 1
ticular, if G,e(m) is chosen as 1K ;M,|A|)¥? at the lattice M eM1Mo| Al
pointsme[0,...M;—1]X[0,...M,—1], then Mi—1 My—1 )
MMyl x< > X |AID(ry)e 2 > (62
0 = — D(r eZ‘ITifO-rm7 (57) m;=0 my=0
o m%o m%o Ao
_ the summations become approximations of the integrals in
- . |Al sif(Mymr(f—fo)-vq) Eq. (6).
|G(f—fo)|*=

- MM, sir(a(f—f,)-vy) The discrete autocovarian¢&q. (44)], the definition of
ir? the Wiener spectrum as the discrete space Fourier transform
S! _(MZW(f_fo)'VZ) (5  Of the autocovariance, and the use of Fourier components of
sif(m(f—f,)-vp) flat-field images to estimate the NHEq. (59)] have oc-
curred in several places in the medical physics literatti?e,
but historically these results seem to have been considered
less than satisfactory from a theoretical point of view. For
example, Cunninghathstated that while {i]t is tempting to
write out the NPS ofthe sampled digital signhlbut strictly
speaking this violates the shift-invariance assumption since
[the datd is sampled and is therefore not shift invariant.”
More recently, Cunningharif,in analyzing the concept of
NPS in terms of cyclostationary > random processes, de-
ﬁnesWMle [Eq. (60)] as “a working definition of the digi-
) . tal NPS.” As detailed in Sec. VI, the NPS, as defined here, is
Returning to the case of a general lattice, Ex8) shows . ) . : CT
. . . : ; . precisely the noise which sets the detection-theoretic limits
that for this particular choice of window, as is typical, the ) .
. . . on the use of the detector. In the detection-theoretic approach
estimate ofW(f) becomes sharper as the spatial width of the 1 . : . i
: : of Barrettet al,” the Fisher information matrix relates the
window increases, so that . . S .
detector noise back into uncertainties in the estimates of the
W(f)=C(f)= lim (W m.(B), (59)  Fourier coefficients of the object being imaged. This has the
M1 ,Mp— e advantage that it removes the fundamentally arbitrary choice
of scale in using digital values, but if aliased frequencies

which explicitly shows that for this choice ofG,
|G(f—f,)|? is strongly peaked nedy,. For a square lattice
with conventional choice of basis vectors—(f,)-v,=(fy
—(fo)AX, wheref,—(f,) is the difference in thex com-
ponents of the frequencies amix is the lattice spacing
in the x direction, and similarly for they axis. In general,

if a separable window is chosen, so thab(m)
=G1(m1)G2(m2), then G(f):Gl(f'Vl)Gz(f'Vz), SO that
one can make use of the variety of one-dimensional window
which have been studi€ed.

= |A| Mlz_l Mzz_l ity 2 become important the Fisher information matrix becomes
Wiaym, (1) = MM, | o maZo D(rm)e (60 singular so that the inversion of this matrix is problematic.

. _ . The definition of NPS given here is intended to be opera-
where, by stationarity, anil; XM, region of the detector tional in the sense that it is defined in a manner which can
lattice will serve. Specializing to the zero frequency casepe implemented using the experimentally available digital
f=0, one gets values. For the purposes of understanding the sources of

W)= lim  (MyM,|A]) p0|f]e ‘|‘n detect?rz,nlt_mayll bedufseful to c;‘jon3|der thr?‘ noise
My My in the “presampled” signal, and for some detectors this pre-
1 MigtMet 2 ample, in a detector based on a phosphor screen coupled with
EO D(rm) ' (61) a lens to a charge-coupled devig@CD) camera, one could
which is the discrete-array version of Selwyn granuldrity graphic film. For some devices, such as TFT arrays using
(the variance in the average digital value corresponds to thdirect conversion mechanisms, the meaning of the presa-

sampled signal might be experimentally accessible. For ex-
X< M ;M
=0 =
Hra M m do experiments in which the camera is replaced by a photo-
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mpled signal is less clear as removal or refinement of theegion of the detector, corresponding to indexas: .7
sampling array is likely to change the electric fields respon=[M,,...,M;—1]x[M,,...,M,—1]. This observer works
sible for charge collection. under the assumption that given hypothdsjs correspond-

As reviewed by Wagner and Sandrfkthe calculation of jng to an expected input signél(r)), and an expected data
the NPS can be implemented in several ways. One method iet(D(r,,)),, the probability density function describing the
to estimate the autocovariance functidfgs. (44) and(46)]  expected range and frequency of observed data sets is Gauss-
using pairs of points in one d@preferably more images, and jan. This Gaussian distribution inM}—M )X (M5—M,)
then performing the Fourier transform to give the NPS. Al-=AM;AM, dimensions, one dimension for each detector
ternatively, the variance in the Fourier components is usetslement available to the observer, can be written explicitly,
as in Eq.(59). If G is chosen as a rectangular window, thenpyt to make the formulas somewhat less cumbersome we
Eqg. (55) reduces to Eq59), so thaf Wy v, (f)) [Ed.(60)]is  use the following notationX,=D(rm), (Xm)i=(D(rm)),
used as an estimate W(f). In principle the frequenciisa  (Xpn)y=(D(rm))y, and {Xp,}={D(ry)|me.Z} is a
continuous variable, but the spread 6f(f)|? limits the reso- AM;AM,-dimensional vector in the space of all possible
lution in frequency spacgby Eq. (56)] and this spread is data values for the detector elements in regigh The prob-
inversely proportional to the size of the spatial region and orability distribution which governs the frequency with which
the order of|K|/M;M,. Given this resolution, it is reason- particular data sets will be obtained under hypothekiss
able to calculate the NPS a#;M, frequencies spaced given by
evenly in the unit celK in frequency space. Thus, the tech-

. ) : , ) =N.e YZmne./Xm=XmD(C™ Hmn(Xn=(Xnh))
niques commonly in use by experimenters give precisely the Pi({Xm}) =N "= mn=.7m K X=X,

qguantities of interest from our current theoretical point of (63
view, although the use of windows other than the rectangulaihere the normalization factor is given by
window might be of interest to obtain better frequency reso-
} 1\ (AMiAMp2 4
lution. N (64)
Generally, frequency resolution is not a limiting factor in °\2m /detC’

estimating the Wiener spectrum, and the NPS estimated by _ . _ _
(Wi, m,(f)) is subjected to further smoothing. From E§7) ~ The matrixCy,, is the autocovariance functidd(r,r,) of

it is seen tha( Wy, _(f,)) is the variance in the random Sec. V restrictgd Fo the range,ne. 7. The fact thgm and
172 n are double indices, e.gm stands form;,m,, is not a

problem from the theoretical point of view, and in principle
¥0r a numerical calculation one could simply choose a con-
venient one-to-one pairing of the double indices,m,

e .2 with the integers 1,,AM;AM, so thatC would be
indexed in a more customary manner. Under hypothegis

My,Mp—. As the region of interest is made larger, oney,q range and frequency of observed data sets will be gov-
gains in spectral resolution but not precision, and this reprearmed by a Gaussian probability densRy, this time con-
sents an unavoidable trade-812* One can only decrease ’

[ X ) centrated aroun¢X), . The restricted covariance matrig,
the uncertainty in the estimates of the Wiener spectra b

, ; . : ¥)ccurring in both cases, will be the same under the assump-
averaging estimates ¥(f) from several different regions of tion that the noise is additive.

interest. Of course, for the purposes of analysis one could Returning to the question of how to decide between hy-
divide a large region into several smaller regions, and th‘f)othesisH, and hypothesisi,, , if for a given instance of the
averaged value of estimates Wf(f) would then have less experiment a data s€iX,,}={D(r,)|me./} is obtained
uncertainty, but the spectral blur would be increased. Since §,op, thatp, ({X,.}) is relatively large and®,({X,}) is rela-

is often inconvenient to obtain sufficiently many flat-field tively small, it would generally be reasonable to favby .
images to make the standard error in the estimat&8(6f at 1,5 the ideal observer's decision rule based on the likeli-

individual frequencies small, researchers often opt fof,,,q ratiop, /P, , as discussed below, is intuitively reason-
smoothing the experimental spectrum.

variable 6., and as the region of interest used in the cal-
culation is made larger, the variance .., tends toW(f)
which will be nonzero in general. Because the variance o
6,ec dO€S not vanish, neither will the variance|#e.{?, so
the variance inWMle(f) does not converge to zero as

able.

The ideal observer attempts to minimize the expected
VI. KNOWN SIGNAL DETECTION cosf?® given knowledge of the cost of misclassification un-
Having addressed the issues of OTF and Wiener speder either hypothesis and tlhepriori probabilities associated

trum, it is now possible to use the signal-to-noise ré8blR)  with each hypothesis,

to quantify the ability of the detector to perform SKE/BKE

tasks. First, however, it is useful to briefly review the mean- (Cosp=P(H)P(ChIINC,_;+P(H)P(ChIINC; .,

ing of the SNR in terms of an id€al® observer working with (65
Gaussian statistics. The ideal observer is challenged with davhere in the first ternP(H,) is thea priori probability of the
ciding between two hypotheses based upon a given set state corresponding to hypothesisbeing true,P(Chll|l) is
data. In the current context, these data consist of the digitdhe probability of mistakenly choosing hypotheblg when
values obtained from the detector, and for the momenhypothesid, is correct,C,_,, is the cost associated with this
we will restrict the observer to knowledge of only a finite error, and similarly for the second term. Given a regip
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of the AM;AM, dimensional data space and the decision

rule that, if the observed datD(r)|me.7} are inR, mE// 9. /rm)C(rm ) =D ))y—(D(ry))), (74
then the observer rules in favor of hypotheldig and other- =
wise in favor ofH,, then the probability of mistakenly fa-

voring hypothesisH, whenH, is correct is for all ne.#. On physical grounds, the values of the mask

functiong ,(r,,) will be significant only in the region near
where{l(r)),—(I(r)), is nonzero. Further from this region,
P(Ch”“):f f ---L dAMIAVIX P ({Xh),  (66)  the va<lues>ofgv</4(rm>) will tend to zero, so that for suffi-

! ciently large AM;AM, the ability of the detector to dis-
and, as under either hypothesis the total probability must beriminate between the two hypotheses should not depend
unity, upon the exact value &M 1AM, . In that limit, the efficacy
of the detector for the SKE/BKE task should be set by the

P(Chl|||)=1—f f f dAMiAMafx AP ({Xm)) (67)  linear statisticdy for the ideal observer's mask functiay .
Ry This mask function is defined implicitly by

gives the probability of making the error in the other direc-
tion. Combining Eqs(65-(67) Al 2 gt Clrm i =((Du= (D)), (75)
(Cosh=P(H,)Cy '

AV AM where a factor ofA| is introduced to simplify the form of
+f f ---JR d?tY2{ X }DC({Xm}), (68 the solution which in the Fourier domain is given by
Il

where . (D)~ (D(hH),
f)= 76
DC({Xen}) = P(H)Cy P ({Xen}) 00 W) (79
PP (©9 S (1 F Y= (T(E+ D T(F+ )
is the differential cost which, if the experiment were repeated =TI . (77

sufficiently often, would be attributed to those experiments WD

which gave datdD(r,,)|me.#}. Clearly the expected cost
given by Eq.(68) is minimized by choosing the regid®, to

be precisely the region where the differential cost DC is
negative, so that the ideal observer's decision rule is to )
choose hypothesid, if and only if the likelihood ratio SNF%:FZJ " |Efk<AI(f+fk))T(f+fk)|

_PudD(rm)|me.7Z}) K W(f)
P\({D(rp)|me.Z})

The statistict, is itself a Gaussian variable whose variance
can be computed using E(2), so that

(78)

(70)
gives the SNR corresponding to the use of the statistic, as
exceeds the threshold value defined in Eq(8). Thus the limiting case of a detector array
of infinite extent is well defined, for pixels “far away” from
_ P(H)Ci 71) the region of interest do not significantly contribute to the
® PH)Cyy decision. Physically, it is clear that the “tails” of the PSF
and autocovariance functions set the relevant scale by which

By adjusting the operatmg_ poirlt, one makes trade-offs in distance from the edge of the array is measured, so that when
the rates of the two possible error types, as can be shown

. . . the projected images of objects appear at a distance from the
graphically in terms of receiver operator curvéROC ) ;
37 . boundary of several times the lengths of these tails the de-
analysis.”’ Equivalently one can place the cutoff on lag . T .
tector can be treated as essentially infinite and E#8) is
and from Eq.(63),

valid.
. It is acknowledged that there are mathematical subtleties
|09A=mg p (D)= (DT m))(C™)mnD(ry) related to a truly infinite detector which are not addressed
S here. For exampl& the data set for such a detector would
+ const, (720 represent an infinite set of random variables, so it is not

where the constant term does not depend upon the Observggssmle_to WﬂFe _d(_)wn a probability density d|str|bu_t|on _Ilk_e
. - - - g. (63 in the infinite case. The nature of the physical limit
data. Thus an ideal observer, viewing a finite regigf of

the detector array. uses a linear statigic defined b is sufficiently clear that a study of these mathematical subtle-
Y: 2 y ties could not change the results. In any case, the fact that the
linear statisticdy with g=g; gives the optimal SNR of any

9.//z=m62// 9./Arm)D(rm), (73 linear statistic can be proven directly. More precisely, if
o g(ry) is used to define a linear statistity, then letting
whereg ,, is given implicitly by AD=(D),—(D),,
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L with position is not too great, then the spatially averaged
f f d?fg(f)AD(f)| = J f d?f(g(f) yW(f)) value of SNR will be of use! This spatial average can be
K K computed exactly by noting that if an object is shifted by a
A[ﬁ(f) 2 displacement, the Fourier transform is multiplied bg?™
- so that in Eq.(78) the sum over elements of the reciprocal
W(f) lattice becomes
2
sJ f d?f|g()|>W(f) D (ALF+H R T(F+ el | (81)
, |AD(f)|? where a common factor independenthdie?™"|=1) has
Xf de fW' (79 been removed. In averaging over positions Eq. (78), the

denominator of the integrand does not depend upoand
where the second step is an application of the Schwarz irthe numerator is the square of the magnitude of a Fourier
equality. Dividing both sides of E79) by the first factor on  series inr, so that in integrating over to obtain the average
the right, one obtains over all displacements one can apply Parseval's theorem to

. “ obtain
|1 f d2fg(f)AD ()2 |AD(f)[2 .
I fid2f|g(f)|2W(f) = J f R (80) S| AT(F+ £ 2 T(F+ ) |2

W <SNR2>=F2J J df W
where the quantity on the left is the SKIRr the statistic, :
[Egs.(8) and(52)] and the quantity on the right, proven to be 5 5 |T()|?
larger, is the SNRof the ideal observer as given by HG9) =r j j d f( W(F)
[with Eq. (38)].

As a slightly less subtle point, the construction of thewhere the second step follows from noting that the sum of
ideal observer involves dividing by(f), which is problem- the integrals over each unit cell is equivalent to the integral
atic if W(f)=0 at some frequency. For physical detectors,0ver the entire plane.
the Wiener spectrum never vanishes as there is always some As for the OTF and NPS, the film-screen result, Ecp),
residual noise. Even for highly idealized detectors, thecan be recovered from the discrete-array refdtdt. (78)] by
Wiener spectrum must reflect the noise in the incident x-ray@0ing to the limit of a sufficiently fine lattice, in which case
fluence so that it can only disappear at frequencies where tHfe distance to the first aliased frequency is so large that only
OTF vanishes, and at these frequencies the Wiener spectruife unaliased term contributes to Eg8). Similarly, for a
will vanish no faster than OT¥f) (discussed in more detail sufficiently fine lattice all objects are large relative to the
in the next section so that even in this case the SNR aslattice spacing, so that SNRioes not vary appreciably as the

)lAf<f>|2, (82)

given by Eq.(78) is a well-defined limit. object is moved relative to the lattice spacing. These facts
The SNR given by Eq(78) corresponds to the SKE/BKE prompt the identificatiohof
decision task using a discrete-array detector, as (E8) GNEQ(f) =T T(f)|2D2W(f), (83)

gives the SNR for the SKE/BKE decision task for screen-
film. Strictly, these formulas do not apply to the task of as a generalization of the concept of noise equivalent quan-
detection when the observer does not know the position ofum flux (NEQ), where® is the incident x-ray flux, and
the object being imaged. For detecting a signal of unknown 2 2
location, one can calculate the ideal observer's SKE/BKE GDQE() =IT(HI*®/W(H), (84
0(r) for each possible position of the object. A common as a generalized detective quantum efficie(@QE). These
strategy is then to apply a threshold #(r). Under the results parallel the screen-film theory, except that factors of
assumption of Gaussian statistics with complete knowledgéuence appear in the numerator as the response of digital
except for position, the likelihood ratio computed by the detectors is linear with fluend&q. (33)] while film density
ideal observer use(r) in a nonlinear manné&t>°*°that is  is linear with respect to the log of fluen¢Eq. (1)]. While
sensitive to peaks ifdz(r). In either case, the values of SNR Eq. (82) is exact in the context of the assumptions we have
given by Eqgs(13) and(78) are indicative of the efficacy of made about the detector, SRIBnters nonlinearly into other
the ideal observer in the more general case of the positioguantities such as the various probabilities of misclassifica-
being unknown. tion for a given operating pointsometimes called the false
For the discrete-array detector, however, the value of th@ositive fraction and the false negative fraction in ROC
SNR for the SKE/BKE case will depend upon exactly wheremethodology. However, when the variation in SNRs not
the object is relative to the lattice. While this variation can betoo large, perhaps as measured by the (most-mean-square
significant (for example detectors could have interstitial variation in SNR), then the GNEQ and spatially averaged
spaces where objects completely disappetie magnitude SNR can be considered a useful summary of the efficacy of
of the effect decreases for objects large relative to the latticéhe detector.
spacing. Examples of this for several simple model detectors In this paper we have applied the concept of an ideal
will be given in the next section. If the variation in SRIR observer directly to the digital data. The results obtained are
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implicit in the work of Gigeret al,*>?54142hyt Gigeret al. (sin( 7-;|_fx)>(5in( 7T|_fy))
) (87)

concentrates on issues of display and models of human vi- To(f)=| ——= L

sual response to the displayed data. As these tasks are decou- X X

pled from image acquisition for digital systems, it is worth the digital noise power spectrum can be written
considering figures of merit for the data acquisition system

independent of the display, as done here. The results of this yf)= = E |AIPD (M| T(F+fi) |2+ m) [ Ty(F+f) |2
section also follow as limiting cases of the work of Barrett
et al! Of particular note, Sec. VAdiscusses a simple bin-

ning detector and obtains T We. 9
M where the factor of 1? is introduced so that digital values
SNR= E gm (85) will correspond to x-ray count andlVg is the electronic
m noise. With the present conventions the gray-scale character-
istic is set toI'=|A|. A simplification can be achievét

where oy, is the uncorrelated noise in theth detector and
Ag,, is the expected change in the data value at rtitle
detector which would be caused by the signal. This particular = (sin(qr(x+ n))\2

using

result can be obtained directly from first principles based on (89

counting statistics in each detector element. In the stationary "
case,o,=o is a constant, so in Eq78) W(f)=o?|Al and  for anyx, which can be proven by applying Parseval's theo-
the numeratofusing qu‘ (38) and Parseval's identifybe-  rem to the Fourier series f@™*Y for ye[—0.5,0.9. The
comes|A|Z,|A(D(ry))|?, again recovering the reslEq.  experimentally observable transfer functi@s obtained, for
(85)] based on counting statistics for uncorrelated noise. It igxample, by the slanted-edge technique, cf. Secctvitains

worth noting that if one does not include the aliased terms ifhe effects of stochastic scatter and binning, thi()
the numerator of Eq(78) (perhaps on the grounds that =T (f)T,(f), so that

aliased signals are not usefuthe value of SNR will be
underestimated. The aliased response is part of the physical
response of the detector, and in this case the aliased terms

will add coherently in such a manner as to bring the calcu-

lated value of the SNRup to the value in Eq(85) obtained is the Wiener spectrum of the model detector, with the aver-
from counting statistics. age number of x-rays per pixel beidg/A|. The summation

over aliases in Eq(88) is often referred to as “noise alias-
ing.” The division into aliased and unaliased components is
useful for modeling a variety of detectors, but it should be
noted that this division is generally not directly experimen-
To give a feel for the implications of the above theory, thetally accessible, at least not without modifying the detectors,
capabilities of detectors with reasonably realistic parameterand that in principle there could be devices which are sta-
will now be investigated. The modeling is somewhat simplis-tionary, and therefore have Wiener spectra, but for which the
tic, but sufficient to demonstrate several interesting propereivision of the NPS into aliased and unaliased components is
ties, such as the dependence of SNR on the position of theot useful.
object being imaged, and certain trade-offs inherent in such It is useful to choose values of the parameters in the
detectors, particularly those trade-offs related to the possiblmodel which are representative of detectors of current clini-
suppression of input spatial frequencies above the frequereal interest, as this can help in the understanding of the phys-
cies supported by the lattice. The incident x-ray fluedce ics which determines the performance of these devices, but
has a white Wiener spectruiy;(f)=®. Among other sim- detailed modeling for quantitative comparison to actual de-
plifications, which will be discussed in more detail at the endvices is beyond the scope of this article. We assume a square
of the section, we assume 100% of the x-rays interact. Eaclattice with spacing ol. =0.143 mm, operation at an expo-
x-ray undergoes a stochastic amplification, characterized bgure corresponding tpA|® = 1400 x-rays per pixel, and an
an average ofn secondary quanta per x-ray with,=+m  amplification factor ofm=1000. For the stochastic transfer
for a Poisson process, and the secondary quanta undergdumction T we consider three possibilities: a “blur-free”
stochastic scattering process, with a spread fundfigmand  detector for whichT¢(f)=1, typical of photoconductive
transfer functionT, before being “binned” by the detector arrays? and two “alias-free” detectors whose stochastic
elements. The result is an averagenwP secondary quanta transfer functions are of the formTS(f)ze‘Mfl with
per unit area on the detector with a pre-sampled Wienek=0.463 and\=0.34 mm, which approximates the transfer
spectrum given b} function for evaporated C4P~*8 Typically electronic noise
V(We)/[A] is on the order of 3—5 x-rays, so values of 6, 4

m(X+n)

, . PIA
W(H)/|A| = @A X [T(f+fig|*+ — —+We/|A] (90
fi

VII. MODEL DETECTORS

— 2 2 2
W) =[M*Wi(f) + oy =M ]| T(F)|*+ me. (86) and & cover the range of values fap|A|/m+Wg/|A|.
For a square lattice with spacirlg binning can be consid- The transfer functions for these models are shown in
ered as a deterministic convolution with rect functions rep+ig. 2. As the pixels are symmetric with respect to inversion
resenting the detector regions, so that with through their centerfi.e., for the PSFP(r)=P(—r), and
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Transfer Functions GDQE
D|AYM + W, /A = 0

1.0 =
\ N\
---- blur-free K ---- blur-free
—_— aI!as—free (A =0.463 mm) \ —— alias-free (A = 0.463 mm)
— —- alias-free (A = 0.34 mm } 0.8 r N — — - alias-free (A = 0.34 mm)
\\
\
\
\
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Fic. 2. The optical transfer functions of three model detectors. The “blur- . .
free” detector bins the secondary quanta without smoothing, while for theF'G' 4. GDQE as a function of frequency for the three model detectors as in
' ig. 2, with the residual white nois@|A|/m+Wg/|A| set to 0.

“alias-free” detectors the distribution of secondary quanta is smoothed b)}:
an exponential MTFe{’””) before binning. Data are shown as a function of
the magnitude of the spatial frequency for several angles.

simply binning each incident x-ray. For the alias-free detec-
P(r) is a real numbdr the imaginary part of the transfer tors, there is very I|tt|§ response to frequencies beyond those
supported by the lattice. For each detector, three angles are

function is identically zero, so only the real part need be .
graphed. The OTF is, of course, a function of two variablesplom.ad’ but the angular dependence for the alias-free detec-
tors is small enough to not be apparent on the graph.

fy andf, . To show this, we plot the OTF as a function of the The Wiener spectra are shown in Fia. 3. Aaain. instead of
magnitude of the frequency vector for three angles relative toI tting a functi pn f two variables gdf gv ,I tth
an axis of the detector. For the blur-free detector, the transf otting a func .0 of two va a. €9, andty, we plot the

PS as a function of the magnitude of the frequency vector

function is simply the product of the sincs in the two direc- for three anglesf=0, 27, and 45%(27° corresponds to a

tions induced by the binning operation. The OTF of the blur-SIOIoe of 1:2 relative to the lattizeHowever, the NPS shows

free detector is nonzero well beyond the highest frequenc Lile anaular dependence. For the Wiener spectrum one onl
supported by the lattice. Any component of an input signal a g P ) P nly
needs to look at frequency values supported by the lattice,

these higher frequencies will contribute to a lower frequenc;i e f e[—1/21/2L] and f,e[—1/2L 1/2L] (for conve
Sy Iy ) y 1] -

alias in the output, as per E8), and while it is not obvi- rnience one can consid&Y to be periodic in the frequency
f h int of vi f f h
ous from the point of view of frequency space the sum oveplane}. Thus, até—0° one only needs to graph up to 1/2

li in E ill isel ival h . .
aliases in Eq(38) will be precisely equivalent to the detector 3.5 mn . but atg—45° the frequencies are on the diago-

nal of the square, so one goes up\2/2L=4.9mm *. At

Wiener Spectra #=27°, one goes up to 1A2cosh)=4 mm . For this graph
the constant offsed®|A|/m+W¢g/|A| has been set to zero.
1500.0 . - - ‘ For the blur-free detector, the NPS is flat, which follows
. mathematically from Eq89) and the fact that (f) for these
\ -~ blur-free detectors is simply related to sinc functions, or more physi-
\ —— alias-free(A = 0.463)

\ ——- alias-free( =034 mm) cally by noting that for a detector which simply bins incident

] x-rays adjacent cells will be uncorrelated so the NPS is flat.
For the alias-free detectors, the NPS is suppressed by factors
of the square of the transfer function.

The GDQE as a function of frequency are shown in
Figs. 4—6 for a range of values of the residual white noise
®|A|/m+WE/|A|. For each graph, values are plotted as a
function of the magnitude of the spatial frequency for angles
0, 27, and 45° relative to an axis. In each case, the GDQE
falls off most quickly at6=0° and least quickly at=45°,
which represents the fact that on the diagonal the sampling
rate is increased by a factor o®. In the case where the

Fic. 3. The Wiener spect@/(f)/|A| for the three model detectors as in Fig. €sidual white nOise_iS zer@-ig. 4), the G[_)QE of the blur-
2. The residual additive white noise|A|/m+Wc/|A| has been setto 0.  free detector drops like the square of a sinc function. For the

2

1000.0

500.0 -

NPS/|A| (x-ray equivalent)

0.0
0.0

Frequency Ip/mm

Medical Physics, Vol. 27, No. 10, October 2000



2431 M. Albert and A. Maidment: Linear response theory

GDQE

B|AYM + W, /|A| = 4

---- blur-free
—— alias-free (A = 0.463 mm)

08 — —- alias-free (A = 0.34 mm)

0.6
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0.0
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2431

SNR? as a function of displacement
{50p wire 20 mm long parallel to axis)

-~~~ blur-free
—— alias—free (A= 0.463 mm)
— — - alias-free (A =0.34 mm)

SNR?

0.00

0.00 0.04

Displacement (mm)

0.02 0.06 0.08

Fie. 5. GDQE as a function of frequency for the three model detectors as i 'S /- Relative SNRas a function of position for a 50m wide, 20 mm

Fig. 2, with the residual white nois@|A|/m+Wg/|A| set to 4.

long wirelike object parallel to one axis of the detector. The horizontal axis
of the graph gives the displacement of the wire, so that at 0 mm the wire is
over a single column of sensitive elements, while at 0.07 mm the wire
straddles two columns. The verticle scale is arbitratgpendent upon the

alias-free detectors, the GDQE remains at nearly unity ugontrast of the wirg

to the lattice cutoff, the factor of?(f) canceling the same

factor in the colored part of the noise. The GDQE of the
blur-free detector shows some response beyond the latticy

cutoff. Though small, this portion of the GDQE is physical
and it will be shown that the responses to the aliase

frequencies can not be trivially dismissed. With the addition
of residual white noise the GDQE of all three models is

reduced, as shown in Fig. Sb(A|/m+Wg/|A|=42?) and

Fig. 6 (®|Al/m+Wg/|A|=82). These figures illustrate that
the alias-free detectors are more sensitive to sources of
sidual white noise than blur-free detectors. Indeed, in Fig.
the blur-free detector now has higher GDQE than th
A=0.463 mm detector even at low spatial frequencies. Fro
the spatial point of view this is quite reasonable. A detecto

GDQE

®|AYM + W,/|A| = 8

---- blur-free
— alias-free (A = 0.463 mm)

0.8 — — - alias-free(h = 0.34 mm)

0.6

GDQE

04

0.2

0.0
0.0

15.0
Frequency (Ip/mm)

hose transfer function is designed to remove aliases has a
relatively wide point spread function, and therefore a rela-

éively wide autocovariance function. The ideal observer

makes use of digital values in array elements whose distance
from the position of the signal is up to several times the
lengths of the tails of these functions, so for the same input
signal the ideal observer will have to integrate over a larger

rggion on an alias-free detector and thus will be more sensi-

ive to any residual uncolored noise.
While GDQE is directly related to the average value of

§§NR2 by Eq. (82), high-frequency signalsi.e., x-ray pro-
Ijection images of small objects or objects whose projected

density varies quickly with positigrcan demonstrate signifi-
cant changes in SNRwith position. To explore this, con-
sider the SKE/BKE task associated with an object /&0
wide and 20 mm long. Wires of this width have been used in
neurological and cardiovascular stefft&igure 7 shows the
SNR? for such an object, oriented parallel to an axis of the
detector, as a function of displacement in the direction of the
shorter(50 um) axis. The scale of the vertical axis is arbi-
trary as we won't set the inherent contrast of the signal. In
Fig. 7, the 0 mm displacement corresponds to the signal
being centered over the sensitive elements of the detectors.
For the blur-free detector, at 0 mm displacement the signal
falls into a single column of detectors, so the SNfrre-
sponds to counting statistics for one column of elements 20
mm long. The SNR is constant until the 0.05 mm mark,
after which the signal is shared between two columns of
detectors, resulting in a drop in SKIRPhysically, the num-
ber of x-rays attenuated by the object is independent of its
position, but at a displacement of 0.7 mm the signal is shared
equally between two columns, and since the noise is as-

Fic. 6. GDQE as a function of frequency for the three model detectors as iPUmMed to be uncorrelated, the variance in the total counts in

Fig. 2, with the residual white nois@|A|/m+Wg/|A| set to &,
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TaeLe |. SNR? averaged over position and orientation for the projection TasLE Ill. SNR? averaged over position and orientation for detecting the
image of an object 0.05 by 20 mm. As the SN&tales with the square projection of a 0.5 mm square. Normalization is arbitrary. Eheepresents

of the contrast of the image, only relative values are meaningful. The the rms fluctuations in the SNRwith position, not the statistical uncertain-
represent the rmgoot-mean-squajdluctuations in the SNRwith position, ties.

not the statistical uncertainties.

SNR for 0.5 mm square

SNR for 50 um wide, 20 mm long object

®|A|/m+We/|A]=0 =42 =82
®|A|/m+W/|A|=0 =42 =g? Blur-free 1.91-0.01 1.89-0.01  1.83-0.01
Blur-free 1.81:0.02 1.79-0.02 1.73-0.02  Alias-free 2.08+0.01 1.99-0.01 1.78%0.003
Alias-free (\=0.463 mm 2.16x0.16 1.82-0.07 1.48-0.02 (\=0.463 mm
Alias-free (\=0.34 mn) 2.15+0.15 1.99-0.10 1.68-0.05  Alias-free 2.07+0.01 2.0%-0.01  1.855:0.006
(A\=0.34 mm)

reduced by half. The alias-free detectors show less sensitivit ts of the sianal. the alias-free detect
to position, as the signal is always shared between multipl omponents of the signal, the alias-lree detectors are more
ensitive to residual white noise, with the crossover at

columns. As before, curves are shown for three values of th 0 : :
residual white noiseb|A|/m+We/|A|(02.22, and &). For §>|A|/m_+WE/|A|—4 . The detection of a 0.5 mm square is
shown in Table Ill. Here, the loweibut nonzerd frequen-

all models, the SNRdrops as the residual white noise in- > . .
creases, but this effect is greater for the alias-free modelSies dominate the response of the detector, so that in general
’ the antialiasing detectors gain from the removal of the

Table | gives the average SKRor detection of the 0.05 . . . . .
aliased noise without losing any signal.

wide, 20 mm long wire, now averaged over both position It is int fna t te that the SNRs for the task q
and orientation. Additionally, the root-mean-square variation IS Interesting to note that the s forihe tasks an
in SNR is given, to indicate the degree to which the detect-mOOIeIS described above do not vary greatly. Many factors

ability of the wire would vary. Again, the alias-free detectors not considered he_re \.Ni" ar eatly effect the performanc&g of
give a higher SNRIf the residual white noise is kept suffi- real detectors, beginning with the fact that less than 100% of

ciently low. In calculating the SNRof the projection of the ﬂ}etr']nc\';\j/?m x-rays \tNI” produdce stegorlﬂary quanta.t;het COIC}r
wire using Eq. (78), if the summation over aliases is ot the YWiener spectrum need not be the same as he transter

dropped, the resulting integral decreases by about 10%. ThJ nctlon_, due to, for example,.x.—rays mteractlng at various
the contributions of the aliased signal to the SNR are no epths in the detectdt. The efficiency of collection of the
always negligible secondary quanta can also have significant effédear Csl

Somewhat speculatively one can consider tasks which ded-etzc:oii’ (f)'];I ¥Vh'tCh our ‘?‘"as'f][feet detlector Istha rouglh
pend upon higher frequency components of the sighal. ][_not_e, el ?fc or It? al m”;fJFe ec Iso_ongdast te ampf|-
Conside a 5 mmsquare with 10% contrast, and a second ication m IS sutliciently large.” For selenium oetectors, o

square whose edges have been smoothed by convolving Wimhlchbloutr “rt]JIur—free” fcfiet;a_cto;_l:sf a? appro.);_lmatglo n it ItS

a 0.15 mm rect function, so that the resulting signal “rampsphOSSI he 0 have gnfg" ;ac Ive 'f r?c or S'gn'é%aSQ y greater

up” over a distance of 0.3 mm. The SKRor the SKE/BKE than the geometric hl ac;tor 0 tl etTEngrrt - In anyf th

task of distinguishing between these two objects is given jfas€, our purpose nere 1s merely 1o indicate some ot the
Table II. It is interesting to note that, mathematically, the'SSUES which must be faced in quantifying digital detectors of

SNR is sufficiently large that the ideal observer can performthese types. In addition, we did not consider geometric fac-

this task efficiently, although whether a human could do thidrs such as x-ray focal spot size and x-ray par&fahich

is questionable. On the other hand, edge detection is impoF—educe the high-frequency content of the incoming signals.

tant both computationally and probably as part of the strat-
egy of human observers, so the ability to perform this task isV”I' DISCUSSION AND CONCLUSION
not a priori irrelevant. Again, the alias-free detectors have a The results of this paper set up a framework for quantita-
higher SNR if the residual white noise is zero, but as the tive measurements of digital systems in a manner analogous
task now depends more heavily on the higher frequencyo the now common analysis of screen-film systems in terms
of the gray-scale transfer characteristic, the optical transfer
function, the Wiener spectrum, and signal-to-noise ratio. The
EABLE . ﬁNRZ 9Vera39d5°V9f position {iﬂd r?fie”tati(?”,for dizﬂngmsmﬂg logic of this framework is by design close to the classic work
petueen e projectorta s i uare i shafmundires 7 4S04 on fim-screen systems. While many pieces of this argumen
sponds to a 10% contrast with an x-ray flux corresponding to 1400 x-raysh@ve appeared in the work of others, as noted throughout the
pixel. The = represents the rms fluctuations in the SNRth position, not  text, it seemed desirable to produce a coherent systematic
the statistical uncertainties. exposition. The results can be seen as appropriate limits of
those of Barretiet al, but the theoretical construction here

emphasizes the parallels with the classic results on screen-

SNR for discontinuity vs slope

PIA/m+We/|A[=0 =47 =8 film systems. While detectors consisting of discrete elements

. + -+ . : H
/‘i:i‘gsf_;f:e (A=0.463 i jgfg i‘;i 71;;5 g donot have continuous translational symmetry, the remain-
Alias-free (\=0.34 mm) 16+3 14+2  10+1 ing discrete symmetry allows one to use the appropriate Fou-

rier technique. The advantage of this, as in the screen-film
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