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The optical transfer function~OTF! and the noise power or Wiener spectrum are defined for
detectors consisting of a lattice of discrete elements with the assumptions of linear response,
Gaussian statistics, and stationarity under the discrete group of translations which leave the lattice
fixed. For the idealized classification task of determining the presence or absence of a signal under
signal known exactly/background known exactly~SKE/BKE! conditions, the Wiener spectrum, the
OTF, along with an analog of the gray-scale transfer characteristic, determine the signal-to-noise
ratio ~SNR!, which quantifies the ability of an ideal observer to perform this task. While this result
is similar to the established result for continuous detectors, such as screen-film systems, the theory
of discrete lattices of detectors must take into account the fact that the lattice only supports a
bounded but~in the limit of a detector of arbitrarily great extent! continuous range of frequencies.
Incident signals with higher spatial frequencies appear in the data at lower aliased frequencies, and
there are pairs of signals which are not distinguishable by the detector~the SNR vanishes for the
task of distinguishing such signals!. Further, the SNR will in general change if the signal is spatially
displaced by a fraction of the lattice spacing, although this change will be small for objects larger
than a single pixel. Some of the trade-offs involved in detectors of this sort, particularly in dealing
with signal frequencies above those supported by the lattice, are studied in a simple model.
© 2000 American Association of Physicists in Medicine.@S0094-2405~00!00908-1#
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I. INTRODUCTION

The importance of signal detection theory in quantifying the
performance of medical imaging systems~x-ray screen-film
imaging being perhaps the best example! gives impetus to
applying the same techniques to the digital radiographic im-
aging systems which are now coming into clinical use. As
applied to screen-film systems, signal detection theory re-
quires three assumptions to be at least approximately ful-
filled: that the detector responds linearly to the incoming
signal, and is both stationary and homogeneous~i.e., both the
detector response and the additive noise are translationally
invariant!. One can then summarize the response of the sys-
tem in terms of the gray-scale transfer characteristic, the op-
tical transfer function~OTF!, and the noise power or Wiener
spectrum.

The digital x-ray imaging systems which are now appear-
ing generally behave as a lattice of discrete detector ele-
ments. Although digital, these detectors are generally oper-
ated under conditions such that the effects of quantization are
negligible. When compared to screen-film systems, these de-
tectors tend to be linear over a wider range of exposures.
Like screen-film, for low-contrast signals the noise is ap-
proximately additive and Gaussian. However, as the size of
the imaging elements is now comparable to the size of some
of the smaller objects which are of clinical interest~around
0.1 mm!, these detectors are not strictly homogeneous in that
translations by a fraction of the lattice spacing result in the
signal being recorded in a different manner. As these devices
generally consist of a regular lattice of sensitive elements,
they still possess a symmetry with respect to a discrete group

of translations. This symmetry is approximate due to the fi-
nite extent of physical detectors. However, as in the theory
of screen-film systems, corrections for the limited extent of
the detector are negligible for many practical applications.
Thus, one can apply Fourier techniques to put the signal
detection theory of such devices in a form which is both
tractable and similar to the theory of screen-film systems.
Instead of using a continuous Fourier transform, one uses a
discrete space Fourier transform, which recodes the data ac-
quired by the detector at a discrete lattice of positions in
terms of a bounded and continuous range of spatial frequen-
cies.

For screen-film systems, the OTF diagonalizes the linear
operator which relates the input signal to the output. As de-
tailed below, for discrete-array detectors the effects of alias-
ing introduce a null space, different for each device, which
prevents this operator from being diagonalized using a basis
common to all devices, but the OTF represents the operator
in a basis in which it is sparse in the sense that all terms
vanish except those between input and output spatial fre-
quencies which are equal or aliased. The Wiener spectrum is
the discrete space Fourier transform of the discrete autoco-
variance function, and thus is also defined in the region of
frequency space which the lattice supports. As in the case of
continuous detectors, for low-contrast objects~so that re-
sponses are approximately linear!, these quantities determine
the signal-to-noise ratio~SNR! which is an appropriate
figure-of-merit for the classification task of discriminating
between the presence or absence of an exactly known signal
against an exactly known background~SKE/BKE!.
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To make notation definite, it is necessary to review the
relevant parts of signal detection theory for screen-film im-
aging systems~Sec. II! and the relevant Fourier techniques
~Sec. III!. Subsequently, the OTF~Sec. IV! and Wiener spec-
trum ~Sec. V! of discrete detectors can be studied leading up
to the calculation of SNR for the case of SKE/BKE~Sec.
VI !.

As discussed below, the effects of aliasing on the inter-
pretation of the OTF have been noted in the literature, and
the definition of the Wiener spectrum given here has ap-
peared before. However, this paper presents a systematic
theory of signal detection for discrete-array x-ray detectors.
The approach here differs from the more general theoretical
approach of cross-talk matrices1 in that the work reported
here uses the additional assumptions of infinite extent,
Gaussian statistics, and discrete translational symmetry.
There are many imaging systems for which these assump-
tions are not appropriate@e.g., three-dimensional~3D! to-
mographic reconstruction2!. However, the work presented
here has certain advantages in that so long as the additional
assumptions are approximately true, the quantities involved
are closely related to those used with screen-film systems
and are similar or identical to measured quantities relating to
digital systems which have appeared in the literature.

To demonstrate the use of this theoretical structure and to
investigate some of the trade-offs inherent in discrete-array
systems, Sec. VII presents a simple model of a detector. In
particular, this gives the opportunity to investigate how the
detector’s response to high spatial-frequency signals affects
the detection of objects in terms of SNR, and in particular
the effect which is sometimes called ‘‘noise aliasing’’ is ad-
dressed.

II. REVIEW

The theory of SKE/BKE detection and classification for
screen-film-like systems has been expounded in detail,3–7

and is reviewed here in order to establish notation for later
comparison with discrete-array detectors. The input signal is
the x-ray intensity per unit area and the output signal is the
film density, both as a function of position. The interesting
and tractable case is the search for low-contrast variations
I (r ) in an x-ray beam whose baseline intensity,I o , is such
that the changes in film densityD(r ) are a linear function of
I (r ). The additional assumption of translational invariance
then gives

^D~r !&5
g~ log10e!

I o
E E d2r 8P~r2r 8!^I ~r 8!&, ~1!

whereP(r2r 8), the point spread function~PSF!, is the den-
sity increase of the film at positionr due to a given x-ray
intensity at r 8. The brackets~^&! represent ensemble aver-
ages, i.e., averages over many exposures. SinceI (r ) and
D(r ) are here defined as variations relative to baseline val-
ues,^I (r )&50 and^D(r )&50 in the absence of a signal.

Because the PSF is translationally invariant, the convolu-
tion operator is diagonalized in frequency space, giving

^D̂~ f!&5
g~ log10e!

I o
T~ f!^ Î ~ f!&, ~2!

where f represents a two-dimensional vector in frequency
space andT, the optical transfer function~OTF!, is the Fou-
rier transform of the PSF. The functionD̂(f) is the Fourier
transform of the dataD(r ), following the convention that for
any suitable8 function g,

ĝ~ f!5E E d2r g~r !e22p i r•f,

g~r !5E E d2f ĝ~ f!e2p i r•f, ~3!

so thatf is in units of cycles per unit length. The factor of
g(log10e)/I o serves to convert units of x-ray beam intensity
into units of change of film density in the region of linear
response, allowing the normalizationT(0)51.

Realizations of the imaging process will be subject to
noise which can be characterized by the autocovariance func-
tion

C~r1 ,r2!5C~r2 ,r1!5^D~r1!D~r2!&, ~4!

that, for Gaussian noise, completely determines the statis-
tical nature of the noise process. For stationary processes, the
autocovariance function depends only upon the displace-
ment,

C~r1 ,r2!5C~r22r1!, ~5!

so that the autocovarianceC(r ) is now a function of a single
vector, the displacementr . The Wiener spectrum is the Fou-
rier transform of the autocovariance function, and

W~ f!5 lim
uAu→`

1

uAu K U E E
A
d2rD~r !e22p i r•fU2L ~6!

shows that the Wiener spectrum can be estimated in terms of
the Fourier components of signal-free~‘‘flat-field’’ ! images
over regionsA of sufficiently large areauAu.

For Gaussian noise it can be shown9 that the optimal strat-
egy for SKE/BKE signal detection or classification consists
of choosing a mask functiong(r ) and a cutoff value for the
statistic

ug5E E d2rg~r !D~r !. ~7!

The efficacy ofug for discriminating between hypothesis I
~e.g., signal absent! and hypothesis II~e.g., signal present! is
measured by the signal-to-noise ratio

SNRg
25

~^ug& I2^ug& II!
2

Var~ug!
, ~8!

where the numerator is the difference between the expecta-
tion values ofug under the two hypotheses and the denomi-
nator is the variance in the statisticug , which for additive
noise is independent of the hypothesis.

While only real-valued functionsg(r ) are needed for
calculating decision statistics, it will be useful to extend
the definition of ug to complex valuedg(r ), in which
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case the variance ofug is the sum of the variances of the real
and imaginary parts. The variance of the statisticug is given
by

Var~ug!5^~ug2^ug&!~ug2^ug&!* & ~9!

5E E d2rE E d2r 8g~r !C~r ,r 8!g~r 8!* ~10!

5E E d2fĝ~ f!ĝ* ~ f!W~ f!, ~11!

as can be seen by substitution of Eqs.~7! and~4! into Eq.~9!
@indeed, Eq.~10! can be taken as the definition of the auto-
covariance function#. It can be shown, for example using the
Schwarz inequality,10,11 that the optimal choice of mask
function is given by

ĝI~ f!5
~^ Î ~ f!& II2^ Î ~ f!& I!T~ f!

W~ f!
, ~12!

for which the SNR is given by

SNRI
25E E d2f

g2~ log10e!2

I o
2

u^ Î ~ f!& II2^ Î ~ f!& Iu2uT~ f!u2

W~ f!
,

~13!

where the subscriptI indicates that this represents the opti-
mal or ideal7 observer given the detector and task at hand.

Returning momentarily to the task of estimating the
Wiener spectrum from flat-field images, if in Eq.~9! one sets
g(r )5G(r )e2p i fo•r, whereG(r ) is a window function with
normalization

E E d2rG2~r !51, E E d2fuĜ~ f!u251, ~14!

then calculatinĝ ugug* & by Eq. ~11! one obtains

E E d2fuĜ~ f2fo!u2W~ f!

5 K U E E d2rG~r !e22p i fo•rD~r !U2L , ~15!

which, sinceuĜ(f2fo)u2 will be sharply peaked nearfo ,
shows that for finite length data sets one actually estimates
the Wiener spectrum convolved with the square of the Fou-
rier transform of the window function. In particular, for a
rect window so thatG is chosen to vanish outside of a square
region of areauAu5L2 and to have value 1/AuAu inside that
region,

uĜ~ f!u25AS sin~pL f x!sin~pL f y!

p2L2f xf y
D 2

5A sinc2~L f x!sinc2~L f y!, ~16!

where f x , f y are the components off. For large areas, this
becomes increasingly like a delta-function, giving Eq.~6!.

III. MATHEMATICAL PRELIMINARIES

In the case of screen-film, described above, we studied a
mapping of functions defined for all spatial positions to func-

tions defined for all frequencies, namely the Fourier trans-
form defined by Eq.~3!. For the digital x-ray detectors of
interest in this paper, the input is still a continuous distribu-
tion of x-rays, but the output signal consists of data with
values assigned only at a discrete set of lattice points. The
size of the array is assumed to be sufficiently large so that
boundary effects play no part, and thus is treated as being of
infinite extent. To analyze these data it is appropriate to use
a Fourier technique based on the discrete translational sym-
metry of the detectors. Mathematically, this transform is
similar to the Fourier series, but with the roles of the space
and frequency domains reversed.12 Following Giger,13 this is
called the ‘‘discrete’’ space Fourier transform~DFT!. The
‘‘finite’’ Fourier transform ~FFT!14 is the Fourier technique
applied to finite sequences of data points that is customarily
implemented using an algorithm known as the ‘‘fast Fourier
transform.’’ For practical purposes, one always deals with
finite data sets, and the discrete space Fourier transform is a
limiting case of the finite Fourier transform. As the number
of equally spaced data points used in calculating a finite
Fourier transform increases, the discrete set of frequencies
calculated fill more and more densely a bounded region of
frequency space, so that in the limit one obtains a function of
a continuous range of frequencies. The function obtained by
this limiting process is the discrete space Fourier transform
of the spatial data.

To deal with the two-dimensional arrangements of sensi-
tive elements which are of interest, it will be convenient to
introduce the ideas of vectors generating a lattice and of dual
basis vectors. A two-dimensional lattice of points can be
specified by vectorsv1 and v2 such that every point in the
lattice can be represented as

rm1 ,m2
5m1v11m2v2 , ~17!

wherem1 andm2 are integers. The vectorsv1 andv2 are said
to generate the lattice, but the choice of vectors for a given
lattice is not unique. For the common case of a square grid
the choice ofv1 as lying along thex-axis andv2 as lying
along they-axis is natural. The plane containing the lattice
can be tiled in such a way that each tile contains a total of
one lattice point. Each tile is then called a ‘‘unit cell.’’ For
the case of a square grid of detectors with spacinga, the
most natural choice of a unit cell would be the square cen-
tered at the coordinate origin extending to6a/2 along both
axes. A small region of a plane containing a square lattice
and one of the unit cells is drawn in Fig. 1~a!. The reciprocal
vectors denoted byw1 and w2 are defined by the require-
ments

vi•wj5d i j 5 H1:i 5 j
0:iÞ j , ~18!

and serve as a basis for frequency space and as generators of
the reciprocal lattice. In the case of the rectangular grid men-
tioned above, eachwi would be parallel tovi and scaled
appropriately as illustrated in Fig. 1~b!, which also shows a
unit cell of the reciprocal lattice. To help clarify these ideas,
Fig. 1~c! shows a hexagonal lattice with two choices of the
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unit cell ~parallelogram or hexagon! and Fig. 1~d! shows
the reciprocal lattice~note thatv1 is perpendicular tow2

andv2 is perpendicular tow1!. The areauAu5uv13v2u of a
unit cell is independent of the choice of unit cell, since
it is fixed by the average density of lattice points over large
regions. The area of the unit cell of the reciprocal lattice,
uKu5uw13w2u, is inversely proportional touAu, as can be
seen by

uAuuKu5UdetS ~v1!x ~v1!y

~v2!x ~v2!y
D detS ~w1!x ~w2!x

~w1!y ~w2!y
D U ~19!

5UdetS v1•w1 v1•w2

v2•w1 v2•w2
D U

5UdetS 1 0

0 1D U51, ~20!

making use of the fact that the determinant of a product
of matrices is equal to the product of the determinants and
Eq. ~18!.

For any functiong(m1 ,m2) of the lattice, the discrete
space Fourier transform is defined12,13 as

ĝ~ f!5uAu (
m1 ,m2

g~m1 ,m2!e22p i rm1 ,m2
•f ~21!

for all spatial frequenciesf. This definition is equivalent to
evaluating thez-transform on the unit circle in the complex
plane.12,15 It is also equivalent to the Fourier transform of
the function obtained from the data set by interpolation with

sinc functions~e.g., Ref. 16, p. 230!. Direct calculation from
Eq. ~21! gives

ĝ~ f!5ĝ~ f1m1w11m2w2!, ~22!

which shows thatĝ is periodic in Fourier space for displace-
ments in the dual lattice and one need only consider values
of ĝ on one unit cell of this lattice. Any frequencyf outside
of this unit cell is an alias of a frequencyf8 inside the cell,
with f2f8 in the reciprocal lattice. Viewed another way, the
reciprocal lattice divides points in the frequency plane into
equivalence classes of points, two points being equivalent if
and only if they are separated by a vector in the reciprocal
lattice. Any unit cell will contain exactly one point from each
equivalence class~except for boundaries!, and knowledge of
ĝ on the unit cell determinesĝ on the entire plane. Alterna-
tively, one can considerĝ as being defined on the topological
‘‘quotient space,’’ a torus, just as one can consider a function
on the real line with period 2p as defined on the unit circle
~Ref. 17, p. 155!.

The exponential functions in the discrete Fourier transfor-
mation satisfy a simple orthogonality condition

EE
K

d2fe22p i f•rm1 ,m2e2p i f•rn1 ,n25uKudm1 ,n1
dm2 ,n2

, ~23!

whereK is the region corresponding to the unit cell of the
reciprocal lattice in the frequency plane anduKu is the area of
this region, thus giving

g~m1 ,m2!5EE
K
d2f ĝ~ f!e2p i f•rm1 ,m2 ~24!

as the inverse transform. The complex exponentials form a
complete set of orthogonal functions, so that any appropriate
periodic function of frequencyf can be represented in terms
of them. The completeness can also be expressed in terms of
a comb function as

(
m1 ,m2

e2p i ~ f2f8!•rm1 ,m25uKu (
k1 ,k2

d~ f2f82fk1 ,k2
!, ~25!

where the equality is interpreted in terms of distributions and
the sum on the right-hand side is over the frequencies in the
reciprocal lattice.8,16,17

For actual finite data sets, one applies the finite Fourier
transformation. The discrete space Fourier transformation
can be interpreted as a limit of the finite Fourier transforma-
tion as the number of equally spaced points in the data set is
increased. Specifically, consider a bounded subset of the
$rn1 ,n2

% such asR of the form

R5$rn1 ,n2
uN1<n1,N18 ,N2<n2,N28%, ~26!

for which the finite Fourier transform and its inverse are
given by

ĝ~ l 1 ,l 2!5 (
rn1 ,n2

PR

g~n1 ,n2!e22p i fl 1 ,l 2
•rn1 ,n2, ~27!

g~n1 ,n2!5
1

DN1DN2
(

fl 1 ,l 2
PK

ĝ~ l 1 ,l 2!e2p i fl 1 ,l 2
•rn1 ,n2, ~28!

where DNi5Ni82Ni . The points in the Fourier space are
given by

FIG. 1. ~a! a rectangular lattice.~b! The reciprocal lattice of~a!. ~c! A
hexagonal lattice.~d! the reciprocal lattice of~c!. Note that~a!, ~b!, ~c!, and
~d! represent a finite region of a lattice which covers the entire plane.~e! A
333 finite rectangular lattice.~f! The circles represent the frequencies used
in the finite Fourier transform of~e!. For comparison, a unit cell of the full
reciprocal lattice is shown. See Sec. III for details.
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f l 1 ,l 2
5

l 1

DN1
w11

l 2

DN2
w2 ~29!

and

K 5$f l 1 ,l 2
uL1< l 1,L18 ,L2< l 2,L28%, ~30!

where theL’s are chosen so thatLi82Li5Ni82Ni . The re-
ciprocal relationship@Eq. ~18!# between the basis vectors
$vi% and the dual basis vectors$wi% gives

f l 1 ,l 2
•rn1 ,n2

5S l 1

DN1
w11

l 2

DN2
w2D •~n1v11n2v2!

5
l 1n1

DN1
1

l 2n2

DN2
, ~31!

which, along with choosingNi852Ni5No/2 andLi52Li8
5No/2 for No even, produces a more conventional represen-
tation of the finite Fourier transform.

As the number of data pointsDN1DN2 increases, the
spacing between the frequenciesf l 1 ,l 2

decreases, so that in
the limit the data points on the lattice extend across the entire
plane and the frequency values fill a unit cell of the recipro-
cal lattice. The finite sum in the FFT@Eq. ~27!# approximates
~with a factor ofuAu! the infinite sum in the DFT@Eq. ~21!#,
and for the inverse transform the sum in Eq.~28! ~with the
introduction of a factor ofuAuuKu51! becomes

gFFT~n1 ,n2!5 (
fl 1 ,l 2

PK

uKu
DN1DN2

~ uAuĝFFT~ l 1 ,l 2!!

3e2p i fl 1 ,l 2
•rn1 ,n2, ~32!

which approximates the integral used in the inversion of the
discrete space Fourier transform, Eq.~24!. To illustrate this
concept, Fig. 1~e! shows a small rectangular lattice~corre-
sponding toNi521, Ni852!. The circles in Fig. 1~f! repre-
sent the corresponding frequency vectors for use with the
finite Fourier transform. The box shows the region which
would correspond to a unit cell of the reciprocal lattice if the
lattice in Fig. 1~e! were extended to an infinite lattice. If the
finite lattice shown in Fig. 1~e! were extended~but still fi-
nite!, the corresponding frequency vectors of the finite Fou-
rier transform would fill the unit cell more and more densely.

It should be noted that ifDN1 or DN2 are even, then some
of the frequencies at which the finite Fourier transform is
defined@shown as the circles in Fig. 1~f!# would lie on the
boundary of the unit cell, and such frequencies would have
aliases which also lie on the boundary. For example, in the
square lattice considered in Fig. 1~f!, if one of the frequen-
cies at which the finite Fourier transform is defined fell on
the edge of the unit cell, an alias of that frequency would lie
on the opposite edge, and a frequency on any corner would
be aliased with all of the other corners. In certain sums over
frequency components, such as Eq.~28!, it is useful to adopt
the convention that such sums include exactly one represen-
tative from each class of aliased frequencies, so that frequen-
cies falling on the boundary of the unit cell are not counted
multiple times. If one uses the ‘‘quotient space’’ point of

view, this follows automatically as the aliases correspond to
a single point in the quotient space. Alternatively, one might
weigh each frequency by a factor~1/2 for frequencies lying
on edges and 1/4 for corners! so that each class of aliased
frequencies has a total weight of 1~similar to counting frac-
tional atoms when reckoning the number of atoms in a unit
cell of a crystal!.

The results pertaining to Fourier transformations and dual
lattices which are reviewed in this section have direct gener-
alizations to any number of dimensions, but as the statement
of the results for arbitrary finite dimension would be nota-
tionally cumbersome, only the two-dimensional results have
been explicitly stated. For notational convenience, letm rep-
resent the ordered pairm1 ,m2 , so thatg(m)5g(m1 ,m2)
and rm5rm1 ,m2

, and similarly fork, e.g.,fk5fk1 ,k2
.

IV. TRANSFER FUNCTION

The analog of the optical transfer function, which relates
the response of the detector to the input signal in frequency
space, can now be defined. The input signal^I & is a continu-
ous function of the plane. AŝI & is defined relative to the
‘‘flat-field,’’ it is reasonable to assume that^I & has compact
support, or at least vanishes sufficiently quickly at infinity to
leave the quantities considered here well defined. Thus the
Fourier transform̂ Î & is a continuous function of the entire
frequency plane. The dataD(rm) are well-defined only at the
discrete lattice pointsrm, so that the discrete space Fourier
transform^D̂(f)& is determined by its values in one unit cell
of the reciprocal lattice. Values of̂D̂& outside of the first
unit cell are determined by the periodicity relative to the
reciprocal lattice and contain no new information. For spatial
frequencies inside the first unit cell, the detector responds at
the same frequency as the input signal. For frequencies out-
side of the first unit cell, the detector responds at an aliased
frequency, so it is impossible to uniquely determine the input
signal without additional information, although it will be ar-
gued in later sections that for reasonable tasks this is not a
significant problem.

Each point on the detector grid is assumed to respond
linearly to the incident signal, so that the analog of Eq.~1! is

^D~rm!&5GE E d2r 8P~rm,r 8!^I ~r 8!&, ~33!

whereP, the analog of the point spread function, represents
the response of the detector atrm to x-ray light incident atr 8,
andG is a constant for converting x-ray intensity into digital
values, generally chosen so that the integral ofP with respect
to r 8 is unity. With a discrete detector, one no longer has full
translational invariance, but there remains an invariance un-
der translations which take lattice points to lattice points,
assuming that each pixel is identical except for position.
Thus we can write

P~rm,r 8!5P~rm2r 8!, ~34!

to indicate that the response of a detector element to an input
signal depends upon the displacement of the detector ele-
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ment from the region to which the signal is applied, but not
upon the absolute position of the detector element or the
signal, from which it follows18,19 that

^D~rm!&5GE E d2r 8P~rm2r 8!^I ~r 8!& ~35!

for each positionrm of the sensitive elements on the lattice.
While the dataD(rm) are only available at the lattice points,
the convolution can be calculated at any point, so that

D~r !5GE E d2r 8P~r2r 8!^I ~r 8!&, ~36!

D̂~ f!5G P̂~ f!^ Î ~ f!&, ~37!

serves as a definition ofD~r ! for any positionr . Although
D~r ! is equal to the datâD(rm)& at the lattice points where
r5rm , at other pointsD~r ! is an interpolation which will not
in general represent a physical quantity, although it is some-
times useful to think ofD~r ! as the response of a virtual
sensitive element added to the detector at positionr in such
a manner as to not perturb or be perturbed by the other ele-
ments. The discrete space Fourier transform on^D(rm)& can
now be calculated usinĝD(rm)&5D(rm) for g(rm) in Eq.
~21!, giving

^D̂~ f!&5uAu(
m

e22p i rm•fD~rm!

5uAu(
m

E E
K
d2f8D̂~ f8!e2p i rm•~ f82f!

5(
fk

D̂~ f1fk!5G(
fk

T~ f1fk!^ Î ~ f1fk!&, ~38!

which follows from expressingD in terms of its Fourier
transform and using the completeness relationship expressed
in Eq. ~25!.

Comparison of Eq.~38! with its screen-film analog,
Eq. ~2!, helps to clarify the interpretation of the OTF,T(f).
The spacings in the discrete lattice introduce new length
scales which occur explicitly in the summation over aliases.
In the limit of a very finely grained lattice, so thatuAu→0,
the spacing of the reciprocal lattice points gets larger, until
only the one unaliased term contributes significantly to Eq.
~38!, and the screen-film case is recovered.

When frequencies higher than those supported by the lat-
tice are present in the signal, the summation in Eq.~38!
introduces ‘‘aliasing,’’ that is, there exist multiple spatial
input frequencies whose output is at the same frequency and
are thus not distinguishable. For example, considering a one-
dimensional lattice with pixel-pitch of 1 cm, oscillations at a
rate of 0.5 cycles per cm can not be distinguished from os-
cillations at a rate of 1.5 cycles per cm. From Eq.~38!, two
components of the input signal generate the same component
of the output signal if and only if their spatial frequencies
differ by an elementfk1 ,k2

of the reciprocal lattice.
More generally for any lattice there are frequenciesfo

such that2fo is an alias offo ~for example, iff and2f are
on opposite boundaries of the first unit cell in the reciprocal

lattice!. For such a frequencyfo @noting thatT(f)5T* (2f)
and ^ Î (f)&5^ Î * (2f)& for real-valuedP(r ) and ^I (r )&# it is
possible to choose the phase of^ Î (fo)& so that

T~ fo!^ Î ~ fo!&1T~2fo!^ Î ~2fo!&50, ~39!

showing by Eq.~38! that a sinusoidal signal concentrated
at frequencyfo and displaced by an appropriate offset rela-
tive to the lattice~as determined by the phase of^I (fo)&!
would be indistinguishable from the flat-field signal. Return-
ing to the simple one-dimensional model of pixels spaced at
1 cm, this result means that for some displacement relative
to the lattice the input of a sinusoidal wave of frequency
1 cycle/cm would give vanishing output. If the detector ele-
ments were assumed to integrate over 1 cm intervals, then
the output vanishes for all relative phases of the sinusoidal
input wave and the lattice. If, alternatively, the detectors
integrated over only 0.5 cm regions but still were spaced at
1.0 cm intervals, then the sinusoidal wave would have van-
ishing output only when the nodes of the sinusoid fell upon
the centers of the 0.5 cm sensitive regions of the detectors
and would otherwise change each digital value by a phase-
dependent offset from the flat-field value.

The optical transfer function has been written in terms of
a Fourier transform using complex exponentials. Since
complex-valued exponential inputs are not readily available,
it is necessary to ask howT can be experimentally measured.
In principle, phantoms machined to produce sinusoidal pat-
terns of x-ray intensity could be used, and by repeated mea-
surements with different offsets one could separate the posi-
tive and negative frequency components. A more practical
method is the well-known slanted edge technique,20,21 in
which images are acquired under flat-field conditions except
that one half-plane of the detector is shielded so as not to
receive any input signal. The detector responseD as a func-
tion of distance from the edge is referred to as the edge-
spread function ESF, which can be differentiated22 to give
the line spread function, LSF. Alternatively, by providing an
appropriate input the LSF can be acquired directly.23 The
LSF represents integrals through the PSF along lines parallel
to the edge, so that by acquiring data with the edge at mul-
tiple angles one obtains the radon transform of the PSF. One
can reconstruct the PSF, but it is more common to stop after
computing the Fourier transform of the ESF, which gives
values of the OTF for spatial frequenciesf which are normal
to the edge. For discrete-array detectors it is desirable that
the slope of the edge is not commensurate with the lattice
spacing~for example, on a square grid, if the edge is not
parallel to one of the axes and does not have a slope which is
a ratio of small whole numbers like 1/2 or 2/3!. When this
condition is satisfied, for a given region of interest the dis-
tancesz of the lattice pointsrm from the edge will be distrib-
uted sufficiently densely and evenly so that the ESF is said to
be ‘‘super-sampled,’’ i.e., sampled at a rate significantly
higher than the reciprocal of the lattice spacing, so that it is
possible to measure values of the OTF for input frequencies
beyond those supported by the lattice.

For discrete-array detectors, rotational symmetry will
generally be only approximately valid at low spatial frequen-
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cies, so it is desirable to make measurements at multiple
angles relative to the lattice. When the ESFu at a given angle
u is acquired, it is often the case that the precise position of
the edge relative to the lattice is not known, so that one
actually acquires data for ESFu(z1zu), wherezu represents
the lack of knowledge of the exact position of the edge.
Upon taking the Fourier transform of the ESF, this intro-
duces a phase uncertainty of the forme2p i ufuzu into the value
of T(f). While this phase uncertainty also occurs in measure-
ments of screen-film systems, for discrete-array systems
summations over aliased frequencies generally are not pos-
sible given uncertainties in the relative phases of values ofT
at different spatial frequencies. In general one can remove
this phase uncertainty by redefining the lattice positions to
correspond to the ‘‘centers-of-mass’’ of the response func-
tions of the sensitive elements. More specifically, if

E E d2rP~r !5E dzESFu~z1zu!.0, ~40!

then it is possible to redefine the lattice~by a shift! so that
each lattice point sits at the center of mass of the response
function of the associated detector element, giving

E E dxdy xP~r !5E E dxdy yP~r !50. ~41!

With this redefinition of the lattice position, each LSF ac-
quired corresponds to a radon projection of the PSF~onto a
line perpendicular to the edge! and thus the center of mass of
each LSF should be at the origin. This corresponds to shift-
ing the acquired LSF~adjustingzu! so that

E dzESFu~z!z50 ~42!

for each angle.
As a practical matter this results in an increase in the

amount of data it is desirable to report for a given detector. If
one can assume an inversion symmetry, i.e.,P(r )5P(2r ),
then the imaginary part of the transfer function will vanish
identically, so that only the real part need be reported. The
absolute value of the OTF, traditionally called the modu-
lation transfer function~MTF!, gives enough information
to calculate quantities such as the spatial average of SNR2

~Sec. VI!, but does not give enough information to explore
other aspects of the detector, such as the spatial variation of
SNR2 as the test object is moved relative to the lattice. Re-
searchers should also note that with the slanted edge tech-
nique, when combining raster lines to plot the edge spread
function, the independent variable of interest is the distance
from the edge, which for square lattices differs from the
distance along a raster line by a factor of the cosine of the
angle between the raster line and the normal to the edge.
This factor becomes significant when trying to measure the
transfer function at angles away from the detector axes.
Based upon the experience of the authors, one can generally
measure values of the OTF at frequencies several times the
highest frequency supported by the lattice. One is, of course,
measuring the response of the detector at low frequency
aliases to higher frequency input signals. Whether the pres-

ence of these aliased signals in the output is desirable will
depend upon the task at hand. For example, it might be de-
sirable to detect a high-frequency signal even if one can’t
distinguish it from a low-frequency signal, or the resulting
ambiguity might be unacceptable.

The question of what, if anything, should be identified as
either the OTF or MTF for digital systems has been ad-
dressed in several ways in the literature. For example,
Dobbins24 discusses the ‘‘pre-sampled OTF’’~OTFpre, our
T! as measured via the LSF,23 but then emphasizes the fact
that the response to an input signal with either sinusoidal or
delta-function spatial variation will change if the input signal
is shifted by a fraction of the lattice spacing. This depen-
dence, which follows from Eq.~38! when the input is ex-
panded into Fourier components, confounds attempts to de-
fine the MTF either in terms of the frequency response to a
single delta function or as the ratio of output-to-input ampli-
tude for a sinusoid. Dobbins addresses this issue by defining

OTFd~ f!5(
fl

OTFpre~ f1fl!, ~43!

and defining EMTF~f! as the amplitude of the detector re-
sponse at frequencyf to a delta-function input averaged over
all positions of the delta function. Giger and Doi25 included
such a summation of OTF over aliased frequencies in their
study of data acquisition and display for digital systems.
Both OTFd and EMTF can be computed in terms of the OTF,
but it can be seen that neither is sufficient for calculating
SNR. Metz26 approaches the problem in essentially the same
manner as discussed in this paper, and indeed Eqs.~19! and
~30! of that paper essentially give our Eq.~38!, but for a
slightly more specialized case. Metz then brings up the point
that a shift by a fraction of the lattice spacing in the input
signal does not result in a simple shift in the output data, and
concludes that ‘‘the effect is accounted for mathematically,
but it prevents us from defining a unique ‘transfer function’
of the sampling process.’’

Experimentally, Sones and Barnes27 recognized the desir-
ability of measuring the transfer function above the maxi-
mum frequency supported by the sampling lattice in their
work with a digital radiography unit. This measurement was
performed using a novel technique based upon a phantom
consisting of periodically arranged wires, the distance be-
tween the wires chosen to be incommensurate with the dis-
tance between samples acquired by the detector. Fujita, Doi,
and Giger28 measured the ‘‘pre-sampling analog MTF’’
above the maximum frequency supported by their sampling
lattice via a slanted slit technique and recognized that
‘‘knowledge of the pre-sampling analog MTF ... will be use-
ful in the determination of signal-to-noise ratio~SNR! @and#
the evaluation of digital systems,’’ a statement with which
we heartily agree.

Working from a complementary theoretical perspective,
Barrett et al.1 uses the ‘‘cross-talk’’ matrix to address the
more general case of any detector whose response is linear,
then proceeds to more specialized cases. In Barrettet al., the
input to the system is defined as the object being imaged
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parameterized in terms of the coefficients of its three-
dimensional Fourier series, while for our purposes the input
is the x-ray fluence incident on the detector. For projection
radiography, which is our primary interest, the incident x-ray
fluence is directly related to the integrated attenuation coef-
ficient of the object along rays diverging from the x-ray fo-
cus, at least to a first approximation. As our goal is to at-
tempt to quantify the detector response independently of
other technical factors, this approximation is adequate. Bar-
rett et al. is concerned with detectors which may have rela-
tively few sensitive elements, so the application of Fourier
techniques to the acquired data is not considered. Barrett
et al. applies the cross-talk matrix to the case of a one-
dimensional array of detector elements with aperture size
equal to the element spacing, and finds that the cross-talk
between components of the input at separate frequencies de-
creases as the length of the array is increased, so long as the
frequencies are not aliases of each other. Thus in the limit of
a homogeneous detector of infinite extent one recovers the
fact that the transfer function behaves as a sparse matrix, in
which all terms vanish except those on the diagonal or relat-
ing aliased frequencies.

In order to use Eq.~38! to calculate the response of the
detector to a given input, it would be necessary to know the
position of the object being imaged with a precision finer
than the lattice spacing. Strictly speaking, to calculate the
response in either the discrete or continuous case requires
that the input be ‘‘perfectly known.’’ However, in the case of
a continuous detector, a shift in position of the input will
result in a corresponding shift in position of the output, while
for a discrete detector the ‘‘shape’’ of the output would
change. In many cases, such as predicting the detectability of
randomly placed objects, one would need to calculate for an
ensemble of objects displaced with random phases relative to
the lattice, as will be illustrated below in calculating the SNR
of small objects.

V. NOISE

Individual realizations of an imaging process have an ir-
reducible variability which sets a fundamental limit on how
effectively the detector can distinguish between various in-
puts. For discrete-array systems, as for screen-film systems,
the noise can be quantified in terms of the autocovariance
function. If the noise is additive and Gaussian, then the au-
tocovariance matrix completely summarizes the stochastic
process which generates the noise. If the system is also sta-
tionary, then Fourier techniques can be used to define the
Wiener spectrum.

The discrete autocovariance function is given by13,15

C~rm,r n!5^D~rm!D~r n!&, ~44!

where rm and r n are points in the lattice of detectors, the
angled brackets represent averaging over an ensemble of flat-
field images, and as discussed above^D(rm)&50 in the ab-
sence of a signal. Symmetry under interchange of positions

C~rm,r n!5C~r n,rm! ~45!

is an immediate result. With the assumption of stationarity,
the autocovariance depends only upon the displacement
rm2r n, so we can write

C~rm,r n!5C~rm2r n! ~46!

without ambiguity. Note that the difference between two
vectors corresponding to lattice points is again a vector cor-
responding to a lattice point, soC on the right-hand side of
Eq. ~46! is defined at precisely the lattice points.

The Wiener spectrumW(f) is defined as the discrete
space Fourier transform@Eq. ~21!# of the autocovariance
function C(rm). As with any discrete space Fourier trans-
form, the Wiener spectrum is periodic in frequency space
@Eq. ~22!# so that one need only consider the values ofW(f)
on a single unit cell of the reciprocal lattice. It is noteworthy
that both the autocovarianceC and the Wiener spectrumW
are real-valued and even. As with screen-film systems, one
considers statistics which are linear functions of the data, so
if g(m1 ,m2) is a set of real~or complex! numbers defined on
the lattice points, one defines

ug5uAu(
rm

g~m!D~rm!. ~47!

The variance ofug ~for g complex valued, the sum of the
variances of the real and complex parts! is given by

Var~ug!5^ugug* & ~48!

5uAu2K S (
m

g~m!D~rm! D S (
n

g* ~n!D~r n! D L
~49!

5uAu2(
m

(
n

g~m!C~r n2rm!g* ~n! ~50!

in terms of real space. Expressing the autocovariance matrix
as the inverse discrete space Fourier transform@Eq. ~24!# of
the Wiener spectrum one obtains

Var~ug!5uAu2(
m

(
n

g~m!E E
K
d2f

3W~ f!e2p i f•~rn2rm!g* ~n! ~51!

5E E
K
d2fĝ~ f!ĝ* ~ f!W~ f!, ~52!

where the second step follows from the definition of the dis-
crete space Fourier transform@Eq. ~21!#.

Thus one can calculate the variance of a statisticug ,
which depends in a linear manner upon the data, using either
the autocovariance function or the Wiener spectrum. Statis-
tics of this form, forg(m) real-valued, will be seen to cor-
respond to decision variables of ideal observers in Sec. VI.
As in the screen-film case, it is useful to consider functions
g(m) corresponding to the product of a plane wave and a
windowing function, which can be written as

gfo
~m!5G~m!e2p i fo•rm, ~53!

whereG(m) is a real-valued window function with normal-
ization

2424 M. Albert and A. Maidment: Linear response theory 2424

Medical Physics, Vol. 27, No. 10, October 2000



uAu(
m

G~m!G* ~m!51, E E
K
d2fĜ~ f!Ĝ* ~ f!51, ~54!

where the two normalizations are equivalent by Parseval’s
theorem. Applying Eq.~49! and Eq.~52!,

Var~ug!5uAu2K U(
m

G~m!e22p i fo•rmD~rm!U2L ~55!

5E E
K
d2fuĜ~ f2fo!u2W~ f!. ~56!

For suitable windowing functionsG, uĜ(f2fo)u2 will be
strongly peaked nearfo so that one obtains an estimate of the
Wiener spectrum at the specified frequency,W(fo). In par-
ticular, if Grect(m) is chosen as 1/(M1M2uAu)1/2 at the lattice
pointsmP@0,...,M121#3@0,...,M221#, then

u rect5 (
m150

M121

(
m250

M221
1

AM1M2uAu
D~rm!e2p i fo•rm, ~57!

uĜ~ f2fo!u25
uAu

M1M2

sin2~M1p~ f2fo!•v1!

sin2~p~ f2fo!•v1!

3
sin2~M2p~ f2fo!•v2!

sin2~p~ f2fo!•v2!
, ~58!

which explicitly shows that for this choice ofG,
uĜ(f2fo)u2 is strongly peaked nearfo . For a square lattice
with conventional choice of basis vectors, (f2fo)•v15( f x

2( f o)x)Dx, wheref x2( f o)x is the difference in thex com-
ponents of the frequencies andDx is the lattice spacing
in the x direction, and similarly for they axis. In general,
if a separable window is chosen, so thatG(m)
5G1(m1)G2(m2), then Ĝ(f)5Ĝ1(f•v1)Ĝ2(f•v2), so that
one can make use of the variety of one-dimensional windows
which have been studied.29

Returning to the case of a general lattice, Eq.~58! shows
that for this particular choice of window, as is typical, the
estimate ofW(f) becomes sharper as the spatial width of the
window increases, so that

W~ f!5Ĉ~ f!5 lim
M1 ,M2→`

^WM1M2
~ f!&, ~59!

WM1M2
~ f!5

uAu
M1M2

U (
m150

M121

(
m250

M221

D~rm!e22p i f•rmU2

, ~60!

where, by stationarity, anyM13M2 region of the detector
lattice will serve. Specializing to the zero frequency case,
f50, one gets

W~0!5 lim
M1 ,M2→`

~M1M2uAu!

3K S 1

M1M2
(

m150

M121

(
m250

M221

D~rm!D 2L , ~61!

which is the discrete-array version of Selwyn granularity5

~the variance in the average digital value corresponds to the

variance in the spatially averaged optical density of film!.
Comparing Eq.~61! to Eq.~52!, one can interpret Eq.~61! as
the statement that the integrated response over large regions
of the detector depends only upon the low-frequency com-
ponents of the Wiener spectrum. Viewed spatially, this result
means that the digital values averaged over sufficiently large
disjoint regions are approximately independent, so that the
variance of the average overN large subregions scales with
1/N}1/M1M2 .

As with the OTF, the results of the screen-film theory
appear as a limiting case for sufficiently fine lattices. Writing
Eqs.~59! and ~60! as

W~ f!5 lim
Mi→`

1

M1M2uAu

3K U (
m150

M121

(
m250

M221

uAuD~rm!e22p i f•rmU2L , ~62!

the summations become approximations of the integrals in
Eq. ~6!.

The discrete autocovariance@Eq. ~44!#, the definition of
the Wiener spectrum as the discrete space Fourier transform
of the autocovariance, and the use of Fourier components of
flat-field images to estimate the NPS@Eq. ~59!# have oc-
curred in several places in the medical physics literature,13,30

but historically these results seem to have been considered
less than satisfactory from a theoretical point of view. For
example, Cunningham31 stated that while ‘‘@i#t is tempting to
write out the NPS of@the sampled digital signal#, but strictly
speaking this violates the shift-invariance assumption since
@the data# is sampled and is therefore not shift invariant.’’
More recently, Cunningham,32 in analyzing the concept of
NPS in terms of cyclostationary15,33 random processes, de-
finesWM1M2

@Eq. ~60!# as ‘‘a working definition of the digi-
tal NPS.’’ As detailed in Sec. VI, the NPS, as defined here, is
precisely the noise which sets the detection-theoretic limits
on the use of the detector. In the detection-theoretic approach
of Barrett et al.,1 the Fisher information matrix relates the
detector noise back into uncertainties in the estimates of the
Fourier coefficients of the object being imaged. This has the
advantage that it removes the fundamentally arbitrary choice
of scale in using digital values, but if aliased frequencies
become important the Fisher information matrix becomes
singular so that the inversion of this matrix is problematic.

The definition of NPS given here is intended to be opera-
tional in the sense that it is defined in a manner which can
be implemented using the experimentally available digital
values. For the purposes of understanding the sources of
noise in detectors, it may be useful to consider the noise
in the ‘‘presampled’’ signal, and for some detectors this pre-
sampled signal might be experimentally accessible. For ex-
ample, in a detector based on a phosphor screen coupled with
a lens to a charge-coupled device~CCD! camera, one could
do experiments in which the camera is replaced by a photo-
graphic film. For some devices, such as TFT arrays using
direct conversion mechanisms, the meaning of the presa-

2425 M. Albert and A. Maidment: Linear response theory 2425

Medical Physics, Vol. 27, No. 10, October 2000



mpled signal is less clear as removal or refinement of the
sampling array is likely to change the electric fields respon-
sible for charge collection.

As reviewed by Wagner and Sandrik,30 the calculation of
the NPS can be implemented in several ways. One method is
to estimate the autocovariance function@Eqs.~44! and ~46!#
using pairs of points in one or~preferably! more images, and
then performing the Fourier transform to give the NPS. Al-
ternatively, the variance in the Fourier components is used,
as in Eq.~55!. If G is chosen as a rectangular window, then
Eq. ~55! reduces to Eq.~59!, so that̂ WM1M2

(f)& @Eq. ~60!# is
used as an estimate ofW(f). In principle the frequencyf is a
continuous variable, but the spread ofuĜ(f)u2 limits the reso-
lution in frequency space@by Eq. ~56!# and this spread is
inversely proportional to the size of the spatial region and on
the order ofuKu/M1M2 . Given this resolution, it is reason-
able to calculate the NPS atM1M2 frequencies spaced
evenly in the unit cellK in frequency space. Thus, the tech-
niques commonly in use by experimenters give precisely the
quantities of interest from our current theoretical point of
view, although the use of windows other than the rectangular
window might be of interest to obtain better frequency reso-
lution.

Generally, frequency resolution is not a limiting factor in
estimating the Wiener spectrum, and the NPS estimated by
^WM1M2

(f)& is subjected to further smoothing. From Eq.~57!

it is seen that̂ WM1M2
(fo)& is the variance in the random

variableu rect, and as the region of interest used in the cal-
culation is made larger, the variance inu rect tends toW(f)
which will be nonzero in general. Because the variance of
u rect does not vanish, neither will the variance inuu rectu2, so
the variance inWM1M2

(f) does not converge to zero as
M1 ,M2→`. As the region of interest is made larger, one
gains in spectral resolution but not precision, and this repre-
sents an unavoidable trade-off.30,34 One can only decrease
the uncertainty in the estimates of the Wiener spectra by
averaging estimates ofW(f) from several different regions of
interest. Of course, for the purposes of analysis one could
divide a large region into several smaller regions, and the
averaged value of estimates ofW(f) would then have less
uncertainty, but the spectral blur would be increased. Since it
is often inconvenient to obtain sufficiently many flat-field
images to make the standard error in the estimates ofW(f) at
individual frequencies small, researchers often opt for
smoothing the experimental spectrum.

VI. KNOWN SIGNAL DETECTION

Having addressed the issues of OTF and Wiener spec-
trum, it is now possible to use the signal-to-noise ratio~SNR!
to quantify the ability of the detector to perform SKE/BKE
tasks. First, however, it is useful to briefly review the mean-
ing of the SNR in terms of an ideal9,35 observer working with
Gaussian statistics. The ideal observer is challenged with de-
ciding between two hypotheses based upon a given set of
data. In the current context, these data consist of the digital
values obtained from the detector, and for the moment
we will restrict the observer to knowledge of only a finite

region of the detector, corresponding to indexesmPM

5@M1 ,...,M1821#3@M2 ,...,M2821#. This observer works
under the assumption that given hypothesisH I , correspond-
ing to an expected input signal^I (r )& I and an expected data
set^D(rm)& I , the probability density function describing the
expected range and frequency of observed data sets is Gauss-
ian. This Gaussian distribution in (M182M1)3(M282M2)
5DM1DM2 dimensions, one dimension for each detector
element available to the observer, can be written explicitly,
but to make the formulas somewhat less cumbersome we
use the following notation:Xm5D(rm), ^Xm& I5^D(rm)& I ,
^Xm& II5^D(rm)& II , and $Xm%5$D(rm)umPM% is a
DM1DM2-dimensional vector in the space of all possible
data values for the detector elements in regionM. The prob-
ability distribution which governs the frequency with which
particular data sets will be obtained under hypothesisH I is
given by

PI~$Xm%!5Noe21/2(m,nPM~Xm2^Xm& I!~C21!mn~Xn2^Xn& I!,
~63!

where the normalization factor is given by

No5S 1

2p D ~DM1DM2!/2 1

AdetC
. ~64!

The matrixCmn is the autocovariance functionC(rm,r n) of
Sec. V restricted to the rangem,nPM. The fact thatm and
n are double indices, e.g.,m stands form1 ,m2 , is not a
problem from the theoretical point of view, and in principle
for a numerical calculation one could simply choose a con-
venient one-to-one pairing of the double indicesm1 ,m2

PM with the integers 1,...,DM1DM2 so thatC would be
indexed in a more customary manner. Under hypothesisH II ,
the range and frequency of observed data sets will be gov-
erned by a Gaussian probability densityPII , this time con-
centrated around̂X& II . The restricted covariance matrix,C,
occurring in both cases, will be the same under the assump-
tion that the noise is additive.

Returning to the question of how to decide between hy-
pothesisH I and hypothesisH II , if for a given instance of the
experiment a data set$Xm%5$D(rm)umPM% is obtained
such thatPII($Xm%) is relatively large andPI($Xm%) is rela-
tively small, it would generally be reasonable to favorH II .
Thus the ideal observer’s decision rule based on the likeli-
hood ratioPII /PI , as discussed below, is intuitively reason-
able.

The ideal observer attempts to minimize the expected
cost9,36 given knowledge of the cost of misclassification un-
der either hypothesis and thea priori probabilities associated
with each hypothesis,

^Cost&5P~H I!P~ChIIuI!CI→II1P~H II !P~ChIuII !CII→I ,
~65!

where in the first termP(H I) is thea priori probability of the
state corresponding to hypothesisH I being true,P(ChIIuI) is
the probability of mistakenly choosing hypothesisH II when
hypothesisH I is correct,CI→II is the cost associated with this
error, and similarly for the second term. Given a regionRII
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of the DM1DM2 dimensional data space and the decision
rule that, if the observed data$D(rm)umPM% are in RII

then the observer rules in favor of hypothesisH II and other-
wise in favor ofH I , then the probability of mistakenly fa-
voring hypothesisH II whenH I is correct is

P~ChIIuI!5E E ...E
RII

dDM1DM2$Xm%PI~$Xm%!, ~66!

and, as under either hypothesis the total probability must be
unity,

P~ChIuII !512E E ...E
RII

dDM1DM2$Xm%PII~$Xm%! ~67!

gives the probability of making the error in the other direc-
tion. Combining Eqs.~65!–~67!,

^Cost&5P~H II !CII→I

1E E ...E
RII

dDM1DM2$Xm%DC~$Xm%!, ~68!

where

DC~$Xm%!5P~H I!CI→IIPI~$Xm%!

2P~H II !CII→IPII~$Xm%! ~69!

is the differential cost which, if the experiment were repeated
sufficiently often, would be attributed to those experiments
which gave data$D(rm)umPM%. Clearly the expected cost
given by Eq.~68! is minimized by choosing the regionRII to
be precisely the region where the differential cost DC is
negative, so that the ideal observer’s decision rule is to
choose hypothesisH II if and only if the likelihood ratio

L5
PII~$D~rm!umPM%!

PI~$D~rm!umPM%!
~70!

exceeds the threshold value

Lo5
P~H I!CI→II

P~H II !CII→I
. ~71!

By adjusting the operating pointLo one makes trade-offs in
the rates of the two possible error types, as can be shown
graphically in terms of receiver operator curves~ROC
analysis!.37 Equivalently one can place the cutoff on logL,
and from Eq.~63!,

logL5 (
m,nPM

~^D~rm!& II2^D~rm!& I!~C21!mnD~r n!

1const, ~72!

where the constant term does not depend upon the observed
data. Thus an ideal observer, viewing a finite regionM of
the detector array, uses a linear statisticuM defined by

uM5 (
mPM

gM~rm!D~rm!, ~73!

wheregM is given implicitly by

(
mPM

gM~rm!C~rm,r n!5~^D~r n!& II2^D~r n!& I!, ~74!

for all nPM. On physical grounds, the values of the mask
function gM(rm) will be significant only in the region near
where^I (r )& II2^I (r )& I is nonzero. Further from this region,
the values ofgM(rm) will tend to zero, so that for suffi-
ciently large DM1DM2 the ability of the detector to dis-
criminate between the two hypotheses should not depend
upon the exact value ofDM1DM2 . In that limit, the efficacy
of the detector for the SKE/BKE task should be set by the
linear statisticug for the ideal observer’s mask functiongI .
This mask function is defined implicitly by

uAu (
mPM

gI~rm!C~rm,r n!5~^D~r n!& II2^D~r n!& I!, ~75!

where a factor ofuAu is introduced to simplify the form of
the solution which in the Fourier domain is given by

ĝI~ f!5
^D̂~ f!& II2^D̂~ f!& I

W~ f!
~76!

5G
( fk

~^ Î ~ f1fk!& II2^ Î ~ f1fk!& I!T~ f1fk!

W~ f!
. ~77!

The statisticug is itself a Gaussian variable whose variance
can be computed using Eq.~52!, so that

SNRI
25G2E

K
d2f

u( fk^DI ~ f1fk!&T~ f1fk!u2

W~ f!
~78!

gives the SNR corresponding to the use of the statistic, as
defined in Eq.~8!. Thus the limiting case of a detector array
of infinite extent is well defined, for pixels ‘‘far away’’ from
the region of interest do not significantly contribute to the
decision. Physically, it is clear that the ‘‘tails’’ of the PSF
and autocovariance functions set the relevant scale by which
distance from the edge of the array is measured, so that when
the projected images of objects appear at a distance from the
boundary of several times the lengths of these tails the de-
tector can be treated as essentially infinite and Eq.~78! is
valid.

It is acknowledged that there are mathematical subtleties
related to a truly infinite detector which are not addressed
here. For example,38 the data set for such a detector would
represent an infinite set of random variables, so it is not
possible to write down a probability density distribution like
Eq. ~63! in the infinite case. The nature of the physical limit
is sufficiently clear that a study of these mathematical subtle-
ties could not change the results. In any case, the fact that the
linear statisticug with g5gI gives the optimal SNR of any
linear statistic can be proven directly. More precisely, if
g(rm) is used to define a linear statisticug , then letting
DD5^D& II2^D& I ,
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U E E
K
d2fg~ f!DD̂~ f!U2

5U E E
K
d2f~g~ f!AW~ f!!

3S DD̂~ f!

AW~ f!
D U2

<E E
K
d2fug~ f!u2W~ f!

3E E
K
d2f

uDD̂~ f!u2

W~ f!
, ~79!

where the second step is an application of the Schwarz in-
equality. Dividing both sides of Eq.~79! by the first factor on
the right, one obtains

u**Kd2fg~ f!DD̂~ f!u2

**Kd2fug~ f!u2W~ f!
<E E

K
d2f

uDD̂~ f!u2

W~ f!
, ~80!

where the quantity on the left is the SNR2 for the statisticug

@Eqs.~8! and~52!# and the quantity on the right, proven to be
larger, is the SNR2 of the ideal observer as given by Eq.~78!
@with Eq. ~38!#.

As a slightly less subtle point, the construction of the
ideal observer involves dividing byW(f), which is problem-
atic if W(f)50 at some frequency. For physical detectors,
the Wiener spectrum never vanishes as there is always some
residual noise. Even for highly idealized detectors, the
Wiener spectrum must reflect the noise in the incident x-ray
fluence so that it can only disappear at frequencies where the
OTF vanishes, and at these frequencies the Wiener spectrum
will vanish no faster than OTF2(f) ~discussed in more detail
in the next section!, so that even in this case the SNR as
given by Eq.~78! is a well-defined limit.

The SNR given by Eq.~78! corresponds to the SKE/BKE
decision task using a discrete-array detector, as Eq.~13!
gives the SNR for the SKE/BKE decision task for screen-
film. Strictly, these formulas do not apply to the task of
detection when the observer does not know the position of
the object being imaged. For detecting a signal of unknown
location, one can calculate the ideal observer’s SKE/BKE
uI(r ) for each possible positionr of the object. A common
strategy is then to apply a threshold touI(r ). Under the
assumption of Gaussian statistics with complete knowledge
except for position, the likelihood ratio computed by the
ideal observer usesuI(r ) in a nonlinear manner35,39,40that is
sensitive to peaks inuI(r ). In either case, the values of SNR
given by Eqs.~13! and ~78! are indicative of the efficacy of
the ideal observer in the more general case of the position
being unknown.

For the discrete-array detector, however, the value of the
SNR for the SKE/BKE case will depend upon exactly where
the object is relative to the lattice. While this variation can be
significant ~for example detectors could have interstitial
spaces where objects completely disappear!, the magnitude
of the effect decreases for objects large relative to the lattice
spacing. Examples of this for several simple model detectors
will be given in the next section. If the variation in SNR2

with position is not too great, then the spatially averaged
value of SNR2 will be of use.1 This spatial average can be
computed exactly by noting that if an object is shifted by a
displacementr , the Fourier transform is multiplied bye2p i f•r

so that in Eq.~78! the sum over elements of the reciprocal
lattice becomes

U(
fk

^D Î ~ f1fk!&T~ f1fk!e2p i fk•rU2

, ~81!

where a common factor independent ofk(ue2p i f•ru51) has
been removed. In averaging over positionsr in Eq. ~78!, the
denominator of the integrand does not depend uponr , and
the numerator is the square of the magnitude of a Fourier
series inr , so that in integrating overr to obtain the average
over all displacements one can apply Parseval’s theorem to
obtain

^SNR2&5G2E E
K
d2f

( fk
uD Î ~ f1fk!u2uT~ f1fk!u2

W~ f !

5G2E E d2fS uT~ f!u2

W~ f! D uD Î ~ f!u2, ~82!

where the second step follows from noting that the sum of
the integrals over each unit cell is equivalent to the integral
over the entire plane.

As for the OTF and NPS, the film-screen result, Eq.~13!,
can be recovered from the discrete-array result@Eq. ~78!# by
going to the limit of a sufficiently fine lattice, in which case
the distance to the first aliased frequency is so large that only
the unaliased term contributes to Eq.~78!. Similarly, for a
sufficiently fine lattice all objects are large relative to the
lattice spacing, so that SNR2 does not vary appreciably as the
object is moved relative to the lattice spacing. These facts
prompt the identification1 of

GNEQ~ f!5G2uT~ f!u2F2/W~ f!, ~83!

as a generalization of the concept of noise equivalent quan-
tum flux ~NEQ!, whereF is the incident x-ray flux, and

GDQE~ f!5G2uT~ f!u2F/W~ f!, ~84!

as a generalized detective quantum efficiency~DQE!. These
results parallel the screen-film theory, except that factors of
fluence appear in the numerator as the response of digital
detectors is linear with fluence@Eq. ~33!# while film density
is linear with respect to the log of fluence@Eq. ~1!#. While
Eq. ~82! is exact in the context of the assumptions we have
made about the detector, SNR2 enters nonlinearly into other
quantities such as the various probabilities of misclassifica-
tion for a given operating point~sometimes called the false
positive fraction and the false negative fraction in ROC
methodology!. However, when the variation in SNR2 is not
too large, perhaps as measured by the rms~root-mean-square
variation in SNR2!, then the GNEQ and spatially averaged
SNR2 can be considered a useful summary of the efficacy of
the detector.

In this paper we have applied the concept of an ideal
observer directly to the digital data. The results obtained are
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implicit in the work of Gigeret al.,13,25,41,42but Gigeret al.
concentrates on issues of display and models of human vi-
sual response to the displayed data. As these tasks are decou-
pled from image acquisition for digital systems, it is worth
considering figures of merit for the data acquisition system
independent of the display, as done here. The results of this
section also follow as limiting cases of the work of Barrett
et al.1 Of particular note, Sec. V A1 discusses a simple bin-
ning detector and obtains

SNR25 (
m51

M
Dḡm

2

sm
2 , ~85!

wheresm is the uncorrelated noise in themth detector and
Dḡm is the expected change in the data value at themth
detector which would be caused by the signal. This particular
result can be obtained directly from first principles based on
counting statistics in each detector element. In the stationary
case,sm5s is a constant, so in Eq.~78! W(f)5s2uAu and
the numerator@using Eq.~38! and Parseval’s identity# be-
comesuAu(muD^D(rm)&u2, again recovering the result@Eq.
~85!# based on counting statistics for uncorrelated noise. It is
worth noting that if one does not include the aliased terms in
the numerator of Eq.~78! ~perhaps on the grounds that
aliased signals are not useful!, the value of SNR2 will be
underestimated. The aliased response is part of the physical
response of the detector, and in this case the aliased terms
will add coherently in such a manner as to bring the calcu-
lated value of the SNR2 up to the value in Eq.~85! obtained
from counting statistics.

VII. MODEL DETECTORS

To give a feel for the implications of the above theory, the
capabilities of detectors with reasonably realistic parameters
will now be investigated. The modeling is somewhat simplis-
tic, but sufficient to demonstrate several interesting proper-
ties, such as the dependence of SNR on the position of the
object being imaged, and certain trade-offs inherent in such
detectors, particularly those trade-offs related to the possible
suppression of input spatial frequencies above the frequen-
cies supported by the lattice. The incident x-ray fluenceF
has a white Wiener spectrum,Wi(f)5F. Among other sim-
plifications, which will be discussed in more detail at the end
of the section, we assume 100% of the x-rays interact. Each
x-ray undergoes a stochastic amplification, characterized by
an average ofm secondary quanta per x-ray withsm5Am
for a Poisson process, and the secondary quanta undergo a
stochastic scattering process, with a spread functionPs and
transfer functionTs , before being ‘‘binned’’ by the detector
elements. The result is an average ofmF secondary quanta
per unit area on the detector with a pre-sampled Wiener
spectrum given by43

Ws~ f!5@m2Wi~ f!1Fsm
2 2mF#uTs~ f!u21mF. ~86!

For a square lattice with spacingL, binning can be consid-
ered as a deterministic convolution with rect functions rep-
resenting the detector regions, so that with

Tb~ f!5S sin~pL f x!

pL f x
D S sin~pL f y!

pL f x
D , ~87!

the digital noise power spectrum can be written

W~ f!5
1

m2 (
fk

uAu2F~m2uTs~ f1fk!u21m!uTb~ f1fk!u2

1WE , ~88!

where the factor of 1/m2 is introduced so that digital values
will correspond to x-ray count andWE is the electronic
noise. With the present conventions the gray-scale character-
istic is set toG5uAu. A simplification can be achieved44

using

(
n52`

` S sin~p~x1n!!

p~x1n! D 2

51 ~89!

for anyx, which can be proven by applying Parseval’s theo-
rem to the Fourier series fore2p ixy for yP@20.5,0.5#. The
experimentally observable transfer function~as obtained, for
example, by the slanted-edge technique, cf. Sec. IV! contains
the effects of stochastic scatter and binning, thusT(f)
5Ts(f)Tb(f), so that

W~ f!/uAu5FuAu(
fk

uT~ f1fk!u21
FuAu

m
1WE /uAu ~90!

is the Wiener spectrum of the model detector, with the aver-
age number of x-rays per pixel beingFuAu. The summation
over aliases in Eq.~88! is often referred to as ‘‘noise alias-
ing.’’ The division into aliased and unaliased components is
useful for modeling a variety of detectors, but it should be
noted that this division is generally not directly experimen-
tally accessible, at least not without modifying the detectors,
and that in principle there could be devices which are sta-
tionary, and therefore have Wiener spectra, but for which the
division of the NPS into aliased and unaliased components is
not useful.

It is useful to choose values of the parameters in the
model which are representative of detectors of current clini-
cal interest, as this can help in the understanding of the phys-
ics which determines the performance of these devices, but
detailed modeling for quantitative comparison to actual de-
vices is beyond the scope of this article. We assume a square
lattice with spacing ofL50.143 mm, operation at an expo-
sure corresponding touAuF51400 x-rays per pixel, and an
amplification factor ofm51000. For the stochastic transfer
function Ts we consider three possibilities: a ‘‘blur-free’’
detector for whichTs(f)51, typical of photoconductive
arrays,45 and two ‘‘alias-free’’ detectors whose stochastic
transfer functions are of the formTs(f)5e2lufu with
l50.463 andl50.34 mm, which approximates the transfer
function for evaporated CsI.46–48 Typically electronic noise
A(WE)/uAu is on the order of 3–5 x-rays, so values of 0, 42,
and 82 cover the range of values forFuAu/m1WE /uAu.

The transfer functions for these models are shown in
Fig. 2. As the pixels are symmetric with respect to inversion
through their centers@i.e., for the PSF,P(r )5P(2r ), and
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P(r ) is a real number#, the imaginary part of the transfer
function is identically zero, so only the real part need be
graphed. The OTF is, of course, a function of two variables,
f x and f y . To show this, we plot the OTF as a function of the
magnitude of the frequency vector for three angles relative to
an axis of the detector. For the blur-free detector, the transfer
function is simply the product of the sincs in the two direc-
tions induced by the binning operation. The OTF of the blur-
free detector is nonzero well beyond the highest frequency
supported by the lattice. Any component of an input signal at
these higher frequencies will contribute to a lower frequency
alias in the output, as per Eq.~38!, and while it is not obvi-
ous from the point of view of frequency space the sum over
aliases in Eq.~38! will be precisely equivalent to the detector

simply binning each incident x-ray. For the alias-free detec-
tors, there is very little response to frequencies beyond those
supported by the lattice. For each detector, three angles are
plotted, but the angular dependence for the alias-free detec-
tors is small enough to not be apparent on the graph.

The Wiener spectra are shown in Fig. 3. Again, instead of
plotting a function of two variables,f x and f y , we plot the
NPS as a function of the magnitude of the frequency vector
for three angles,u50, 27, and 45°~27° corresponds to a
slope of 1:2 relative to the lattice!. However, the NPS shows
little angular dependence. For the Wiener spectrum one only
needs to look at frequency values supported by the lattice,
i.e., f xP@21/2L,1/2L# and f yP@21/2L,1/2L# ~for conve-
nience one can considerW to be periodic in the frequency
plane!. Thus, atu50° one only needs to graph up to 1/2L
53.5 mm21, but atu545° the frequencies are on the diago-
nal of the square, so one goes up toA2/2L54.9 mm21. At
u527°, one goes up to 1/(2L cosu)54 mm21. For this graph
the constant offsetFuAu/m1WE /uAu has been set to zero.
For the blur-free detector, the NPS is flat, which follows
mathematically from Eq.~89! and the fact thatT(f) for these
detectors is simply related to sinc functions, or more physi-
cally by noting that for a detector which simply bins incident
x-rays adjacent cells will be uncorrelated so the NPS is flat.
For the alias-free detectors, the NPS is suppressed by factors
of the square of the transfer function.

The GDQE as a function of frequency are shown in
Figs. 4–6 for a range of values of the residual white noise
FuAu/m1WE /uAu. For each graph, values are plotted as a
function of the magnitude of the spatial frequency for angles
0, 27, and 45° relative to an axis. In each case, the GDQE
falls off most quickly atu50° and least quickly atu545°,
which represents the fact that on the diagonal the sampling
rate is increased by a factor of&. In the case where the
residual white noise is zero~Fig. 4!, the GDQE of the blur-
free detector drops like the square of a sinc function. For the

FIG. 2. The optical transfer functions of three model detectors. The ‘‘blur-
free’’ detector bins the secondary quanta without smoothing, while for the
‘‘alias-free’’ detectors the distribution of secondary quanta is smoothed by
an exponential MTF (e2lufu) before binning. Data are shown as a function of
the magnitude of the spatial frequency for several angles.

FIG. 3. The Wiener spectraW(f)/uAu for the three model detectors as in Fig.
2. The residual additive white noiseFuAu/m1WE /uAu has been set to 0.

FIG. 4. GDQE as a function of frequency for the three model detectors as in
Fig. 2, with the residual white noiseFuAu/m1WE /uAu set to 0.
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alias-free detectors, the GDQE remains at nearly unity up
to the lattice cutoff, the factor ofT2(f) canceling the same
factor in the colored part of the noise. The GDQE of the
blur-free detector shows some response beyond the lattice
cutoff. Though small, this portion of the GDQE is physical
and it will be shown that the responses to the aliased
frequencies can not be trivially dismissed. With the addition
of residual white noise the GDQE of all three models is
reduced, as shown in Fig. 5 (FuAu/m1WE /uAu542) and
Fig. 6 (FuAu/m1WE /uAu582). These figures illustrate that
the alias-free detectors are more sensitive to sources of re-
sidual white noise than blur-free detectors. Indeed, in Fig. 6
the blur-free detector now has higher GDQE than the
l50.463 mm detector even at low spatial frequencies. From
the spatial point of view this is quite reasonable. A detector

whose transfer function is designed to remove aliases has a
relatively wide point spread function, and therefore a rela-
tively wide autocovariance function. The ideal observer
makes use of digital values in array elements whose distance
from the position of the signal is up to several times the
lengths of the tails of these functions, so for the same input
signal the ideal observer will have to integrate over a larger
region on an alias-free detector and thus will be more sensi-
tive to any residual uncolored noise.

While GDQE is directly related to the average value of
SNR2 by Eq. ~82!, high-frequency signals~i.e., x-ray pro-
jection images of small objects or objects whose projected
density varies quickly with position! can demonstrate signifi-
cant changes in SNR2 with position. To explore this, con-
sider the SKE/BKE task associated with an object 50mm
wide and 20 mm long. Wires of this width have been used in
neurological and cardiovascular stents.49 Figure 7 shows the
SNR2 for such an object, oriented parallel to an axis of the
detector, as a function of displacement in the direction of the
shorter~50 mm! axis. The scale of the vertical axis is arbi-
trary as we won’t set the inherent contrast of the signal. In
Fig. 7, the 0 mm displacement corresponds to the signal
being centered over the sensitive elements of the detectors.
For the blur-free detector, at 0 mm displacement the signal
falls into a single column of detectors, so the SNR2 corre-
sponds to counting statistics for one column of elements 20
mm long. The SNR2 is constant until the 0.05 mm mark,
after which the signal is shared between two columns of
detectors, resulting in a drop in SNR2. Physically, the num-
ber of x-rays attenuated by the object is independent of its
position, but at a displacement of 0.7 mm the signal is shared
equally between two columns, and since the noise is as-
sumed to be uncorrelated, the variance in the total counts in
the two columns is twice that of one column, so the SNR2 is

FIG. 5. GDQE as a function of frequency for the three model detectors as in
Fig. 2, with the residual white noiseFuAu/m1WE /uAu set to 42.

FIG. 6. GDQE as a function of frequency for the three model detectors as in
Fig. 2, with the residual white noiseFuAu/m1WE /uAu set to 82.

FIG. 7. Relative SNR2 as a function of position for a 50mm wide, 20 mm
long wirelike object parallel to one axis of the detector. The horizontal axis
of the graph gives the displacement of the wire, so that at 0 mm the wire is
over a single column of sensitive elements, while at 0.07 mm the wire
straddles two columns. The verticle scale is arbitrary~dependent upon the
contrast of the wire!.
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reduced by half. The alias-free detectors show less sensitivity
to position, as the signal is always shared between multiple
columns. As before, curves are shown for three values of the
residual white noiseFuAu/m1WE /uAu(02,42, and 82!. For
all models, the SNR2 drops as the residual white noise in-
creases, but this effect is greater for the alias-free models.
Table I gives the average SNR2 for detection of the 0.05
wide, 20 mm long wire, now averaged over both position
and orientation. Additionally, the root-mean-square variation
in SNR2 is given, to indicate the degree to which the detect-
ability of the wire would vary. Again, the alias-free detectors
give a higher SNR2 if the residual white noise is kept suffi-
ciently low. In calculating the SNR2 of the projection of the
wire using Eq. ~78!, if the summation over aliases is
dropped, the resulting integral decreases by about 10%. Thus
the contributions of the aliased signal to the SNR are not
always negligible.

Somewhat speculatively one can consider tasks which de-
pend upon higher frequency components of the signal.50

Consider a 5 mm square with 10% contrast, and a second
square whose edges have been smoothed by convolving with
a 0.15 mm rect function, so that the resulting signal ‘‘ramps
up’’ over a distance of 0.3 mm. The SNR2 for the SKE/BKE
task of distinguishing between these two objects is given in
Table II. It is interesting to note that, mathematically, the
SNR2 is sufficiently large that the ideal observer can perform
this task efficiently, although whether a human could do this
is questionable. On the other hand, edge detection is impor-
tant both computationally and probably as part of the strat-
egy of human observers, so the ability to perform this task is
not a priori irrelevant. Again, the alias-free detectors have a
higher SNR2 if the residual white noise is zero, but as the
task now depends more heavily on the higher frequency

components of the signal, the alias-free detectors are more
sensitive to residual white noise, with the crossover at
FuAu/m1WE /uAu542. The detection of a 0.5 mm square is
shown in Table III. Here, the lower~but nonzero! frequen-
cies dominate the response of the detector, so that in general
the antialiasing detectors gain from the removal of the
aliased noise without losing any signal.

It is interesting to note that the SNRs for the tasks and
models described above do not vary greatly. Many factors
not considered here will greatly effect the performance of
real detectors, beginning with the fact that less than 100% of
the incident x-rays will produce secondary quanta. The color
of the Wiener spectrum need not be the same as the transfer
function, due to, for example, x-rays interacting at various
depths in the detector.51 The efficiency of collection of the
secondary quanta can also have significant effects.52 For CsI
detectors, of which our ‘‘alias-free’’ detector is a rough
model, the fill factor is a minor effect so long as the ampli-
fication m is sufficiently large.48 For selenium detectors, of
which our ‘‘blur-free’’ detector is an approximation, it is
possible to have an effective fill factor significantly greater
than the geometric fill factor of the TFT array.53,54 In any
case, our purpose here is merely to indicate some of the
issues which must be faced in quantifying digital detectors of
these types. In addition, we did not consider geometric fac-
tors such as x-ray focal spot size and x-ray parallax48 which
reduce the high-frequency content of the incoming signals.

VIII. DISCUSSION AND CONCLUSION

The results of this paper set up a framework for quantita-
tive measurements of digital systems in a manner analogous
to the now common analysis of screen-film systems in terms
of the gray-scale transfer characteristic, the optical transfer
function, the Wiener spectrum, and signal-to-noise ratio. The
logic of this framework is by design close to the classic work
on film-screen systems. While many pieces of this argument
have appeared in the work of others, as noted throughout the
text, it seemed desirable to produce a coherent systematic
exposition. The results can be seen as appropriate limits of
those of Barrettet al., but the theoretical construction here
emphasizes the parallels with the classic results on screen-
film systems. While detectors consisting of discrete elements
do not have continuous translational symmetry, the remain-
ing discrete symmetry allows one to use the appropriate Fou-
rier technique. The advantage of this, as in the screen-film

TABLE I. SNR2 averaged over position and orientation for the projection
image of an object 0.05 by 20 mm. As the SNR2 scales with the square
of the contrast of the image, only relative values are meaningful. The6
represent the rms~root-mean-square! fluctuations in the SNR2 with position,
not the statistical uncertainties.

SNR2 for 50 mm wide, 20 mm long object

FuAu/m1WE /uAu50 542 582

Blur-free 1.8160.02 1.7960.02 1.7360.02
Alias-free ~l50.463 mm! 2.1660.16 1.8760.07 1.4860.02
Alias-free ~l50.34 mm! 2.1560.15 1.9960.10 1.6860.05

TABLE II. SNR2 averaged over position and orientation for distinguishing
between the projection of a 5 mm square with sharpboundaries and a square
whose boundaries ramp up over a 0.3 mm region. Normalization corre-
sponds to a 10% contrast with an x-ray flux corresponding to 1400 x-rays/
pixel. The6 represents the rms fluctuations in the SNR2 with position, not
the statistical uncertainties.

SNR2 for discontinuity vs slope

FuAu/m1WE /uAu50 542 582

Blur-free 1462 1462 1362
Alias-free ~l50.463 mm! 1663 1261 7.660.5
Alias-free ~l50.34 mm! 1663 1462 1061

TABLE III. SNR2 averaged over position and orientation for detecting the
projection of a 0.5 mm square. Normalization is arbitrary. The6 represents
the rms fluctuations in the SNR2 with position, not the statistical uncertain-
ties.

SNR2 for 0.5 mm square

FuAu/m1WE /uAu50 542 582

Blur-free 1.9160.01 1.8960.01 1.8360.01
Alias-free

~l50.463 mm!
2.0860.01 1.9960.01 1.78960.003

Alias-free
~l50.34 mm!

2.0760.01 2.0160.01 1.85560.006
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case, is that one can explicitly solve for the mask function of
the ideal observer@see Eq.~75!# and thereby obtain the op-
timal SNR. As for screen-film, this formula can be inter-
preted as the ratio of the square of the signal in each fre-
quency bin to the noise in each frequency bin, as measured
by the Wiener spectrum, integrated over bins.

We have investigated several highly idealized, but not
completely unrealistic, models of detectors, and illustrated
some of the issues inherent in various design decisions. This
analysis is incomplete and intended to point toward issues
which could be addressed in other work. However, our re-
sults suggest that for typical tasks the detectability of objects
as determined by SNR2 is not drastically affected by the
decision, in and of itself, to suppress or not to suppress
aliases. In any real device, of course, this design decision is
linked to many other parameters. This article should be of
use in clarifying what is actually experimentally measured in
testing such devices.

The results presented here are exact for the SKE/BKE
task as approached by the ideal observer under the assump-
tions of linearity, homogeneity, and stationarity. However,
each of these assumptions is only approximately true in prac-
tice. The finite extent of real detectors trivially shows that
they are not homogeneous, but for a variety of tasks edge
effects are negligible. More importantly, many digital detec-
tors in practice show significant inhomogeneity and nonsta-
tionarity. The work of Barrettet al. is sufficiently general to
cover these cases. Further, the inhomogeneity and nonsta-
tionarity of a given instrument often occur in ways which are
different for each individual device, so that while the extra
information is relevant to the particular device one has mea-
sured, the extra information is often not generalizable to
other devices of the same manufacture. This extra informa-
tion is useful for optimizing certain tasks using the particular
device, but of less use in understanding a class of devices.
Additionally, while the signal detection task of the ideal ob-
server under SKE/BKE conditions certainly shares some fea-
tures with the task which human observers face, and has
under many conditions been shown to correlate well with the
ability of human observers~for example, screen-film images
of nylon beads55!, it is still a very idealized task. For ex-
ample, if edge-detection is important, then higher frequency
parts of the incoming signal become more important than
would be expected given simply the signal detection task.
From the point of view of a radiologist, a clear edge might be
used to identify and distinguish the existence of a lesion
from a variation in projected density of the underlying organ,
particularly in the presence of the ‘‘structured noise’’ of
other anatomical features.

Clearly these are issues for further study, but while OTF,
W, SNR, and GDQE are certainly useful because they are
objectively measurable and in a mathematically precise man-
ner are related to tasks which approximate those of the hu-
man observer, it is worth remembering that measurement of
these quantities does not obviate the need for observer stud-
ies, particularly with practicing radiologists.
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