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Abstract. We propose an approach for analyzing tree-like structures in bio-
medical images. Our analysis is based on Vector Quantization (VQ), an image
compression technique. Here, we approach VQ from a different perspective: we
use the histogram of the codeword usage as a feature vector representing the
initial image. As ductal tree topology has predictive value for a variety of
diseases, such as papilloma, ductal ectasia, and ductal carcinoma, we chose to
apply this technique to compare texture of the breast ductal tree in x-ray galac-
tograms against the same tissue in corresponding unenhanced mammograms,
which do not visualize the ductal tree. We also investigate the relationship be-
tween texture and the underlying ductal branching topology using descriptors
adapted from the data mining literature. We believe that our method has the po-
tential to assist the interpretation of clinical images and deepen our understand-
ing of relationships among structure, texture, function, and pathology.
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1 Introduction

Analysis of natural and biomedical tree-like structures presents special challenges, as
surroundings may obscure branching patterns. Examples of such tree-like structures
include the bronchial tree, the blood vessel network, the nervous system, and the
breast ductal network. Properties such as topology, spatial distribution of branching,
and tortuosity have been analyzed in the literature and associated with altered
function and/or pathology. For example, regional changes in vessel tortuosity have
been used to identify early tumor development in the human brain [1]. Similarly,
studies have shown that the morphology of the ductal network can provide valuable
insight to the development of breast cancer and assist in diagnosing pathological
breast tissue [2].
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However, imaging techniques that clearly visualize tree-like structures may be im-
practical in terms of cost, safety, and comfort. Galactography, for example, can be
performed to visualize the breast ductal network by injecting a contrast agent into the
lactiferous ducts of the breast (see Figure 1).

(a) b)

Fig. 1. (a) A galactogram, an x-ray image of the contrast-enhanced breast ductal network, (b) a
mammogram of the same breast acquired without contrast-enhancement of the ducts

Galactography can be useful for visualizing early symptoms of papilloma or ductal
ectasia, which cause spontaneous nipple discharge in the absence of identifiable
mammographic lesions. Nevertheless, such a procedure is not frequently performed
and is considered painful and complicated.

In order to overcome such obstacles in the analysis of tree-like structures, we pro-
pose an approach that attempts to correlate branching topology with corresponding
image texture. Our ultimate hypothesis is that if such a relationship can be quantita-
tively established, analysis of texture can be used to infer properties of the underlying
tree structure, leading to more effective analysis of tree-like structures. In this paper,
we focus our analysis on breast imaging due to the particular challenging task of visu-
alizing and characterizing the breast ductal network. Our approach has the potential
benefit of advancing our understanding of breast anatomy and physiology, can greatly
assist early cancer detection and cancer risk estimation, and may even improve com-
puter simulations of breast tissue for the purpose of evaluating novel breast imaging
modalities. Moreover, the proposed representation and methodology could be ex-
tended to study other tree-like structures, such as the blood vessel network and air-
ways in the lungs. To summarize, we believe that our approach can help expand upon
the current understanding of the relationship between morphology, structure, and
function of tree-like structures in medical images.

2 Background

Several approaches have been proposed in the literature for characterizing tree-like
structures in images for a wide range of scientific disciplines. Ramification (R) matri-
ces model the probability of branching at various tree-levels. R-matrices are com-
puted using the Strahler number of a tree t, denoted s,, which is defined recursively as
follows:

o Ifrisaleaf, s, =1.
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e [If there exist two children of s with unequal Strahler numbers, s, =
max(schildren(t))'
e  Otherwise, §; = Schildren(n + 1-

The R matrix of a tree with Strahler number s is a lower triangular matrix, defined as:

R, =|r,=b/a ke @.s),je k)] (1)

where ay is equal to the number of branches with Strahler number k. For j<k, by is
the number of pairs of branches with labels k and j, while for j=k, by ; is the number of
pairs of branches both labeled k-1, descending from a node. R-matrices were initially
used for studying botanical trees [3]. More recently, the R-matrix approach has been
also used for simulating breast ductal trees [4] and classifying radiological findings in
clinical breast images [5].

String-encoding descriptors have also been used in the current literature to charac-
terize and classify tree-like structures in breast images [6][7]. By using an encoding
scheme, the problem of tree classification is reduced to string classification where
node labels comprise the string terms. These characterization strings capture proper-
ties of the branching patterns and the topological structure of the corresponding tree.

The depth-first string encoding (DFSE) is a straightforward encoding scheme
which assigns each node in the tree an ascending integer label based on its position in
a preorder traversal. A more sophisticated tree encoding scheme that reflects branch-
ing frequencies of the tree nodes is the Priifer encoding. To construct this encoding,
each node is visited in preorder and, for all nodes but the root, the label of the parent
node is used to represent it.

By treating the string encoding as a document vector, the features of the vector
(string elements) are considered to be a collection of terms. #f-idf weighting assigns
each term in the string a weight determined by its relative frequency within the docu-
ment and the inverse of its frequency among all documents. The new representation
becomes a vector with the corresponding weight at each term’s feature position d; =
(Wi Wajr ...,wy;), where t is the size of the document’s vocabulary. More specifically,
the main idea of #f-idf weighting is that:

@) more frequent terms in a document are more important, i.e. more indicative

of the topic,

(i)  we may want to normalize term frequency (zf) across the entire corpus and

(i) terms that appear in many different documents are less indicative of overall
topic.

The weights derived by this approach are given by the following formula:
wy = tfyidfi = tfylogy (N/ dfy), (2)
where:

fij s the frequency of term i in string j,

tfi=f; /max{f},

df; = document frequency of term i = number of strings containing term i,
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idf; = inverse document frequency of term i = log, (N/ df;), and
N is the total number of strings.

3 Method

Our approach for analyzing tree-like structures is based on investigating the relation-
ship between image texture and branching topology of the tree. We consider a frame-
work of methodological steps that aim to quantify this relationship using texture and
branching descriptors.

3.1 Segmentation of Regions of Interest (ROIs) and Delineation of the
Corresponding Tree Structures

Several preprocessing steps are necessary before the tree-like structures are available
for analysis. First, the boundary of these structures needs to be traced to distinguish
these structures from the rest of the tissue. This process of segmentation can be per-
formed manually, automatically or semi-automatically using methods such as fuzzy
segmentation and the concentric circle analysis proposed by Sholl [8]. Since our
methodology focuses on finding descriptive features for classification rather than
segmentation, we performed manual segmentation. Once the tree is extracted, a can-
onicalization step is performed to avoid the tree isomorphism problem, as described in
the literature [7].

3.2 Computation of ROI Texture Features Using VQ

We first decompose all ROIs into blocks of equal size and use Vector Quantization
(VQ) to represent each block with the closest codeword from a codebook generated
by the Generalized Lloyd Algorithm, which produces a “locally optimal” codebook
by iterative refinement based on two conditions: the Nearest Neighbor Condition
(NNC) and the Centroid Condition (CC). More specifically, this algorithm operates as
follows:

Given a codebook C,, = {y;}, an improved codebook C,,.; is generated by partition-
ing a training sequence T into cells R; according to the Nearest Neighbor Condition:

Ri={x N d(x)yi) Sd(x:yj), \7/]#} (3)

where d(x,y) is the distortion between x and y and is generally computed via the Mean
Squared Error. In other words, no two neighbors x and y may quantize to the same
codeword if there exists a nearer neighbor of x that does not quantize to that code-
word. C,,,; is then set to the centroids of the new cells:

Cii={cent(R;)} “4)

The algorithm then calculates the average distortion of C,,,;, denoted D,,,;, and stops
if the fractional drop:

(Dm_DerI)/Dm (5)

is below a user-defined threshold. Otherwise, the algorithm runs again.
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Once the optimal codebook is computed, each image is encoded using the code-
book and is represented as a vector of codeword usage frequencies, as illustrated in
Figure 2.

- TL™a
E R EEEMEAN
FrErF IEEN N
E BN «uEHB
-1 amr - E
. BF ™A
TN EdaEEEE

(a) (b) (c)

Fig. 2. Vector quantization on a galactogram, depicting (a) a region of interest, (b) part of the
codebook generated by GLA algorithm, (c) the quantized representation of the ROI

3.3 Computation of Tree Branching Descriptors Using String Encoding

We then encode the tree using the Depth-First String Encoding (DFSE) and the
Priifer encoding, representing the string representation as a document vector. We use
the #f-idf text mining technique to assign a weight of significance to each string term
in the encoded tree, indicating terms that form discriminative branching patterns.
This step is shown in Figure 3:

Priifer code: { 1 133} Priifer code: { 12}
dfs;=1
idf; =log,(2/1)=1
tfz3=2/12=1 tf3=0/2=0
wi =1fs; *idf; =1 wsz =1f3 * idf; =0

Fig. 3. Tree descriptor computation on a sample forest, showing two trees, their Priifer encod-
ings, and calculation of #f-idf weights

3.4 Estimate the Similarity between Texture and Branching Topology Measures

Having obtained texture descriptors for each pair of images, we then analyzed texture-
to-texture similarity between all mammograms and galactograms using the summed
Euclidean distance metric. Additionally, following the calculation of the #f-idf vectors
and texture descriptors, we analyzed the similarity between texture and branching
descriptors using the cosine similarity measure.
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4 Results

We analyzed 8 image pairs, each consisting of one mammogram and one x-ray galac-
togram of the same tissue, acquired from 5 women (mean age 49.5 years, range 40-
95), at the Hospital of the University of Pennsylvania in the period from January 1994
to May 2000. Pairs 1 and 2 corresponded to one woman, as did pairs 3 and 4 and
pairs 6 and 7. The mammograms and galactograms in each image pair were labeled
M,...Mg and G;...,Gg, respectively. Two women (image pairs 1, 2, 6, and 7) had no
radiological findings; one woman (image pair 5) was diagnosed with a benign mass,
and a benign cyst was suspected (but not pathologically confirmed) in one woman
(image pair 8). A diagnosis was not readily available for one woman (image pairs 3
and 4). We computed the VQ descriptors and obtained #f-idf weight vectors from the
branching Priifer encoding of 7 of the galactographic trees.

Having obtained texture descriptors for each pair of mammograms and galacto-
grams, we assessed the similarity between texture in mammograms and galactograms
using summed Euclidean distance. We then derived a similarity measure by normaliz-
ing the distance and subtracting from 1. These results, shown in Table 1, were en-
couraging, with all galactograms except Gs and G4 showing statistically significant
associations with their corresponding mammograms at o = .05. The associated
p-values are shown in Table 2. These results support our hypothesis that the underly-
ing texture of the breast ductal network may be inferred from an unenhanced
mammogram. These are the mammogram-to-galactogram results; the galactogram-to-
mammogram results were also computed but are not shown, as they are identical due
to the metric nature of Euclidean distance.

Table 1. Normalized similarity (1 - distance)

Normalized Texture Similarity
G| G2 G3 G4 G5 G6 G7 Gg
M;| .55 | 18 | .13 | 13 | .09 | .11 | .12 | .12
M, | .18 | 49 | .12 | .13 | .10 | .11 | .12 | .12
M| .12 | 12 | 1.0 | .17 | .09 | .10 | .10 | .10
My | .13 | 13 | 17 | .76 | .09 | .10 | .10 | .10
Ms | .10 | .10 | .09 | .09 | .20 | .09 | .12 | .11
Mg | .10 | .10 | .10 | .10 | .12 | .11 | .11 | .10
M; | .11 | .11 | .10 | .10 | .12 | .11 | 43 | .14
Mg | .13 | .13 | .10 | .10 | .11 | .12 | .14 | .46

We have also computed the correlation between galactographic texture descriptors
and the branching descriptors (tf-idf weights) of the Priifer-encoded trees. G5 was
not included in the branching analysis as the position of the nipple was unclear. Un-
fortunately, a significant correlation has not yet emerged. We are in the process of
analyzing these correlations in a larger dataset. We are also developing alternative
topological and texture descriptors to improve our ability to investigate this problem.
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Table 2. Associated texture distance p-values. Bold values significant at o = .05.

p-values
G| G2 Gq G4 G5 G6 G7 Gg
M;| .01 | 44 | 59 | 56 | 68 | .63 | .61 | .61
M, | 44 | .02 | .61 | 59 | 65 | .63 | .61 | .61
M;| 61 | 61 | <01]| 47 | .68 | .65 | .65 | .65
M, | 59 | 56 | 47 | <01 | .68 | .65 | .65 | .65
Ms| 65 | 65 | .68 | .68 | .40 | .68 | .61 | .63
Mg | 65 | 65 | .65 | .65 | .61 | .63 | .63 | .65
M;| 63 | .63 | 65| .65 | .61 | .63 | .05 | .56
Mg | 59 | 59 | 65| 65 | .63 | .61 | .54 | .03

5 Discussion

We presented a new methodology for capturing the topology of tree-like structures
using texture analysis techniques, demonstrating its efficacy through analysis of the
breast ductal network. We utilized encoding schemes, such as DFSE and Priifer en-
coding, to represent the tree structure as a string, then performed #f-idf weighting to
yield vector descriptors of the branching structure. We then performed texture analy-
sis using vector quantization. Our results suggest that it is possible to deduce the tex-
ture of the lactiferous ductal network from ordinary mammograms. Considering the
small size of our dataset, additional study needs to be performed on larger collections
of data to further evaluate our approach.
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