Breast Percent Density: Estimation on Digital Mammograms and Central Tomosynthesis Projections

Purpose: To evaluate inter- and intrareader agreement in breast percent density (PD) estimation on clinical digital mammograms and central digital breast tomosynthesis (DBT) projection images.

Materials and Methods: This HIPAA-compliant study had institutional review board approval; all patients provided informed consent. Breast PD estimation was performed on the basis of anonymized digital mammograms and central DBT projections in 39 women (mean age, 51 years; range, 31–80 years). All women had recently detected abnormalities or biopsy-proved cancers. PD was estimated by three experienced readers on the mediolateral oblique views of the contralateral breasts by using software; each reader repeated the estimation after 2 months. Spearman correlations of inter- and intrareader and intermodality PD estimates, as well as \(\kappa \) statistics between categoric PD estimates, were computed.

Results: High correlation (\(\rho = 0.91 \)) was observed between PD estimates on digital mammograms and those on central DBT projections, averaged over all estimations; the corresponding \(\kappa \) coefficient (0.79) indicated substantial agreement. Mean interreader agreement for PD estimation on central DBT projections (\(\rho = 0.85 \pm 0.05 \) [standard deviation]) was significantly higher (\(P < .01 \)) than for PD estimation on digital mammograms (\(\rho = 0.75 \pm 0.05 \)); the corresponding \(\kappa \) coefficients indicated substantial (\(\kappa = 0.65 \pm 0.12 \)) and moderate (\(\kappa = 0.55 \pm 0.14 \)) agreement for central DBT projections and digital mammograms, respectively.

Conclusion: High correlation between PD estimates on digital mammograms and those on central DBT projections suggests the latter could be used until a method for PD estimation based on three-dimensional reconstructed images is introduced. Moreover, clinical PD estimation is possible with reduced radiation dose, as each DBT projection was acquired by using about 22% of the dose for a single mammographic projection.

© RSNA, 2009

1 From the Department of Radiology (P.R.B., A.K.C., D.K., C.Z., A.D.A.M.) and Department of Biostatistics and Epidemiology (A.B.T.), University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104. From the 2007 RSNA Annual Meeting. Received September 10, 2008; revision requested October 28; revision received January 5, 2009; accepted February 6; final version accepted February 18. Supported by the Susan G. Komen for the Cure Foundation research grant no. BCTR133506 and the Radiological Society of North America Research Fellowship in Basic Radiologic Sciences grant no. FBRS0601. Address correspondence to P.R.B. (e-mail: Predrag.Bakic@uphs.upenn.edu).
Identification of women with an increased risk of breast cancer is of high importance, because they may benefit from modified screening and diagnosis protocols (1). Current clinical standards for breast cancer risk estimation, the Gail (2) and Claus (3) statistical models, are used to predict the absolute risk of breast cancer over a defined age interval on the basis of standard risk factors (4), including age, age at menarche, age at first full-term pregnancy, number of previous biopsies with a benign result, and number of first-degree relatives with breast cancer. These models perform well on a population level but are limited in the prediction of individual cancer incidence (5) because the standard risk factors are practically nonmodifiable and cannot reflect changes in risk over time.

Breast density is considered to be an independent risk factor for cancer (6). It is also indicative of changes in modifiable risk factors (7–11). In mammography, breast density is quantified as percent density (PD), the percentage of the mammogram area occupied by nonfatty, dense tissue:

\[PD = \frac{A_D}{A_B}, \]

where \(A_D \) and \(A_B \) represent the area of dense tissue and the total breast area in a mammogram, respectively. PD has been used in a number of studies of breast cancer risk (12–22). Extension of the Gail risk model to include PD has been proposed (4).

PD can be also quantified by using either a continuous or a categoric scale. The most frequently used categoric approach is the Boyd six-class categorization system (23), defined as follows: category 1 indicates a PD of 0%; category 2, a PD greater than 0% but less than or equal to 10%; category 3, a PD greater than 10% but less than or equal to 25%; category 4, a PD greater than 25% but less than or equal to 50%; category 5, a PD greater than 50% but less than or equal to 75%; and category 6, a PD greater than 75%. The Boyd categorization system reflects the relationship between breast density and cancer risk; as evident in the literature (24), women in the highest PD category have a risk that is four to six times greater than that of women in the lowest PD category.

Mammographic PD estimation has certain limitations because of the projective nature of mammography. Estimation of volumetric breast density from mammograms has been proposed in the literature (25,26). Digital breast tomosynthesis (DBT) is a three-dimensional x-ray breast imaging modality with potential to replace mammography for early cancer screening (27). In DBT, high-spatial-resolution tomographic images of the breast are reconstructed from multiple low-dose projection images acquired within a limited range of x-ray tube angles. The total mean glandular dose for a DBT examination is comparable to the dose for a two-view mammographic examination. Results of early clinical trials with DBT (28,29) suggest that this technique is associated with improved sensitivity and specificity relative to projection mammography.

Currently, to our knowledge, no method exists for PD estimation on three-dimensional reconstructed DBT images. Until the emergence of such a method, PD can be estimated from DBT projection images on the basis of the

Implication for Patient Care

- Currently, no standard method exists for PD estimation on three-dimensional reconstructed DBT images; until the emergence of such a method, PD can be estimated on central DBT projections.
same definition given in Equation (1). We have focused our analysis on the central DBT projection, acquired with the x-ray tube positioned orthogonal to the detector plane. The purpose of our study was to evaluate inter- and intrareader agreement in PD estimation on clinical digital mammograms and central DBT projection images.

Materials and Methods

Study Population

Digital mammograms and DBT images acquired at our institution were analyzed as a part of an institutional review board–approved, Health Insurance Portability and Accountability Act–compliant National Institutes of Health–supported clinical study of multimodality breast imaging. As a part of this clinical study, 51 women (mean age, 52 years; range, 31–80 years) underwent a bilateral DBT examination during the period between August 2004 and April 2005; all women provided informed consent and had recently detected abnormalities or biopsy-proved cancer. The lifetime risks of breast cancer computed by using the Gail and Claus models and averaged over all 51 women were 10.5% and 6.0%, respectively. From among these 51 women, we selected 39 women for inclusion in this study (mean age, 51 years; range, 31–80 years). Images in 12 women were excluded because of the existence or suspicion of bilateral cancer (n = 3), the incomplete visualization of very large breasts (n = 3), or the unavailability of images of the breast contralateral to the breast with the existing abnormality (n = 6). The lifetime risk of breast cancer for the selected 39 women was, on average, 10.4% and 5.5%, as computed by using the Gail and Claus models, respectively.

Acquisition and Processing of Clinical Digital Mammograms and DBT Images

Digital mammographic and DBT examinations were performed on the same day by using a commercial full-field digital mammography system (Senographe 2000D; GE Healthcare, Chalfont St Giles, England). For digital mammography, the...
breast was positioned for mediolateral oblique and craniocaudal views and was compressed by using the standard mammographic compression force (mean, 11 daN; range, 3–20 daN). Each mammographic projection was acquired with a spatial resolution of 100 µm/pixel by using a detector with a 23 × 19-cm² field of view, corresponding to a 2304 × 1920-pixel image size. After acquisition, digital mammograms were available in an unprocessed, raw format, with pixel values linearly proportional to the x-ray exposure at the detector, as well as in a processed format obtained by using an embedded adaptive histogram equalization method (Premium View; GE Healthcare).

The DBT examination was performed immediately after the digital mammographic examination by the same technician and by using the same full-field digital mammography system, which had been modified (with institutional review board approval) to allow DBT. The breast was positioned for a mediolateral oblique view and was immobilized with light compression (mean, 6 daN; range, 3–11 daN). The breast support for DBT was used without a grid to avoid a grid cutoff when positioning the x-ray tube under an angle other than normal to the detector. Each DBT data set consisted of nine projection images, acquired in 6.25° increments over a 50° arc, with the same spatial resolution and image size as for digital mammographic acquisition. The mean glandular dose for a DBT image set was equal to the dose used for a standard two-view mammographic examination (30); thus, a central DBT projection was acquired by using approximately 22% (ie, two-ninths) of the dose used for a single digital mammographic projection. We calculated PD on central DBT projection images processed with Premium View.

Estimation of PD on Digital Mammograms and Central DBT Projection Images

PD was analyzed by using anonymized mediolateral oblique digital mammographic views and central DBT projections. The breasts contralateral to breasts with existing abnormalities were analyzed to avoid potential overestimation of PD because of increased pixel intensities within the lesion area. Contralateral breasts did not contain suspicious lesions, as we excluded all women with existing or suspected bilateral cancer. PD was estimated by using software (Cumulus, version 4.0; University of Toronto, Toronto, Ontario, Canada) (23) that identifies the dense tissue regions on the basis of interactive gray-level thresholding of image pixel values in the following steps: (a) The original image is windowed and leveled interactively, to provide optimal visualization of the dense tissue; (b) a piecewise linear border of the pectoral muscle region is segmented manually; (c) a threshold value corresponding to the breast outline is selected interactively; (d) if needed, the breast outline borders are edited manually; (e) a second threshold value corresponding to the dense tissue region border is selected interactively; and (f) PD is estimated by using Equation (1). Figure 1 shows an example of original digital mammograms and central DBT projection images, as well as the corresponding segmented pectoral muscle regions, breast outline, and dense tissue regions used for calculating PD. Use of the Cumulus software has been validated in a number of studies of breast density (7,31–33).

Images were displayed on liquid crystal display monitors (PL2011 M; Planar Systems, Beaverton, Ore). Three medical physicists from our laboratory (C.Z. [reader 1], P.R.B. [reader 2], and A.K.C. [reader 3], with 2–10 years of experience in breast image analysis) were the image readers. The readers attended a training session consisting of an initial estimation of PD on 10 clinical images and a consensus review. The training was performed 1 month before the beginning of the study. During the study, each reader estimated PD from a deidentified, randomly interleaved list of all digital mammograms and central DBT projections. So that we could assess intrareader agreement, each reader repeated PD estimation after 2 months. In addition to their PD estimates, for each reader, we also recorded their segmented tissue regions to be used in the analysis of spatial correlation; repeated segmentation results were recorded for one reader only (reader 2).

Statistical Analysis

Agreement in PD estimated by using a continuous scale was analyzed by computing the nonparametric Spearman correlation coefficient ρ, defined as

\[
\rho = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)},
\]

where \(d_i\) is the difference between the ranks from the \(i\)th pair of corresponding values PD₁ and PD₂ (and PD₁ and PD₂) are PDs estimated by two readers [intrareader correlation], at repeated estimation by the same reader [intrareader correlation], or at evaluation of digital mammograms and central DBT projections.
intermodality correlation]) and n is the number of pairs of P_D_1 and P_D_2 values.

We computed p values and their 95% confidence intervals by using software (GraphPad Prism 5 for Windows, version 5.01; GraphPad Software, La Jolla, Calif). To evaluate the effects of repeated PD estimation from the same sample, we computed the generalized estimating equation (GEE), an extension of a linear regression analysis that takes into account the correlation between repeated measurements (34). We computed the GEE by using software (GEEQBOX, version 1.0; University of Pennsylvania, Philadelphia, Pa) (35) and assuming an equicorrelated structure among repeated measurements.

Agreement in PD estimated on a category scale was analyzed by using inter- or intrareader k statistics computed from the Boyd six-class category scores (23). k describes the agreement between category results of paired diagnostic ratings, taking into account only agreement beyond that expected by chance (36,37), as follows:

$$k = \frac{P_o - P_c}{1 - P_c},$$

where P_o and P_c represent the proportion of observed agreement and the proportion of agreement expected by chance, respectively. When rating results are presented by using a multicycle ordinal scale, the proportions of agreements used to compute k are weighted to reflect the variation in the degree of disagreement between larger and smaller rating differences; in this study, we used quadratic weights (36).

We used the standards for k statistic strengths proposed by Landis and Koch (38) ($k \leq 0$, poor agreement; $0.01 \leq k \leq 0.20$, slight agreement; $0.21 \leq k \leq 0.40$, fair agreement; $0.41 \leq k \leq 0.60$, moderate agreement; $0.61 \leq k \leq 0.80$, substantial agreement; and $0.81 \leq k \leq 1.00$, almost perfect agreement).

Spatial correlation between different segmentations of dense tissue regions was analyzed by computing the Jaccard similarity index J (39), defined as the ratio of the intersection to the union of two segmented dense tissue regions, D_1 and D_2, as follows:

$$J = \frac{|D_1 \cap D_2|}{|D_1 \cup D_2|}.$$

(4)

When comparing the values of PD, p, k, and J, we considered a P value of .01 to

Figure 3

(a) Scatterplot of PD on digital mammograms (PD_{DM}) and central DBT projections (PD_{CenDBT}), as estimated by three readers (R1, R2, and R3) in two sessions (session 1 [s1] and session 2 [s2]) repeated 2 months apart. (b) Scatterplot of average PD on digital mammograms (PD_{DM}) and central DBT projections (PD_{CenDBT}), computed over all estimations for each analyzed breast. Error bars = ±1 standard error of mean.

Table 1

Parameters of Linear Regression for Estimation of PD on Central DBT Projections versus Estimation of PD on Digital Mammograms for Three Readers in Two Repeated Sessions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reader 1 Session 1</th>
<th>Reader 1 Session 2</th>
<th>Reader 2 Session 1</th>
<th>Reader 2 Session 2</th>
<th>Reader 3 Session 1</th>
<th>Reader 3 Session 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression slope</td>
<td>1.05</td>
<td>1.03</td>
<td>0.86</td>
<td>0.85</td>
<td>1.02</td>
<td>0.83</td>
</tr>
<tr>
<td>Regression intercept</td>
<td>2.02</td>
<td>5.27</td>
<td>9.71</td>
<td>8.06</td>
<td>0.20</td>
<td>7.78</td>
</tr>
<tr>
<td>Goodness-of-fit (R^2) value</td>
<td>0.81</td>
<td>0.80</td>
<td>0.64</td>
<td>0.72</td>
<td>0.74</td>
<td>0.72</td>
</tr>
</tbody>
</table>
indicate statistical significance, as tested with the Wilcoxon rank test for zero median (40).

Results

The ranges of PD estimated by individual readers varied (Fig 2). For reader 1, mean PD was 23% ± 13 (standard deviation) on digital mammograms and 27% ± 16 on central DBT projections; for reader 2, PD was 35% ± 19 on digital mammograms and 37% ± 21 on central DBT projections; and for reader 3, PD was 41% ± 20 on digital mammograms and 42% ± 20 on central DBT projections. The difference between mean values of all PD estimates by individual readers was significant (P < .01) for PD on digital mammograms (except between readers 2 and 3 [P > .8]) and for PD on central DBT projections (except between readers 1 and 3 [P > .04] and between readers 2 and 3 [P > .2]). When computed over all readers, PD on digital mammograms was 33% ± 19 and PD on central DBT projections was 36% ± 20; this difference was statistically significant (P < .01). Computed over individual readers, the difference between PD on central DBT projections and that on digital mammograms was significant for reader 1 (P < .01) but not for reader 2 or 3 (P > .04 for both).

Figure 3a shows a scatterplot of PD on digital mammograms and PD on central DBT projections, as estimated separately by the three readers in two sessions (session 1 and session 2) repeated 2 months apart. Figure 3b shows the scatterplot and corresponding linear regression of the average values for PD on digital mammograms and PD on central DBT projections, computed over all the estimations for each analyzed breast. The Spearman correlation coefficient between these average PD values estimated with the two modalities was 0.91 (95% confidence interval: 0.83, 0.95).

The slope, intercept, and goodness-of-fit (R²) values of linear regressions computed separately for each reader and each session (as means and standard deviations) were 0.94 ± 0.10, 5.51% ± 3.74, and 0.74 ± 0.06, respectively (Table 1). The Spearman correlation coefficient between PD on digital mammograms and PD on central DBT projections, computed over all the readers, was 0.78 ± 0.05.

Although statistically different, the PD values of different readers were correlated (Table 2). Interreader correlation (p) was 0.75 ± 0.05 for PD on digital mammograms and 0.85 ± 0.05 for PD on central DBT projections (P < .01). Intrareader correlations were slightly higher—0.86 ± 0.04 for PD on digital mammograms and 0.88 ± 0.05 for PD on central DBT projections—but this difference was not significant (P = .5). The GEE analysis (Table 3) indicated that the repeated sessions and different readers yielded significantly different (P < .01) PD estimates; the difference between PD estimates on digital mammograms and those on central DBT projections, however, was not significant (P > .4).

The interreader κ coefficients for PD on digital mammograms (0.55 ± 0.14)

Table 2

Spearman Correlation Coefficients for Inter- and Intrareader Agreement between Continuous PD Estimates

<table>
<thead>
<tr>
<th>Reader, Session, and Image Type</th>
<th>Reader 1</th>
<th>Reader 2</th>
<th>Reader 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session 1</td>
<td>Session 2</td>
<td>Session 1</td>
<td>Session 2</td>
</tr>
<tr>
<td>Digital mammograms</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Central DBT projections</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Session 2</td>
<td>Session 2</td>
<td>Session 2</td>
<td>Session 2</td>
</tr>
<tr>
<td>Digital mammograms</td>
<td>0.82 (0.67, 0.90)</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Central DBT projections</td>
<td>0.88 (0.78, 0.94)</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Session 1</td>
<td>Session 1</td>
<td>Session 1</td>
<td>Session 1</td>
</tr>
<tr>
<td>Digital mammograms</td>
<td>0.76 (0.58, 0.87)</td>
<td>0.72 (0.52, 0.85)</td>
<td>...</td>
</tr>
<tr>
<td>Central DBT projections</td>
<td>0.78 (0.61, 0.88)</td>
<td>0.77 (0.60, 0.88)</td>
<td>...</td>
</tr>
<tr>
<td>Session 2</td>
<td>Session 2</td>
<td>Session 2</td>
<td>Session 2</td>
</tr>
<tr>
<td>Digital mammograms</td>
<td>0.74 (0.55, 0.86)</td>
<td>0.84 (0.70, 0.91)</td>
<td>0.85 (0.73, 0.92)</td>
</tr>
<tr>
<td>Central DBT projections</td>
<td>0.78 (0.61, 0.88)</td>
<td>0.86 (0.74, 0.93)</td>
<td>0.83 (0.69, 0.91)</td>
</tr>
<tr>
<td>Session 1</td>
<td>Session 1</td>
<td>Session 1</td>
<td>Session 1</td>
</tr>
<tr>
<td>Digital mammograms</td>
<td>0.67 (0.44, 0.82)</td>
<td>0.75 (0.56, 0.86)</td>
<td>0.70 (0.48, 0.83)</td>
</tr>
<tr>
<td>Central DBT projections</td>
<td>0.91 (0.83, 0.95)</td>
<td>0.87 (0.76, 0.93)</td>
<td>0.86 (0.74, 0.92)</td>
</tr>
<tr>
<td>Session 2</td>
<td>Session 2</td>
<td>Session 2</td>
<td>Session 2</td>
</tr>
<tr>
<td>Digital mammograms</td>
<td>0.71 (0.50, 0.84)</td>
<td>0.72 (0.51, 0.84)</td>
<td>0.81 (0.66, 0.90)</td>
</tr>
<tr>
<td>Central DBT projections</td>
<td>0.85 (0.73, 0.92)</td>
<td>0.89 (0.80, 0.94)</td>
<td>0.84 (0.70, 0.91)</td>
</tr>
</tbody>
</table>

Note.—Data in parentheses are 95% confidence intervals.
and central DBT projections (0.65 ± 0.12), indicated moderate and substantial agreement, respectively (Table 4). The difference between the interreader \(\kappa \) coefficients for PD on digital mammograms and PD on central DBT projections was statistically significant \((P < .01)\). The intrareader \(\kappa \) coefficients for PD on digital mammograms (0.74 ± 0.06) and for PD on central DBT projections (0.81 ± 0.02) indicated substantial agreement; their difference was not statistically significant \((P > .25)\).

The quadratic-weighted \(\kappa \) coefficient between all categoric estimates of PD on digital mammograms and PD on central DBT projections for all readers was 0.79, indicating substantial agreement between the two modalities. Figure 4 shows proportions of agreement between categoric estimates of PD on digital mammograms and on central DBT projections averaged over the three readers.

The Jaccard index (Fig 5) corresponding to the interreader spatial correlation of dense tissue regions segmented on digital mammograms was 0.65 ± 0.18, significantly different from that for the interreader spatial correlation of dense tissue regions segmented on central DBT projections, which was 0.70 ± 0.16 \((P < .01)\). The Jaccard index corresponding to intrareader spatial correlation (computed for reader 2 only) was 0.78 ± 0.15 for digital mammograms and 0.75 ± 0.18 for central DBT projections; this difference was not statistically significant \((P > .1)\).

Discussion

We observed a statistically significant difference between PDs estimated by different readers in our study. When averaged over the estimations performed by all the readers, PD on central DBT projections was significantly greater than PD on digital mammograms (36% vs 33%). These estimates were, however, highly correlated \((r = 0.91)\). A larger clinical study is needed to fully evaluate the effect of image acquisition parameters on PD estimation and to compare the relationship between PD on central DBT projections and breast cancer risk. Our results suggest that the differences in acquisition do not considerably affect PD estimation. For only one reader (reader 1) was there a significant difference between PD on digital mammograms and PD on central DBT projections estimated in the same session.

The observed difference between PD on digital mammograms and PD on central DBT projections could be attributed to the different positioning, compression, and dose to the detector used in the analyzed images from the two modalities. The compression force used for a DBT projection was, on average, about half the force used for digital mammography; it corresponded to, on average, 16% larger breast thickness at DBT relative to that at digital mammography. The mean glandular dose for acquiring the central DBT

Table 3

<table>
<thead>
<tr>
<th>GEE Variable</th>
<th>GEE Coefficient*</th>
<th>Standard Error of Estimate</th>
<th>(P) Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session†</td>
<td>4.94 (3.84, 6.05)</td>
<td>0.57</td>
<td>(< .001)</td>
</tr>
<tr>
<td>Reader 2‡</td>
<td>15.54 (13.37, 17.72)</td>
<td>1.11</td>
<td>(< .001)</td>
</tr>
<tr>
<td>Reader 3§</td>
<td>11.81 (9.81, 13.81)</td>
<td>1.02</td>
<td>(< .001)</td>
</tr>
<tr>
<td>Modality¶</td>
<td>2.92 (−4.62, 10.46)</td>
<td>3.85</td>
<td>.45</td>
</tr>
<tr>
<td>Constant term</td>
<td>13.28 (2.10, 24.45)</td>
<td>5.70</td>
<td>.02</td>
</tr>
</tbody>
</table>

* Data in parentheses are 95% confidence intervals.
† Session 1 was given a value of 0; session 2 was given a value of 1.
‡ Here, readers 1 and 3 were given a value of 0; reader 2 was given a value of 1.
§ Here, readers 1 and 2 were given a value of 0; reader 3 was given a value of 1.
¶ Digital mammograms were given a value of 0; central DBT projections were given a value of 1.

Table 4

<table>
<thead>
<tr>
<th>Quadratic-weighted (\kappa) Coefficients for Inter- and Intrareader Agreement between Categoric PD Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reader, Session, and Image Type</td>
</tr>
<tr>
<td>---------------------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Reader 1</td>
</tr>
<tr>
<td>Digital mammograms</td>
</tr>
<tr>
<td>Central DBT projections</td>
</tr>
<tr>
<td>Session 2</td>
</tr>
<tr>
<td>Digital mammograms</td>
</tr>
<tr>
<td>Central DBT projections</td>
</tr>
</tbody>
</table>
projection was approximately 22% of the mean glandular dose for a mediolateral oblique digital mammogram. Assuming a Bucky factor of 2.5, the dose to the detector for a DBT projection was 56% of the dose to the detector at digital mammography, because in our clinical setup, DBT involves use of a breast support table without an antiscatter grid. In addition, we calculated PD in this study from central DBT projections processed by using the Premium View method. The efficiency of using Premium View processing with reduced radiation dose has not been validated previously, to our knowledge.

For both continuous and categoric PD estimation on central DBT projections, we observed high interreader ($\rho = 0.85 \pm 0.05$, $\kappa = 0.65 \pm 0.12$) and intrareader ($\rho = 0.88 \pm 0.05$, $\kappa = 0.81 \pm 0.02$) agreement. The observed high correlation between PD estimates by different readers can be attributed to the fact that the readers were assessing the same property of the breast. This assumption is supported by the results of a previous analysis of variations in PD estimates from different DBT source projections (30); in that study, standard deviations in PD over all projections were equal to 1%–7%. In our study, significantly higher interreader agreement was observed for PD estimation on the central DBT projections ($\rho = 0.85 \pm 0.05$) than for PD estimation on the digital mammograms ($\rho = 0.75 \pm 0.05$).

Our results are comparable to those of previously published studies. Gao et al (41) analyzed clinical mammograms in 101 women followed up for 7 years. Two readers estimated quantitative PD values, six-class Boyd categories, and Wolfe patterns; one reader repeated the study after a year. They observed inter- and intrareader κ coefficients of 0.84 and 0.86, respectively. The corresponding inter- and intrareader Pearson correlation coefficients were 0.94 and 0.96, respectively. The inter- and intrareader Pearson correlation coefficients observed in our study (corresponding to the Spearman correlation coefficients reported in the Results section) were 0.82 and 0.90, respectively, for PD on digital mammograms and 0.89 and 0.92, respectively, for PD on central DBT projections. Gram et al (32) reported results in 987 women, analyzed by two readers. They observed an interreader correlation coefficient of 0.86 and a κ value of 0.71. Those studies analyzed breast density at conventional mammographic examinations.

Our analysis showed that, although they were acquired with about a 78% lower mean glandular dose, the central DBT projections could be used for estimation of breast PD. This observation indicates that breast cancer risk may be evaluated by using x-ray imaging without substantial additional irradiation, which is of crucial importance for women in the sensitive high-cancer-risk population. Breast density estimation on images obtained with reduced radia-
tion dose has been previously reported in the literature (42,43).

To our knowledge, our study represents the first comparison of PD estimates on mammograms and those on central DBT projection images and thus offered a unique opportunity to validate the effects of differences in acquisition on PD estimation. Currently, no standard method exists for PD estimation on three-dimensional reconstructed images; until the emergence of such a method, PD could be estimated on central DBT projections if DBT were to replace digital mammography in clinical practice. Preliminary results of PD estimation on reconstructed DBT images were similar to results of PD estimation on DBT projections (44). Assuming this observation is confirmed in larger clinical studies, PD estimation on DBT projections would be advantageous as it is not dependent on DBT reconstruction algorithms (45).

Acknowledgments: The authors are grateful to Beverly Collins, PhD, for editorial review.

References

31. Khan Q, Kinler B, O’Dea A, Zalles C, Sharma P, Fabians C. Mammographic density does not correlate with Ki-67 expression or cytomorphology in benign breast cells obtained by random periareolar fine needle as-

