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ABSTRACT
 
Probabilistic branching node inference is an important step 
for analyzing branching patterns involved in many anatomic 
structures. We propose combining machine learning 
techniques and hybrid image statistics to perform branching 
node inference, using a support vector machine as a 
probabilistic inference framework. Then, we use local 
image statistics at different image scales for feature 
representation, including the Harris cornerness, the 
Laplacian, and the eigenvalues of the Hessian. The 
proposed approach is applied to a breast imaging dataset. 
Despite the challenge of the task, our approach achieves 
very encouraging results, which are helpful for further 
analysis of the breast ducts and other branching structures. 
 

Index Terms— Branching Structure, Breast Imaging, 
Support Vector Machine.

1. INTRODUCTION 
 
Branching structures are present in a variety of biomedical 
contexts, including the vascular, nervous, bronchial, and 
lactiferous networks of the human body. Patterns of 
properties such as branching topology, length, spatial 
distribution, and tortuosity have been analyzed in the 
literature [1]; alterations in these patterns have been 
associated with altered function and/or pathology [2, 3]. For 
example, regional changes in vessel tortuosity have been 
used to identify early tumor development in the human 
brain [4]. Moreover, studies have associated morphological 
variability of the breast ductal network with subsequent 
development of breast cancer; these studies suggest that 
analysis of branching structures within the human breast can 
assist in diagnosing malignancy or estimating cancer risk [5]. 

However, although branching structures frequently occur 
in nature and the rules of their development have been well 
studied over a great length of time, many challenges exist in 
the segmentation and analysis of such structures: images of 

natural and biomedical branching structures often include 
complex surroundings that may partially or completely 
occlude the branching structures. Projections of 3-
dimensional branching structures may also induce overlaps 
between branches due to the loss of depth. Furthermore, the 
modalities for acquiring images of natural branching 
structures differ in their degree of sensitivity in visualizing 
the tree. In certain imaging modalities, such as unenhanced 
mammography, the branching topology of a tree structure 
may be barely visible or even absent from an image, but still 
contributes to the image texture of its surroundings [6]. 
Such examples are shown in Figure 1. The maximum depth 
of tree-branching that is captured in the image may also 
vary, depending on a modality’s ability to extract a 
branching structure from its complex surroundings. 
Modalities which offer visualization of higher levels of 
branching are usually more prohibitive in terms of cost, 
health hazard, or comfort. Alternatively, modalities that can 
capture only the indirect effects of the presence of a 
branching structure on its complex surroundings are more 
easily available. 

 

    
Fig. 1: Two examples of breast imaging with ductal systems.  

Motivated by these challenges, we have previously 
investigated novel approaches for studying branching  
structures [7], their branching patterns [3] and their 
influence on corresponding texture in medical images [6]. In 
this paper, we propose combining machine learning 
techniques and hybrid local features for probabilistic 
branching node inference and detection. 
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2. BACKGROUND
 

To analyze the branching anatomic structures, the first 
step is to detect or localize them. These are important 
problems in medical imaging [8, 9, 10, 11, 12, 18, 19]. 
Early works usually involve manual or semi-manual efforts, 
often combined with vessel specific enhancement 
techniques. Many previous studies use lower-level 
processing for pixel-wise labeling. For example, 
correlation-based enhancement filters are used for vessel 
tree reconstruction in thoracic CT scans [8]. A similar 
approach is applied for retinal vessel segmentation in [9]. 
Machine learning techniques play important roles in some 
recent systems for vessel anatomy study [11]. In [11], 
Adaboost [13] is applied on features for classification of 
lung bronchovascular anatomy. Tracking-based approaches 
have also been applied for vessel detection [14, 10]. A 
thorough survey on vessel detection is given in [15]. 

Unlike previous works that focus on manual or semi-
manual tree structure detection, we are interested in an 
automatic solution. This task is very challenging because 
anatomic tree-like structures are usually very complex in 
both topology and pattern of appearance. Furthermore, the 
imaging process often introduces more obstacles, such as 
blurring, noise (in some modalities), and the vessel 
occlusion and intersection caused by 3D to 2D projection. 

Branching nodes and leaf nodes in tree-structures are the 
key components for tree localization as well as topology 
building. Therefore, node detection is a very important first 
step towards fully automatic tree-structure segmentation. In 
addition, the node statistics themselves can be used for 
medical analysis. For these reasons, we focus on node 
detection in this paper.  

 
3. METHODOLOGY 

 
3.1. Problem formulation 

 
The goal of this paper is to investigate a learning-based 
framework for branching node inference. In other words, 
instead of directly detecting branching nodes, we are 
interested in the probability of any given location being a 
branching node. Specifically, we start with an normalized 
input image I : D  [0,1], where D=[1..m]x[1..n] is the 
lattice on which I is defined. For any (x,y) D, the intensity   
I(x,y) is normalized from the original image by  
 

          I(x,y) = ( I(x,y)  Imin) / (Imax  Imin) ,  
 

where Imax and Imin are the maximum and minimum 
intensities over all original un-normalized images. Our task 
is to find a node probability estimation P(x,y;I) : D [0,1], 
such that for any (x,y) in D, P(x,y) measures the probability 
that a tree node exists at pixel (x,y).  

Note that function P is more general than the commonly 
used detection function that provides a binary output. The 

probabilistic output of P is very flexible. It provides a local 
confidence that can be fused in the future steps involving 
semantic (usually global) information. Second, as shown in 
the following sections, it can be used for candidate node 
detection.  

We use a learning-based approach to automatically build 
function P. This involves two issues: probabilistic 
branching node inference framework and feature 
representation. 

3.2. Probabilistic branching node inference 
  
We use a support vector machine (SVM) for this task. In 
this framework, let z= f (x,y;I) be the feature vector 
extracted from image I at location (x,y). The classification 
boundary is then defined by the following equation, 
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where ns is the number of support vectors si, li are the labels 
of corresponding support vectors, i and b are parameters 
estimated by the learning procedure, and  is the threshold 
that will be adjusted for trading off the false positive and 
false negative rates. A radial basis function (RBF) kernel K 
is used 
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where   is a parameter determining the size of RBF kernels 
(  =100 is used in all our experiments). 

Since our goal is a probability function that measures the 
likelihood of a given pixel being a node, we use the 
probabilistic output of SVM. In particular, a confidence 
output (or margin) from the learnt SVM model is converted 
to a probability using a sigmoid function.  

3.3. Hybrid local features 
 
To find local feature representation z= f (x,y; I ), we use 
three kinds of image statistics: Harris cornerness [16] h(x,y), 
Laplacian l(x,y), and eigenvalues ( 1(x,y), 2(x,y)) of the 
Hessian matrix H(x,y). 

The Harris cornerness is derived to measure the 
divergence of local principal directions, which is therefore 
useful to distinguish branching nodes. It is defined as 
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where  is a local smoothing function using a Gaussian 
kernel,  is used to avoid underflow, and Ix and Iy denote 
image gradients.  

The image Laplacian is defined as l(x,y)=Ixx+Iyy, where 
Ixx and Iyy denote second derivatives of image I. The 
Laplacian is known to relate to local "blob-like" structures 
such as nodules [17].  
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The Hessian matrix is often used for vessel analysis [13]. 
It is defined as  

yyxy
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where Ixx, Iyy, and Ixy denote second derivatives of image I.  
To combine these hybrid features together, each feature 

is multiplied by a coefficient for roughly normalization, 
specifically, we have l’(x,y)=3l(x,y), i’(x,y)=2 i(x,y), and 
h’(x,y)=5h(x,y). 

 Furthermore, a hierarchical scheme is used to capture 
over scale information. In our implementation four scales 
are used, resulting in a 16-dimensional features space, i.e., 

 

    z= f(x,y;I) = (…, l’(s), 1’(s), 2’(s), h’(s),…)T ,  s = 1,…,4, 
 

where (s) indicates that the feature is extracted at the image 
of scale s (image I smoothed by a Gaussian with standard 
deviation 2s 1), and (x,y) in the feature vectors are omitted 
for notation simplicity. By this hierarchical scheme, the 
feature vector implicitly captures neighborhood image 
statistics at different scales. 
 

4. EXPERIMENTAL RESULTS 
 
4.1. Experimental setup 
 
To test the proposed approach, we use a dataset containing 
seven breast images. Some of these images can be seen in 
Figures 1 and 2. All the images have been manually 
annotated by experts; these annotations are used in both 
training and evaluation. An example annotation is shown in 
Figure 2 (b). From these figures, we can see the large 
variation in topology and appearance among breast ductal 
systems. In addition, some annotated nodes have very 
similar local appearances to non-node pixels.  

For evaluation, we conduct a leave-one-out experiment 
on the dataset. In the training stage, the annotated nodes are 
used as positive samples, and negative samples are 
randomly selected pixels that are at least eight pixels far 
from any positive samples. In the testing phase, we applied 
the learnt SVM model to all image pixels and output their 
node probabilities. 

  
4.2. Results 
 
The result on one image is shown in Figure 2. In addition to 
the probability map (Figure 2(d)), we also output the 
detected top candidates (Figure 2(c)). This is achieved by 
first finding all local maximums from the probabilistic map, 
and then picking from these maximums the top 80 with 
largest probabilities. 

For a quantitative study, we output the average (over all 
images) number of correct nodes among top N candidates 
picked according to the learned probabilities, for N=20, 40, 
60, 80. We compare the hybrid features with other features. 

The results are summarized in Table 1, which shows the 
superiority of the proposed approach. From Table 1 we see 
that about one third of the selected candidates are correct, 
which can be used for further tree-structure detection steps.  
 

 
(a) Input image 

 
(b) Node annotation 

 
(c) Detected nodes. 

 
(d) Probability map. 

Fig. 2: (a) An example image, (b) its annotation, (c) node 
detection, and (d) probability map for branching nodes.  

 

The experimental result is very promising considering 
that only six images are used for training and the large 
appearance variation among them. We expect that more 
training samples will boost the performance. 
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N 20 40 60 80 

Hybrid 7.00 14.57 20.29 26.86 
Laplacian 5.71 11.57 18.43 24.71 
Hessian 6.00 12.86 19.71 25.00 

Harris cornerness 4.71 9.43 11.86 12.57 

Table 1: Average number of correct nodes among top N 
detected candidates. 

5. CONCLUSION 
 
We propose combining machine learning tools with hybrid 
local features for branching node inference. The learning 
based framework enables us to design an automatic solution 
for probabilistic node detection. The proposed approach 
demonstrates promising results on a dataset containing 
seven breast images.  
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