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ABSTRACT

Probabilistic branching node inference is an important step 
for analyzing branching patterns involved in many anatomic 
structures. Based on an approach we have developed 
previously, we investigate combining machine learning 
techniques and hybrid image statistics for probabilistic 
branching node inference, using adaptive boosting as a 
probabilistic inference framework. Then, we use local image 
statistics at different image scales for feature representation, 
including the Harris cornerness, Laplacian, eigenvalues of 
the Hessian, and Harralick texture features. The proposed 
approach is applied to a breast imaging dataset consisting of 
30 images, 7 of which were previously reported. The use of 
boosting and the Harralick texture feature further improves 
upon our previous results, highlighting the role of texture in 
the analysis of the breast ducts and other branching 
structures.

Index Terms— Branching Structure, Breast Imaging, 
AdaBoost.

1. INTRODUCTION

Studies have associated morphological variability of the 
breast ductal network with subsequent development of 
breast cancer, suggesting that analysis of branching 
structures within the human breast can assist in diagnosing 
malignancy or estimating cancer risk [1]. Node detection is a 
very important first step towards the ductul tree
segmentation. The motivation for this paper is to improve 
the approach for automatic probabilistic branching node 
detection proposed in [2].

However, this task is very challenging because anatomic 
tree-like structures are usually very complex in both 
topology and pattern of appearance. The imaging process 
often introduces more obstacles, such as blurring, noise (in 
some modalities), and the vessel occlusion and intersection 

caused by 3D to 2D projection. Furthermore, the modalities 
for acquiring images of natural branching structures differ in 
their degree of sensitivity in visualizing the tree. In 
unenhanced mammography, the branching topology of a 
tree structure may be barely visible or even absent from an 
image, but still contributes to the image texture of its 
surroundings [3,4]. The maximum depth of tree-branching 
that is captured in the image may also vary, depending on a 
modality’s ability to extract a branching structure from its 
complex surroundings. Modalities which offer visualization 
of higher levels of branching are usually more prohibitive in 
terms of cost, health hazard, or comfort. Alternatively, 
modalities that can capture only the indirect effects of the 
presence of a branching structure on its complex 
surroundings are more easily available.

Motivated by these challenges, we have previously 
investigated novel approaches for studying branching 
structures [5], the use of branching patterns in classification 
of disease [3] and their influence on corresponding texture 
in medical images [4]. We have also previously proposed
combining machine learning techniques and hybrid local 
features for probabilistic branching node inference and 
detection [2].

In this paper, we extend our previous results using 
Harralick’s texture features [6] in conjunction with adaptive 
boosting (AdaBoost) on a larger dataset of images, 
strengthening our previous findings and further illustrating 
the importance of texture in branching structure analysis.

2. BACKGROUND

Many effective methods have been developed to detect and 
analyze the branching anatomic structures. Machine 
learning techniques play important roles in some recent 
systems for vessel anatomy study [7]. In [7], Adaboost [8] is 
applied on features for classification of lung
bronchovascular anatomy. A thorough survey on vessel 
detection is given in [9]. In [2] we used a support vector 
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machine as a probabilistic inference framework. Then, we 
used local image statistics at different image scales for 
feature representation, including the Harris cornerness, the 
Laplacian, and the eigenvalues of the Hessian. The proposed 
approach was applied to a seven breast imaging dataset. We 
achieved very encouraging results, which were helpful for 
further analysis of the breast ducts.

Breast images are often highly textured and voxel based
analysis is an interesting path to explore. Moreover, as color 
and intensity are not as important in medical images as in 
photographs, texture analysis becomes crucial in medical
image retrieval. According to [6], texture refers to visual
patterns which have properties of homogeneity and cannot
result from the presence of only a single color or intensity.

3. METHODOLOGY

3.1. Problem formulation

The focus of our research was to investigate the use of 
Haralick's texture features and adaptive boosting algorithm 
to improve the vessel detection results previously reported 
in [20]. Instead of directly detecting branching nodes, we 
are interested in the probability of any given location being 
a branching node. Specifically, we start with an normalized 
input image I : D [0,1], where D=[1..m]x[1..n] is the 
lattice on which I is defined. For any (x,y) D, the intensity   
I(x,y) is normalized from the original image by

I(x,y) = ( I(x,y) Imin) / (Imax Imin) ,

where Imax and Imin are the maximum and minimum 
intensities over all original un-normalized images. Our task 
is to find a node probability estimation P(x,y;I) : D [0,1],
such that for any (x,y) in D, P(x,y) measures the probability 
that a tree node exists at pixel (x,y). 

Note that function P is more general than the commonly 
used detection function that provides a binary output. The 
probabilistic output of P is very flexible. It provides a local 
confidence that can be fused in the future steps involving 
semantic (usually global) information. Second, as shown in 
the following sections, it can be used for candidate node 
detection. 

We use a learning-based approach to automatically build 
function P. This involves two issues: probabilistic branching 
node inference framework and feature representation.

3.2. Probabilistic branching node inference

An adaptive boosting (AdaBoost)[11] machine learning 
algorithm was chosen for this task for its strong theoretical 
basis and ability to concurrently select and combine relevant 
features from the feature set during the training of each 
independent classifier.

In this framework, let z= f (x,y;I) be the feature vector 
extracted from image I at location (x,y). The algorithm 
concurrently selects and combines relevant features from the 

feature set during the training of each independent classifier, 
thus avoiding a separate feature selection process common 
with other classification methods. The basic premise of the 
algorithm is that any number of weak classifiers with an 
error rate less than 50% can be combined to form an 
ensemble classifier whose error rate approaches that of an 
optimal classifier. The algorithm determines the optimal 
combination of T weak classifiers {h1(x), . . .,hT(x)}, chosen 
from any number of possible weak classifiers, when training 
the ensemble classifier for each image instance. The 
classification boundary is then defined by the following 
equation,
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where T is the number of weak classifiers , i are 
parameters estimated by the learning procedure, and  is the 
threshold that will be adjusted for trading off the false 
positive and false negative rates..

Since our goal is a probability function that measures the 
likelihood of a given pixel being a node, we use the 
probabilistic output of AdaBoost. In particular, a confidence 
output (or margin) from the learnt AdaBoost model is 
converted to a probability using a sigmoid function. 

3.3. Hybrid local features

To find local feature representation z= f (x,y; I ), we use four 
kinds of image statistics: Harris cornerness [14] h(x,y), 
Laplacian l(x,y), eigenvalues ( 1(x,y), 2(x,y)) of the Hessian 
matrix H(x,y), and Harralick's texture features[6] of G(x,y).

The Harris cornerness is derived to measure the 
divergence of local principal directions, which is therefore 
useful to distinguish branching nodes. It is defined as
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where  is a local smoothing function using a Gaussian 
kernel, is used to avoid underflow, and Ix and Iy denote 
image gradients.

The image Laplacian is defined as l(x,y)=Ixx+Iyy, where 
Ixx and Iyy denote second derivatives of image I. The 
Laplacian is known to relate to local "blob-like" structures
such as nodules [17]. 

The Hessian matrix is often used for vessel analysis [8]. 
It is defined as 
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where Ixx, Iyy, and Ixy denote second derivatives of image I.
The basis for Haralick's texture features  is the gray-level 

co-occurrence matrix (GLCM) [6]. Those matrices model 
spatial dependencies between gray levels of an image. 
Given a distance d and an orientation , the (i,j) coefficient 
of the corresponding matrix is the probability of going from 
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a gray level i to a gray level j with an intersample spacing of 
d along the axis making an angle with the x axis. 
After the computation and normalization of the GLCM, a set 
of six gk(x,y) most used in practice  features is computed: 
Energy, Entropy, Inverse Differential Moment, Shade, 
Prominence and Inertia.

To combine these hybrid features together, each feature 
is multiplied by a coefficient for roughly normalization, 
specifically, we have l’(x,y)=3l(x,y), i’(x,y)=2 i(x,y), and 
h’(x,y)=5h(x,y), g’ k(x,y)= gk(x,y).

Furthermore, a hierarchical scheme is used to capture 
over scale information. In our implementation three scales 
are used, resulting in a 30-dimensional features space, i.e.,

z=(…, l’(s), 1’
(s), 2’

(s),h’(s),g1’
(s),g2’

(s), g3’
(s) , g4’

(s) , g5’
(s) , g6’

(s) ,…)T ,  
s = 1,2,3,

where (s) indicates that the feature is extracted at the image 
of scale s (image I smoothed by a Gaussian with standard 
deviation 2s 1), and (x,y) in the feature vectors are omitted 
for notation simplicity. By this hierarchical scheme, the 
feature vector implicitly captures neighborhood image 
statistics at different scales.

4. EXPERIMENTAL RESULTS

4.1. Experimental setup

To test the proposed approach, we use a dataset containing 
30 breast images. All the images have been manually 
annotated by experts; these annotations are used in both 
training and evaluation. An example annotation is shown in 
Figure 2 (b). From these figures, we can see the large 
variation in topology and appearance among breast ductal 
systems. In addition, some annotated nodes have very 
similar local appearances to non-node pixels. 

For evaluation, we conduct a leave-one-out experiment 
on the dataset. In the training stage, the annotated nodes are 
used as positive samples, and negative samples are 
randomly selected pixels that are at least eight pixels far 
from any positive samples. In the testing phase, we applied 
the learnt AdaBoost model to all image pixels and output 
their node probabilities.

4.2. Results

The result on one image is shown in Figure 2. In addition to 
the probability map (Figure 2(d)), we also output the 
detected top candidates (Figure 2(c)). This is achieved by 
first finding all local maximums from the probabilistic map, 
and then picking from these maximums the top 80 with 
largest probabilities.

For a quantitative study, we output the average (over all 
images) number of correct nodes among top N candidates 
picked according to the learned probabilities, for N=20, 40, 
60, 80. We compare the hybrid features with other features. 
The results are summarized in Table 1, which shows the 

superiority of the proposed approach. From Table 1 we see 
that about one third of the selected candidates are correct, 
which can be used for further tree-structure detection steps. 

(a) Input image

(b) Node annotation

(c) Detected nodes.

(d) Probability map.

Fig. 2: (a) An example image, (b) its annotation, (c) node 
detection, and (d) probability map for branching nodes.
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The experimental result is very promising considering 
that only thirty images are used for training and the large 
appearance variation among them. We expect that more 
training samples and introduction of new characteristic 
features will boost the performance.

N 20 40 60 80
Hybrid 10.98 18.52 31.62 38.97

Laplacian 5.71 11.57 19.32 24.71
Hessian 6.78 12.86 21.16 27.33

Harris cornerness 5.17 10.23 11.97 13.63
GLCM Hybrid 3.98 8.57 12.01 12.38

Table 1: Average number of correct nodes among top N
detected candidates.

5. CONCLUSION

We improved the results previously reported using
combining machine learning tools with hybrid local features 
for branching node inference. The learning based framework 
enables us to design an automatic solution for probabilistic 
node detection. The proposed approach demonstrates 
promising results on a dataset containing thirty breast 
images. 
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