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ABSTRACT

Software breast phantoms have been developed for use in evaluation of novel breast imaging systems. Software
phantoms are flexible allowing the simulation of wide variations in breast anatomy, and provide ground truth for the
simulated tissue structures. Different levels of phantom realism are required depending on the intended application.
Realistic simulation of dense (fibroglandular) tissue is of particular importance; the properties of dense tissue — breast
percent density and the spatial distribution — have been related to the risk of breast cancer. In this work, we have
compared two methods for simulation of dense tissue distribution in a software breast phantom previously developed at
the University of Pennsylvania. The methods compared are: (1) the previously used Gaussian distribution centered at
the phantom nipple point, and (2) the proposed combination of two Beta functions, one modeling the dense tissue
distribution along the chest wall-to-nipple direction, and the other modeling the radial distribution in each coronal
section of the phantom. Dense tissue distributions obtained using these methods have been compared with distributions
reported in the literature estimated from the analysis of breast CT images. Qualitatively, the two methods produced
rather similar dense tissue distributions. The simulation based upon the use of Beta functions provides more control
over the simulated distributions through the selection of the various Beta function parameters. Both methods showed
good agreement to the clinical data, suggesting both provide a high level of realism.

Keywords: Breast cancer imaging, anthropomorphic breast phantoms, software breast phantoms, validation,
fibroglandular tissue distribution, Beta functions.

1. INTRODUCTION

Virtual Clinical Trials (VCTs) are emerging as a preclinical complement to clinical trials of breast imaging systems
which are often longer and more expensive. In VCT, the simulations of breast anatomy, image acquisition, and model
observers are combined to form a simulation pipeline. Realistic simulation of dense tissue is of particular importance
since several properties of dense tissue may be used as imaging biomarkers of breast cancer risk. In this paper, we
consider improvements to the glandular tissue distribution of the breast anatomy simulation component of the pipeline.

The 2D and volumetric fractional amount of dense tissue (called breast percent density) and the spatial distribution of
dense tissue (called parenchymal texture) are known to correlate with cancer risk [1-7]. In this work we have compared
two methods for simulation of dense tissue distribution in our software breast phantom design. The simulated
distributions have been compared with distributions reported in the literature estimated from the analysis of breast CT
images [8]. Covariance profiles estimated from phantom images, created with different methods for dense tissue
simulation, are also compared to clinical data reported in the literature [11].
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2. METHODS

Our proposed simulation of dense tissue is performed on breast phantoms created using a method proposed by Bakic et
al [9]. In this proposed method, each simulated breast is divided into a predefined set of compartments. Each
compartment consists of a seed point and a shape function. The seed point defines the compartment location, while the
shape function defines its orientation. The values of seed points and shape functions are generated randomly based on a
number of parameters defined by users. Each compartment is then labeled with different material types. Figure 1a)
shows the cross section of a breast phantom where the compartments have not been labeled and figure 1b) shows a
labeling of compartments to dense or fat tissues. A compartment is labeled as dense tissue if the criteria defined by the
methods are met; or as fat tissue otherwise.

a) b)
Figure 1. a) A cross section of simulated phantom. b) Each compartment inside the phantom is labeled with tissue types (light gray —
dense, dark gray — fat).

A target number of compartments being labeled as dense is first determined based on a desired target volumetric breast
density (VBD) defined by users. Each compartment is then assigned a probability of it being labeled as dense tissue,
based on factors such as its location in the breast. Finally, each compartment is then labeled randomly based on its
probability value.

2.1. Gaussian distribution method

The Gaussian distribution method for labeling dense components was originally proposed by Bakic et al [9]. In this
method, the probability of a compartment labeled as dense tissue is determined by a Gaussian function:

exp(_o-'sz(Sxi 4S8, ) D
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Pe(s) =

where f, (.) represents the compartment shape function consistent with the quadratic decision boundaries described by a

maximum a posteriori (MAP) classifier; a is the x coordinate of a simulated nipple point (y = z = 0), 8; (Sy, Sy Sz;) are
coordinates of seed vectors for the i-th compartment, and ¢ is a scaling coefficient. Z is a normalization constant chosen
based upon a user-specified VBD of the phantom. In this method, the compartments near the nipple have a higher
probability of being labeled as dense tissue compared to the ones further from the nipple.
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2.2. Beta distribution method

In the Beta distribution method, the probability of a compartment labeled as dense tissue is determined by a function
given by the product of two separate Beta functions:

S . Vi
Beta(—"; p,,q,) % Beta(E;pz,qz)

a .
pB(si) = 7 I &Y

where:

Beta(x;p,q) — B(;_q) P71 -x)7"L,0<x < 1L,B(p,q) = [, P71 (1 — )7 7dt,

sy; 18 the distance of i-th seed point from the chest wall in posterior to anterior direction; r; is the radial distance of seed
point from center of its coronal slice; and R, is the maximum radius of the coronal plane containing the i-th seed point.

Since these two beta functions are functions of distance in different directions, the distributions of dense tissue can be
controlled separately in the chest wall to nipple direction and radial direction. Moreover, the shape of the beta function
changes with different (p, q) values. Figure 2 shows two examples of beta function where the shapes are one-sided or

two-sided depending on the values of (p, q).
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Figure 2: Beta distributions of two different (p, q) values: a) p=2,q=3.5;b)p=1.0,q=0.75.

2.3. Simulated acquisition of phantom images

Simulated mammograms are generated using software phantoms in a 2-step procedure. First, the breast deformation
due to clinical mammographic compression is simulated by a finite element model [10]. The finite element model is
implemented, using Abaqus (version 6.10-EF; Dessault Systémes Americas, Waltham, MA), assuming a hyperelastic,
almost incompressible material model for breast tissue, and 50% reduction in phantom thickness. Second, projection
images of compressed phantoms are simulated using a ray-tracing method. The x-ray image acquisition model assumes
a mono-energetic x-ray beam with the energy of 20 keV and an ideal detector with 100pum pixel size. The quantum
noise is simulated by Poisson random variations and added to all simulated images.

2.4. Statistical analysis of phantom data

2.4.1. Analysis of dense tissue distributions

The dense tissue simulated using different methods are quantified using metrics defined in Huang et al [8], called Radial
Glandular Fraction (RGF) and Coronal Glandular Fraction (CGF).

RGF and CGF are defined as

RGE,(r) = No (. x) (3)
" Np (1,x) + Ny(r, %) )
C6F(e) = ——2 ) @

Np (x) + Ny(x)
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where  Np is the number of pixels labeled as dense tissue,N, is the number of pixels labeled as adipose tissue, and #
indicates portion of breast, ne {Posterior, Middle Breast, Anterior}.

The RGF is used to quantify the distribution of simulated dense tissue based on the distance from center of the coronal
slice in each region breast region (Posterior, Middle, and Anterior), while the CGF is used to quantify the distribution of
simulated dense tissue in the posterior to anterior direction.

2.4.2. Analysis of covariance in simulated Images

Projection images were simulated for software phantoms with dense tissues labeled using either Gaussian or Beta
distribution method with different sets of parameters. Covariance matrix elements [11] are defined as

Kij= (g —9)(9; — 9;)) (%)

where g; and g; are pixel values at the positions whose covariance is being estimated. The covariance matrix of each
image set is assumed to be stationary; i.e. the covariance is independent of the location of their ROIs. We estimated
covariance matrix elements along two orthogonal directions (chest-to-nipple and top-to-bottom) using ROIs of 4.35cm
x 4.35cm in the regions of simulated images with constant thickness of the compressed phantom. A total number of 25
windows (1.45cm x 1.45cm) of 50% overlap in each ROI were used to calculate covariance matrix elements. To
compare the covariance matrices of images simulated using different methods and parameters as well as with clinical
data, the full width at half maximum (FWHM) of the average normalized covariance was used as the metric.

2.5. Materials

We compared the statistical properties of the phantom data to the clinical data reported in the literature [8] [11]. All
phantoms were simulated with a breast volume of 450ml with resolution of 200um per voxel. Each phantom contains
333 compartments randomly located and oriented inside the breast. Three phantom instances were simulated for each
pair of distribution method/parameter and VBD value. The distribution parameters: ¢ in Gaussian method, and (py, qy,
P2, q2) in Beta method, were chosen manually based on user experience. Two sets of beta distribution parameters with
different sidedness were chosen in order to interrogate the effects of the sidedness in beta functions. Table 1 shows the
three sets of parameters used in the study.

Table 1. Distribution methods and parameter values used in the study.

Distribution methods | Parameter values

Gaussian 6=5.0

Betal p:i=2.0, q;=0.5, p,=2.0, q,=3.5
Beta2 p:i=4.0, q;=0.5, p,=1.0, q,=4.5

In our study, we created a total of 27 phantoms which consisted of 3 phantoms for each pair of VBD (20, 30, and 40%)
and parameter in Table 1.

3. RESULTS

3.1. Probability maps of simulated dense tissue distribution

Probability values of dense tissue plotted on phantom surface provide a useful insight on the spatial characteristics of
the method. Figure 3 shows the probability maps of phantoms created using the distribution parameters in Table 1. The
probability map of Betal indicates a more uniformly distribution of probability, while Beta2 indicates a more
concentrated probability near the nipple.
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Figure 3: Probability maps of compartments labeled as dense tissues: a) Gaussian b) Betal and c) Beta 2.

3.2. Dense tissue simulation

Based on the probability values, calculated for each phantom compartment using the selected simulated method, the
compartments are randomly labeled as containing dense or adipose tissue. Figure 4 shows the examples of phantoms of
the same definition of compartment locations and orientations with dense tissue simulated using three sets of
distribution parameters in Table 1. Compared to Gaussian and Beta2, dense tissue simulated using Betal are more
distributed inside the breast.

Figure 4: Phantoms with dense tissue simulated using a) Gaussian; b) Betal; and c) Beta2.

3.3. RGF

The analysis of RGF is intended to compare dense tissue distributions simulated using different methods and parameters
to clinical data, based on the radial distance from the center of the coronal plane. In order to have a close comparison
with the clinical data, each breast phantom was divided into three equal thickness regions (Posterior, Middle, and
Anterior). The RGFs were then measured separately in each of these three regions. Figure 5 a) to c¢) show the average
RGFs of simulated phantoms using the three pre-defined parameters. Figure 5 d) to f) (the dash lines) show the average
RGFs measured from the clinical data by Huang et al [8]. It was observed that the RGFs of the three distribution
parameters in Table 1 result in similar trend as clinical data. Among the three distribution parameters, Beta2 method
results in the best fit to the clinical data qualitatively.
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Figure 5: Average RGFs estimated from the simulated and clinical data. a)-c) The average RGFs in anterior, middle and posterior
regions of simulated data, respectively. d)—f) The average RGFs in the respective regions, estimated from clinical data; (reprinted
with permission from Huang et al. [8]). The total and 25-75 percentile regions are indicated by dark and bright colors, respectively.
The mean and median values are indicated by dash and solid lines, respectively.
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3.4. CGF

The analysis of CGF is intended to compare dense tissue distributions simulated using different methods and parameters
to clinical data, based on the distance from the chest wall. Figure 6 a) shows the average CGFs measured from
simulated distribution parameters in Table 1, and the dash line in Figure 6 b) shows the average CGFs measured from
clinical data. Similar to the clinical data, the average CGFs measured from the simulated data increases with the coronal
distance from the chest wall.
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Figure 6: a) Average CGFs estimated from simulated data. b) Average CGFs (dash line) estimated from clinical data; (reprinted with
permission from Huang et al [8].)

3.5. Simulated phantom images

Software phantoms created with different distribution methods and parameters are deformed to simulate breast
compression during mammography acquisitions. Figure 7 shows the simulated acquisitions of phantoms with dense
tissue created using the parameters in Table 1. Compared to Gaussian and Beta2, the dense tissue is more widely
distributed in the image simulated using Betal.

b) ©)

Figure 7: Simulated x-ray acquisition of phantoms using a) Gaussian method; b) Betal method; and c) Beta2 method.
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3.6. Covariance analysis of simulated images

Average normalized covariance matrices measured from simulated acquisitions are shown in Figure 8 as function of the
relative distance. The relative distance is equal to the spatial distance normalized by the window size used for
estimating the covariance in the simulated images. Two windows are completely overlapped when the relative distance
is 0, while only one row or column of pixels are overlapped when the relative distance is 1 or -1. The FWHMs of the
average normalized covariance matrices are 0.381 (Gaussian), 0.433 (Betal) and 0.344 (Beta2) for posterior-to-anterior
direction; and 0.296 (Gaussian), 0.366 (Betal) and 0.237 (Beta2) for top-to-bottom direction.
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Figure 8: The profiles of average normalized covariance matrix measured from simulated acquisitions. Figure a) to c) are the
profiles in posterior-to-anterior direction measured from a) Gaussian method; b) Betal; and c) Beta2 method. Figures d) to f) are the
respective profiles in top-to-bottom direction.
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3.7. Comparing covariance profiles between simulated and clinical data

The covariance profiles in both posterior-to-anterior and top-to-bottom directions measured in simulated data are
compared to ones measured from clinical data [11], using FWHM as the metric. Among the three distribution
parameters in Table 1, Betal most closely matches the clinical data in both directions. Figure 9 shows the covariance
profiles estimated from phantom images and clinical data. (Similar as in Figure 8, the relative distance is calculated as
normalized by the window size used for the covariance calculation in the simulated images.)
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Figure 9: Profiles of average normalized covariance matrices in a) posterior-to-anterior direction; and b) top-to-bottom direction
from simulated data created with Betal method and clinical data (modified from Freed et al. [11]). FWHMSs measured from clinical
data are 0.450(posterior-to-anterior) and 0.466 (top-to-bottom). FWHMs measured from simulated data using Betal are 0.433
(posterior-to-anterior) and 0.366 (top-to-bottom).

4. DISCUSSION

We implemented and compared the simulations of dense tissue using two different methods. Comparing to the Gaussian
method using the Cartesian distance from the nipple, the Beta method separates the distance into radial and coronal
distance. The use of beta functions offers higher control in the shape of distribution function such as its skewness and
sidedness. The combination of extra flexibility in direction and the distribution functions provides additional freedom
for the user to control the result of the dense tissue simulation.

The statistical properties such as RGF, CGF, and covariance matrices from data simulated using different methods and
parameters shows Beta method has a better match to clinical data compared to Gaussian method. Careful optimization
of the parameters in Gaussian method and in Beta method would be desirable to improve the matching between
statistical properties measured in simulated and clinical data. Computing methods such as simulated annealing [12] and
genetic programming [13] could be utilized for the tasks of parameter optimizations.

When comparing the RGFs of simulated versus clinical data near anterior breast region, a sudden drop off of glandular
fraction is observed in the clinical data (Figure 5 a) and d)). The drop off is likely caused by the existence of
subcutaneous fat around the nipple area. The existing simulation model used in our study does not correctly model the
subcutaneous fat.

We observe a difference in normalized covariance between simulated and clinical data when the sampling windows are
distant from each other. We believe that this could be the result of two factors. First it could be caused by the difference
of ROI sizes used in simulated and clinical data. Smaller ROIs are used in measuring the simulated data, because of a
restriction of the smaller region where uniform thickness exists in the compressed phantom. Second, there could be long
distance correlations in the clinical data that are not modeled in the simulation.
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5. CONCLUSION

We have proposed a novel method to assign dense compartments based upon Beta distributions. The new method offers
better user control in spatial directions and shape of distribution function. We compared the simulated results with
clinical images using CGF and RGF, and showed qualitative agreement. Future work includes quantitative evaluation of
the agreement and selection of optimal distribution parameters.
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