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ABSTRACT 

In this paper, we specify a notion of background tissue complexity (BTC) as perceived by a human observer 
that is suited for use with model observers. This notion of BTC is a function of image location and lesion 
shape and size. We propose four unsupervised BTC estimators based on: (i) perceived pre- and post-lesion 
similarity of images, (ii) lesion border analysis (LBA; conspicuous lesion should be brighter than its 
surround), (iii) tissue anomaly detection, and (iv) mammogram density measurement. The latter two are 
existing methods we adapt for location- and lesion-dependent BTC estimation. To validate the BTC 
estimators, we ask human observers to measure BTC as the visibility threshold amplitude of an inserted lesion 
at specified locations in a mammogram. Both human-measured and computationally estimated BTC varied 
with lesion shape (from circular to oval), size (from small circular to larger circular), and location (different 
points across a mammogram). BTCs measured by different human observers are correlated (ρ=0.67). BTC 
estimators are highly correlated to each other (0.84<ρ<0.95) and less so to human observers (ρ<=0.81). With 
change in lesion shape or size, estimated BTC by LBA changes in the same direction as human-measured 
BTC. A generalization of proposed methods for viewing breast tomosynthesis sequences in cine mode is 
outlined. The proposed estimators, as-is or customized to a specific human observer, may be used to construct 
a BTC-aware model observer, with applications such as optimization of contrast-enhanced medical imaging 
systems, and creation of a diversified image dataset with characteristics of a desired population.  
 
Keywords: Human visual system properties, anthropomorphic numerical observer, virtual clinical trials, QUEST 
adaptive threshold seeking 

1. INTRODUCTION 
Validation of a medical imaging system is challenging due to the large number of system parameters that must be 
considered. Conventional methods involving clinical trials are limited by cost and duration, and in the instance of 
systems using ionizing radiation, the requirement for the repeated irradiation of volunteers. We are proponents of an 
alternative, in the form of Virtual Clinical Trials (VCTs) based on models of human anatomy, image acquisition, display 
and processing, and image analysis and interpretation. In a joint effort, a team of researchers at University of 
Pennsylvania is working on the first half of this pipeline [7, 8, 9] which includes anatomy and image simulation, and a 
team of researchers at Barco is working on the second half which includes display simulation and model observer. Barco 
has developed anthropomorphic model observers that predict typical human observers better than commonly used model 
observers which are designed after ideal observers with some concessions for computational tractability. 
 
Previously we reported [1, 2] that by embedding properties of human visual system (HVS) as pre-processing steps to a 
commonly used model observer (multi-slice channelized Hotelling observer – msCHO [3]), the model observer can 
better track the performance of a human observer with changes in viewing distance, display contrast, and browsing speed 
when reading digital breast tomosynthesis (DBT) images. 
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(1) ݀ଶ = ,ݑ)ଶܶ) ,ݑ)ଶܹ	(ݒ ,ݑ)ଶܵܲܰܰଶ(ݒ݀	ݑ݀	(ݒ ,ݑ)ଶܶ	(ݒ ,ݑ)ଶܹ	(ݒ ݒ݀	ݑ݀	(ݒ
In (1), T is the modulation transfer function, W is the task function, NNPS is the normalized “noise” power spectrum 
(noise includes an anatomical component due to breast structure), and (u,v) are spatial frequencies. dlocal is calculated for 
non-overlapping regions of interest (ROIs) of the input mammogram. Direct calculation of the NNPS for each ROI is not 
possible. Therefore, a model of NNPS [20] is calibrated using the noise measured for each ROI. Considering that the 
numerator of (1) is independent of the ROI, for a given mammogram and a given system, dlocal is inversely proportional 
to ROI energy (i.e., local energy of the image). Note that this method is unsupervised and local (i.e., provides local 
complexity information) and is shown to perform worse the supervised BTC estimator in [13]. 

To locate anomalies in phantom CT images, Pezeshk et al performed principal component analysis (PCA) over all 
overlapping ROIs across various scales, and identified the anomaly ROIs as those far from mean ROI in PCA coordinate 
system [14]. They also showed that the phase-only-transform (PHOT), defined below, functions similarly. 

{ܫ}ܱܶܪܲ (2) = ଵିܨ ൜  ൠ‖{ܫ}ܨ‖{ܫ}ܨ
In (2), I is the input image, ||.|| denotes absolute value (of complex number), and F and F-1 denote forward and inverse 
2D Fourier transform. The density of anomalies (considered potential lesions) calculated as such may be used as a local 
and unsupervised BTC estimate.  

2. METHODS
2.1 Estimate BTC as pre- and post-lesion perceptual similarity (P3S) 

In this method, to estimate BTC, we first superimpose the lesion at the location in question with a fixed amplitude. Next, 
we compare the post-lesion and pre-lesion images using structural similarity metric (SSIM), a perceptual image 
similarity metric [15], defined below. 

,ݔ)ܯܫܵܵ (3) (ݕ = ௬ߤ௫ߤ2) + ௫௬ߪଵ)(2ܥ + ௫ଶߤ)(ଶܥ + ௬ଶߤ + ௫ଶߪ)(ଵܥ + ௬ଶߪ + (ଶܥ
In (3), ݔ and ݕ are input signals (e.g., image ROI pre- and post-lesion), ߤ and ߪ indicate average and standard deviation, ߪ௫௬ is the signals’ covariance, and ܥଵ and ܥଶ are small positive constants keeping the denominator non-zero. We 
consider the perceptual similarity calculated as such as a predictor of BTC at the given location, for the given lesion. 
This is based on the premise that the greater the BTC, the less noticeable adding a lesion will be; thus, the more similar 
are the pre- and post-lesion images. For better sensitivity of the estimate, only ROIs centered on the given location are 
compared. ROI size may be tuned for the desired estimation accuracy and sensitivity. 

2.2 BTC estimator based on lesion border analysis (LBA) 

This method is based on the premise that BTC is correlated with the amplitude required to superimpose the given lesion 
at a given location conspicuously (i.e., the more complex the background, the higher insertion amplitude needed for 
visibility). The superimposed lesion should be brighter than its immediate surround to be conspicuous. For a binary 
lesion, the surround is easily defined

̶

 wherever there is no lesion (Figure 2). Since far regions of background should not 
affect local BTC, we use a distance weighting function. Real lesions are not binary (Figure 3). For such lesion, we 
calculate the surround mask by inverting the lesion and applying a distance weighting function, yielding an immediate 
surround mask. To estimate BTC at a given location, we multiply the background by the immediate surround mask 
centered at the location and use the maximum of the product as a predictor of BTC. The distance weighting function may 
be tuned for desired estimation performance. 

Maiprize et al proposed a local signal to noise ratio, dlocal defined below, as a measure of apparent mammogram density, 
hence a metric for potential masking of a lesion [6]:
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2.5 Human measurement of BTC 

To measure BTC at a specific point, p, a human observer may adjust the insertion amplitude of the given lesion until it 
becomes visible. To find the insertion amplitude corresponding to threshold visibility, we use QUEST [16], an adaptive 
threshold seeking procedure. As compared to adjusting the amplitude manually, QUEST is more convenient for the user 
and yields a more accurate threshold as well as its confidence interval. We use a Matlab implementation of QUEST 
available from http://psychtoolbox.org with the default value of parameters and 41 trials per threshold measurement (40 
is the typical number of trials used in QUEST example; we added one for reasons explained below). 

The experiments are conducted on a Barco Uniti display (MDMC-12133) to ensure low noise and consistent 
presentation, provided by RapidFrame™, and Color Per-Pixel-Uniformity™. In each trial, two panels are displayed; on 
one panel a square mammogram region centered at p is shown, and on the other panel the same region with lesion 
superimposed to the center at the insertion amplitude being tested is shown. When p is too close to mammogram margin, 
the rest of the square region is filled with a mirror of mammogram along the nearest edge (using Matlab’s padarray 
symmetric option) to preserve the observed texture continuity (see Figure 4 as an example, where the top quarter of each 
ROI shown is filled by mirroring). The two panels are separated by one fifth of a panel width. The panels together with 
margins extend to about 15 visual degrees and are uniformly filled with average luminance of the region being displayed 
where there is no visual information for optimal eye adaptation. That is because Barten noted that a surround luminance 
different from that of the target object adversely impacts effective contrast sensitivity [18]. Lesion apparent size is about 
one fourth to half a degree which is the target object size for optimal visibility (spatial CSF remains flat and at its peak at 
about 0.1 to 1 degrees in typical viewing conditions [19]). 

In the first trial of each experiment the lesion is shown with maximum possible amplitude to familiarize observer with 
the shape, size and location (i.e., center of panel) of lesion (Figure 4). When adding lesion, care was taken to avoid 
clipping (all pixel values remain between 0 and 1 modifying addition result), and that scaling (to affect insertion 
amplitude) and addition are performed in luminance domain (not in pixel value). The task assigned to the human 
observer is to pick the panel with the lesion. Input choices are left, right or ‘don’t know’. The order of the panels (left or 
right) is chosen randomly by the experiment program, which compares observer’s input to the actual location of lesion 
panel and based on this information (i.e., answered correct or incorrect) generates the next amplitude to be tested. A 
‘don’t know’ input is assumed to be an incorrect response. 

 
Figure 4. Example of what is shown to the human observer, at an apparent size of about 15 degrees, in one trial of a 

threshold measurement experiment. Observer’s task is to pick the panel that has a lesion at the center (left in this 
example). 
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QUEST generates the probability distribution function (PDF) for the threshold being measured. In each experiment, we 
record mean and standard deviation of the threshold PDF. 

2.6 Evaluation 

For a given mammogram, we generate BTC maps using P3S, LBA, PHOT-based, and energy-based estimators described 
above. The pixel value at each point in the map is set to the BTC estimate using a certain method for the mammogram at 
that point and for the given lesion. We inspect the proposed methods by checking variation of their maps with location, 
and lesion shape and size, per the design criteria set out in Section 1. For the BTC maps to become comparable, we 
perform histogram equalization on the maps generated by each method. Thus, each the value at each point becomes 
approximately (because number of bins used in histogram equalization is smaller than the number of possible BTC 
values) proportional to the BTC rank within the maps generated by each method.  

We compare the proposed methods against the human observers as follows. Since measuring BTC for a human is time 
consuming, generation of full BTC maps (for comparison against maps by proposed methods) using a human observer is 
not practical. Assuming that the proposed methods are good estimators, the BTC maps they generate are highly 
correlated. Thus, we use the computationally generated maps to pick a set of interesting points for BTC estimation by 
human as follows: 

(i) The point with the highest sensitivity to shape (i.e., the map for small circular and oval lesions differ most), 

(ii) The point with the highest sensitivity to size (i.e., the map for small and large circular lesions differ most),  

(iii) The point where one BTC estimate most greatly exceeds the maximum of the other three (e.g., 
arg max{BTCPHOT-based – max{BTCEnergy-based, BTCLBA, BTCP3S}}, where both max operators are point-wise 
and across all pixels), and 

(iv) The point where the minimum of three BTC estimates most greatly exceeds the fourth (e.g., 
arg max{min{BTCEnergy-based, BTCLBA, BTCP3S} – BTCPHOT-based}, where max & min operators are point-
wise and across all pixels). 

Since we proposed four methods, human observer has to estimate BTC at maximum (assuming no redundancy) sixteen 
points with the small circular lesion, at four points in category (i) with the oval lesion, and at four points in category (ii) 
with the large circular lesion. 

To check our assumption on good quality of the proposed BTC estimators, in addition to the interesting points above, we 
measure BTC on ten randomly picked points and inspect the correlation of the measurements with the BTC estimates by 
proposed methods at those points. 

3. RESULTS 
We generated BTC maps using the computational estimators of Section 2 for the lesions and the mammogram shown in 
Figure 5. Partial BTC maps corresponding to the dashed part of the mammogram are shown in Figure 6. Pearson 
correlation coefficients of full BTC maps for small circular lesion are reported in Table 1. Correlation coefficients 
between BTC maps generated for different lesions are given in Table 2. At different sets of points defined in Section 2.6, 
the correlation coefficients between measured (by two human observers) and estimated BTC values (by proposed 
methods) for the small circular lesion are calculated and presented in Table 3. Correlation coefficients between the two 
human readers at various sets of points are also listed in Table 3. The difference between estimated BTC for lesions of 
different shape or size, as well as the corresponding difference of BTC values measured by human for category (i) and 
(ii) points defined in Section 2.6 are listed in Table 4. When the (human and estimator) differences are in the same 
direction (i.e., both positive or both negative) the corresponding p-values are listed as well. The p-values are calculated 
using the standard deviation of threshold (i.e., human measured BTC, about 0.07 for the values reported) provided by 
QUEST, on the premise that the BTC measurements are independent for different lesions (i.e., variance of difference is 
equal to sum of variances). 
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Table 3. Pearson correlation coefficients between estimated and human measured BTC values for small circular lesion at 
different sets of points defined in Section 2.6. Maximum correlations between humans and computational estimator for 

each set of points are shown in bold face. 
Point set Observer B PHOT-based P3S Energy-based LBA 

Random; 10 points 
Observer A 0.665 0.8095 0.7906 0.7327 0.7336 
Observer B 0.611 0.5801 0.7098 0.4767 

Cat (i) & (ii), i.e. lesion 
sensitive; 8 points 

Observer A 0.425 0.0246 0.2334 0.0033 0.5355 
Observer B 0.6564 0.1464 0.5428 0.2894 

Cat (iii) & (iv), i.e. 
method sensitive; 8 points 

Observer A 0.9513 0.4399 -0.503 -0.2084 0.305 
Observer B 0.3981 -0.606 -0.1603 0.369 

All 26 points 
Observer A 0.7059 0.5522 0.2345 0.2124 0.5017 
Observer B 0.5158 0.0979 0.2913 0.4003 

 
Table 4. Sensitivity of BTC estimates by proposed methods with respect to change in lesion shape and size, compared to 

the difference in BTC measured by Observer A, in category (i) and (ii) points defined in Section 2.6. The p-values are 
listed when measured and estimated BTCs differences are in the same direction (i.e., both are positive, or both are 

negative, meaning measured & estimated BTC increase or decrease by change in lesion shape or size). 

BTC estimator 

Oval vs small circular lesion Large vs small circular lesion 
BTC 

measurement 
difference 

BTC 
estimate 

difference 

p-value, 
if 

sensitive 

BTC 
measurement 

difference 

BTC 
estimate 

difference 

p-value, 
if 

sensitive 
PHOT-based -0.0484 0.1746  0.0088 0.2222 0.4461 

P3S -0.027 -0.3968 0.3406 0.0175 -0.4762  
LBA 0.0164 0.6825 0.4027 0.0028 0.7619 0.4856 

Energy-based -0.033 0.5397  0.05 0.5079 0.2239 

4. DISCUSSION 
The design criteria regarding BTC estimate dependence to location and lesion size and shape are met by all of the 
proposed methods as described below. In Figure 6, it may be observed none of the partial BTC estimate maps shown is 
constant (i.e., they vary with location). BTC changes with location in all proposed methods satisfy our expectation 
(smaller BTC estimate in darker lower activity areas in top right corner of the mammogram and the partial maps). 
Variations with lesion shape and size exist but are more subtle ̶ the BTC maps in Figure 6 slightly differ across columns 
corresponding to different lesions. The most prominent differences between BTC maps for different lesions are perhaps 
in the third row, which corresponds to energy-based BTC estimator. Moreover, the sensitivity to lesion size and shape 
may be observed in Table 2, where the correlation coefficients between the BTC maps generated by each method for 
different lesions are listed ̶ though the correlations are strong, none of them is one. Based on Table 2, LBA estimator is 
the most sensitive to shape and size changes. This observation is further reinforced by human BTC measurements (Table 
3 and Table 4, to be discussed later in this section). 
 
It may be observed that the BTC maps generated by the proposed methods are highly correlated. This was assumed in 
developing our evaluation method, and can be verified by inspection of each column of Figure 6 (partial BTC maps for 
the same lesion are generally similar), and from Table 1, where the lowest correlation of full BTC maps is still rather 
high (0.8433, between PHOT-based and P3S for small circular lesion). 
 
BTC measured by a human observer as described in Section 2.5 varies from one observer to another. This may be 
observed in Table 3, ‘Observer B’ column: the correlation between BTC measurements by human observers A and B at 
26 points are about 0.7. Therefore, a non-personalized BTC estimator, such as those proposed herein, is unlikely to 
produce estimates perfectly correlated to the measurements by a specific human observer. Keeping that in mind, based 
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major row of Table 3 under ‘Energy-based’), perhaps for the same reason (i.e., nearby dark spot in a high activity 
region). 
 
When a personalized BTC estimator is desired, one might combine different estimators to better match the measurements 
by a specific human observer. For example, a linear combination of the proposed estimators matching (in least squares 
sense) Observer A measurements on ten random points (same as the set mentioned in Table 3 major row 1) has an 
improved correlation of 0.8631 (from 0.8095, by PHOT-based estimator); similarly correlation with Observer B can be 
improved to 0.7976 (from 0.7098, by energy-based estimator). 
 
We gauge the sensitivity of the proposed estimators to change in lesion size and shape as follows. We asked a human 
observer to measure BTC at points where each estimator was most sensitive to change in lesion shape or size (i.e., 
category (i) and (ii) points defined in Section 2.6). We inspect whether or not the measured BTC increases with the 
change in lesion size and do the same with the BTC estimates for the same point. If both measured and estimated BTC 
increase (or decrease) with the change in lesion size, we consider the estimator sensitive to lesion size (specifically 
sensitive to change from small to large circular lesion). Sensitivity to lesion shape (from small circular to oval lesion 
with the same area) is derived similarly. The results are listed in Table 4 (p-value is given for lesion sensitive methods). 
As noted before (in Table 2 and Table 3 analyses), LBA is sensitive to both lesion shape and size. Statistically stronger 
results may be reached, if BTC for different lesions is measured at more points by human observers and/or if BTC can be 
measured more accurately (e.g., by lowering threshold standard deviation, using larger number of trails in each run of 
QUEST). 
 
Estimator LBA is not far from an anthropomorphic model observer [13]: if the area within the immediate surround mask 
is brighter than BTC (i.e., maximum luminance with the immediate surround mask) by a certain margin and satisfies 
some other criteria (e.g., small gradient), it may be announced as a lesion. For a known lesion (SKE), this method may 
be used as the basis of an anthropomorphic search mechanism. 

5. CONCLUSION 
BTC estimated by proposed methods, as well as BTC measured by a human observer discussed in Section 2.5, are 
sensitive to lesion location, size and shape. BTC estimators correlate with each other and correlate with human measured 
BTC as well. Therefore, all of the proposed methods, as-is or customized to a specific human observer, may be used to 
construct a BTC-aware model observer, with applications such as optimization of contrast-enhanced medical imaging 
systems, and creation of a diversified image dataset matching a desired population. 
 
None of the proposed BTC estimators correlates with human observers perfectly. This is reasonable since the human 
observers do not agree on their measurements either; they measure different BTC values for at the same points of the 
same mammogram and for the same lesion. From the proposed methods, LBA sensitivity to changes in lesion shape and 
size is the closest to human observer and PHOT-based BTC estimates have highest correlation with measured BTC by 
humans. A combination of proposed BTC estimators (e.g., linear least squares) can better predict a specific human 
observer, though this requires training.  Alternatively, free parameters of each of the proposed methods (i.e., weights of 
the three components of SSIM used in P3S, size and shape of localization kernels in energy- and PHOT-based estimators, 
size and shape of immediate surround mask in LBA) may be optimized for a specific human observer. Doing so also 
requires training. 
 
To handle DBT stacks and browsing in time, the proposed methods may be generalized as follows. For LBA, a 
spatiotemporal immediate surround mask may be devised. For P3S, a 3D generalization of SSIM should be used to 
estimate perceptual similarity of pre- and post-lesion ROIs. For PHOT-based method, 3D (inverse) Fourier transform 
and a spatiotemporal lesion-dependent localization kernel may be used. The latter may be also used to generalize the 
energy-based BTC estimator to process DBT. 
  
In the course of our experiments, we noted a set of points at which observers highly agreed on measured BTC, as well as 
a set of points at which observers highly disagreed on measured BTC. This may suggest that the decision on BTC 
(equivalently, visibility of given lesion in a given complex background) is not atomic and has to be broken apart to yet 
unknown sub-decisions, to accurately model of a specific human observer.  
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5.1 Limitations 

For lesion insertion, both in proposed estimators and in measuring BTC by human observer, we used a simple additive 
superimposition. A more realistic lesion insertion model (e.g., [21]) depends on the modality and perhaps even the 
specific medical imaging system being modeled, and can generate artifacts that can affect estimated or measured BTC. 
Such artifacts, for example, may make the lesion more conspicuous in certain locations, thus lowering measured or 
estimated BTC. We theorize that our methods and conclusions remain valid by considering the realistically inserted 
lesion (i.e., including artifacts) as the new lesion since we rely on near (visibility) threshold phenomenon in BTC 
estimation and measurement. 
 
Our proposed method of BTC measurement by human is slow (full measured BTC map is impractical and we resorted to 
measuring at a few points only) and not precise (measured BTC values have large standard deviation, causing large p-
values in Table 4). We suspect simultaneous improvement in precision and speed of measurement may not be possible 
for the notion of BTC introduced herein, though each can be improved at the expense of the other: To speed up 
measurements, instead of adaptive threshold measurement by QUEST through several trials, the observer may adjust the 
insertion amplitude so that the lesion becomes “just-noticeable.” The problem with this approach is that the threshold 
may change over time (due to fatigue), thus may not be reproducible. Precision of BTC measurement may be improved 
by repeating our current method (based on QUEST) several times, averaging the results, and/or by increasing the number 
of trials per QUEST run. 
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