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Rationale and Objectives. We developed a method 
of comparing receiver operating characteristic (ROC) 
curves on the basis of the utilities associated with their 
optimal operating points (OOPs). 

Methods. OOPs were computed  for paired ROC 
curves on the basis of isocost lines in ROC space with 
slopes ranging from 0.1 to 3.0. For each pair of OOPs 
corresponding to a single isocost slope, the difference 
in costs and the variance of this difference was com- 
puted. A sensitivity analysis was thus obtained for the 
difference be tween the two curves over  a range of iso- 
cost slopes. Three published data sets were evaluated 
using this technique, as well as by comparisons of areas 
under  the curves and of true-positive fractions at fixed 
false-positive fractions. 

Results. The OOPs of paired ROC curves often occur 
at different false-positive fractions. Comparisons of  
ROC curves on the basis of  OOPs may provide results 
that differ from comparisons of curves at a fixed false- 
positive fraction. 

Conclusion. ROC curves may be compared on the 
basis of utilities associated with their OOPs. This compar- 
ison of the optimal performance of two diagnostic tests 
may differ from conventional statistical comparisons. 

K e y  Words .  Receiver operating characteristic curve; 
area under  the curve; optimal operating point; statistical 
comparison. 

D iagnostic tests often provide a continuous value 
that may be interpreted as a dichotomous result 

(normal or abnormal).  The true-positive and false-posi- 

tive rates of the dichotomous interpretation depend  on 
the underlying distributions of test results (Fig. 1A) in 
the normal and abnormal populations, as well as on the 

cutoff value used to discriminate between normal and 
abnormal populations. As the cutoff value is varied, a 
receiver operating characteristic (ROC) curve is gener- 
ated (Fig. 1B). For any given clinical scenario, there is 

an optimal operating point (OOP) on the ROC curve 
that defines the most  appropriate  cutoff value to dis- 
criminate a positive from a negative test result. 

In terms of cost-benefit  analysis, the OOP on a ROC 
curve maximizes the expected utility of a diagnostic 
test. The utility of a diagnostic test depends on the prior 

expectation of disease (or disease prevalence) and the 
relative costs incurred by a false-positive or a false-neg- 
ative result. The slope of a line of "isoutility" in ROC 
space is given by 

(prevalence of disease) (cost of false-positive result) (1) 
1 - (prevalence of disease) x (cost of false-negative result) 

This slope defines a family of parallel lines. The OOP 

on a ROC curve must be tangent to the highest line of 
isoutility that intersects with the ROC curve. The slope 
of the ROC curve at its OOP will be equal to the slope 
of isoutility [1]. 

By analogy with laboratory tests that provide a con- 
tinuous numeric result, imaging studies provide a result 
(supporting or refuting a particular diagnosis) with a 
variable confidence level. The ROC curve for a diagnos- 
tic imaging study plots the title- and false-positive rates 
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FIGURE 1. A, Distribution of signal and noise from which the classic receiver operating characteristic (ROC) curve is derived. The dichotomous interpretation of the di- 
agnostic study is positive when the value obtained is greater than c. B, In the resulting ROC curve, each value of c defines an expected true-positive fraction (TPF) and 
an expected false-positive fraction (FPF). N = normal, S = abnormal. 

of  the study at these various conf idence levels. The 

OOP for a diagnostic imaging study defines the confi- 

dence  level that will provide the best test per formance  

f rom the cost-benefi t  analysis perspective. 

ROC curves are used both to evaluate individual diag- 

nostic tests and to compare  the relative accuracy of  com- 

peting diagnostic tests. The area under  the ROC curve 

(AUC) provides a summary index to evaluate a diagnostic 

test [2] and may be used to provide a statistical compari- 

son of  competing diagnostic tests [2, 3]. The AUC evalu- 

ates the accuracy of  a diagnostic test over the full range of  

possible discriminating cutoff values. In practice, how- 

ever, most  tests are (or at least should be) applied with a 

discriminating value close to the OOP. Thus, the AUC 

may not be truly representative of  the diagnostic accuracy 

of  a test as it is used in clinical practice. 

To provide a compar i son  of  tl-/e more  clinically rele- 

vant  port ions of  ROC curves, a me thod  has been  

descr ibed to compare  true-positive fractions (TPFs) at 

preselected false-positive fractions (FPFs) [4]. In this 

technique,  it is assumed that two diagnostic tests 

should  be compared  with their respective discriminat- 

ing values adjusted to achieve identical false-positive 

rates. Often, however,  the OOP of  one  test is at a differ- 

ent false-positive level than the OOP of  a compet ing  

diagnostic study. Under  such circumstances,  a compari-  

son of  TPFs at a preselected FPF does  not  proper ly  

compare  the optimal utilization of  both  tests. 

It has been  suggested recently that a me thod  should  

be  deve loped  for compar ing  ROC curves on  the basis 

of  the cost (or utility) associated with the OOP for each 

diagnostic study [5]. We deve loped  such a technique 

and applied this technique to three data sets obtained 
f rom the radiology literature [6-8]. These data sets were  

analyzed previously by  compar ing  AUCs or  TPFs at set 

FPFs. In this article, w e  analyze these data sets on  the 

basis of  the costs associated with the OOPs  and  com-  

pare our  results with the convent ional  techniques  used 

in the original publications. 

M A T E R I A L S  A N D  M E T H O D S  

De te rmina t ion  of the  O O P  on a R O C  C u r v e  

Assume that we  have a diagnostic s tudy that must  

distinguish be tween  noise and signal. The magni tude  of  

bo th  the noise and the true signal are normally distrib- 

uted with means  ~N and  gs, where  N denotes  normal  

and S abnormal.  As detailed in the Appendix,  a ROC 

curve for this scenario is def ined by two parameters,  a 

and b. Parameter  a represents the normal ized differ- 

ence  be tween  the means:  a = (bt s - bLN)/~S. Parameter  

b represents the ratio of  the standard deviations: b = 

ON/OS. Equation 1 provides  the slope of  a line o f  
isoutility in ROC space. This line will be  tangent  to a 

ROC curve at its OOP. We call this slope 13. Assuming 

that we  k n o w  the value of  13 for a particular diagnostic 

situation, we  need  to find the OOP on  the ROC curve 

for a diagnostic test. The FPFs and TPFs at the O O P  are 

given by  " 

b=l, FPFoop(a,[~)=q~ I-a/2 - ln(fJ)/a ] 1) for (2) 

TPFoop(a,[3)=O [+a/2-  lu(fD/a ] 

2) for b:~ 1, FPFooe(a,b, fJ)=~{[ab-,,Ja2+ 2(1 - t~)ln(f~/b)]/(1-b2)} 

TPFoo p (a, b, 13) = • { [a - b%/a2+ 2 (1- b a) ln(f3/b)]/( 1--/92)} 
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where  • is the- area under  the s tandard normal  curve to 

the left of  the value within the parentheses.  

Computation of the Cost of a Diagnostic Test 

The slope of  the isoutility line in ROC space, 13, 

defines the relative utility of  true- and false-positive 

results for a given prevalence of  disease. At any point  

on  a ROC curve, the expec ted  cost of  a diagnostic test 

is de te rmined  by  the FPF and TPF and is given by 

K = X[[3(FPF) - (TPF)] + (Cstudy) , (3) 

where  K is the expec ted  cost  (negative utility), ~, 

represents a constant  that translates K into the appro-  

priate units of  cost, and Cstudy represents the intrinsic 
costs of  the diagnostic study, including actual mone ta ry  

costs as well as potential morbidi ty-mortal i ty  that may  

result f rom the test. 

Comparison of the Difference in Cost Between Two 
Diagnostic Studies 

In our  derivation, assume that Cstudy is similar for 
compet ing  diagnostic studies (or that it differs by  an 

amount  that is not  significant in the overall t reatment 

plan for the patient). Hence,  the difference in utility 

be tween  the two compet ing  modalities depends  only 

on their respective TPF and FPF, on  £, and on  [3. 

Because the two tests are applied to the same diagnos-  

tic situation, the values o f  X and 13 are identical for the 

cost functions of  each modality.  

The variance of  K cannot  be expressed in closed 

form. However ,  fluctuation of  K near  the OOP can be  

approximated  as a linear function of  small fluctuations 

in a and b (the two parameters  that define the ROC 

curve). The partial derivatives of  K with respect  to a 

and b at the OOP are given by 

OK/0a = -(~v/ , ~ )  exp(-0.5Y02) 

OK/0b= ()v/ , ~ )  X0exp(-0.5Y02) , 
(4) 

where  X 0 represents the normal  deviate value that cor- 

responds  to (1 - FPF) at the OOP, and 170 represents 

the normal  deviate value that cor responds  to (1 - TPF) 

there. Thus, if the variances and covariance of  a and b 

are k n o w n  at the time a ROC curve is constructed, the 

variance of  K ma y  be approximated  from the variances 

and covariance of  its linear components .  

For any two diagnostic tests, the difference in utility 

be tween  the OOPs of  the two tests (K 1 - K 2) is calcu- 

lated from equat ion 3. The variance of  this difference is 

approximated  from the variances and covariance of  the 

a and  b parameters  of  each  ROC curve (Appendix).  A Z 

statistic may  be calculated as the ratio of  (K 1 - K 2) to 

the s tandard deviation of  (K 1 - K2). The constant  ~, is 

eliminated because  it appears  in both the cost and its 

s tandard deviation. As s h o w n  in the Appendix,  the 

resulting Z statistic depends  only  on a, b, and  13. 

W h e n  a ROC curve is de te rmined  by the maximum- 

likelihood technique,  the values of  the curve parame-  

ters a and b, and the variances and  covariance of  these 

parameters,  are est imated from ordinal image-reading 

or  test-result data. In general,  the value of  ~ for any 

diagnostic test is not  k n o w n  with certainty because  it 

depends  on disease prevalence and the perceived cost 

of  underdiagnosis  and overdiagnosis  (equat ion 1). 

Given an estimate o f  13, w e  may  calculate the Z statistic 

for a compar ison  of  utilities at the OOPs of  two com- 

pet ing diagnostic modalities. To allow for uncertainty in 

the tree value of  [~, however ,  we  calculated the Z 

statistic over  a range of  possible values. The result of  

this calculation is a sensitivity analysis for the difference 

in utilities as a function of  [3. 

Comparison of Data Sets 

In the radiology literature, we  found three data sets [6- 

8] describing compet ing diagnostic modalities that were  

previously studied by conventional  ROC analysis. Each 

of  these data sets was  analyzed previously on  the basis 

of  the AUCs or on the basis of  calculated TPFs at set 

FPFs. In addition to repeating these analyses, we  calcu- 

lated the costs associated with the OOPs of  the respec- 

tive ROC curves. For the comparison of  optimal 

operating costs, the value of  13 was varied from 0.1 to 3.0. 

RESULTS 

Table 1 shows the results of  a compar ison of  gallium 

citrate imaging at the Peter Bent Brigham Hospital 

(PBBH; Boston, MA) using an Anger camera with imag- 

ing at Johns  Hopkins Hospital (JHH; Baltimore, MD) 

using a rectilinear scanner  for the diagnosis of  a focal 

source of  sepsis [6]. In accordance with the published 

results, we  determined that the AUCs were 0.767 -+ 0.065 

(mean _+ standard error) at the PBBH and 0.680 + 0.077 

at the JHH. A two-tailed Z test of  the differences in these 

areas was  not significant. A compar ison be tween  PBBH 

and JHH of TPFs from these ROC curves over  a range of  

FPFs from 0.05 to 0.95 also was not  significant. Likewise, 

a compar ison of  utility associated with the OOPs over a 
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TABLE 1: ROC Analysis for Gallium Citrate Imaging at the Peter Bent Brigham Hospital (PBBH) Using an 
Anger Camera and at Johns Hopkins Hospital (JHH) Using a Rectilinear Scanner 

Variable PBBH JHH p 

ROC parameters a = 0.8177 a = 0.5843 - -  
b = 0.5039 b = 0.7449 
Area = 0.767 Area = 0.680 .4 

FPF TPF for PBBH TPF for JHH 

0.1 0.57 0.36 .25 
0.2 0.65 0.48 .25 
0,3 0.71 0.58 .31 
0.4 0.76 ' 0.65 .41 
0.5 0.79 0.72 .56 
0.6 0.83 0.78 .70 
0.7 0.86 0.84 .84 
0.8 0.89 0.89 .96 
0.9 0.93 0.94 .92 

lsocost slope I 3 OOP PBBH OOP JHH 

FPF TPF FPF TPF 
0.1 1.0 1.0 1.0 1.0 - -  
0.5 0.30 0.71 1.0 1.0 .45 
1.0 0.12 0.59 0.22 0.51 .23 
1.5 0.07 0.53 0.11 0.37 .23 
2.0 0.05 0.49 0.07 0.30 .24 
2.5 0.04 0.47 0.05 0.25 .25 
3.0 0.03 0.45 0.03 0.21 .25 

The ROC parameters were calculated from the raw data; they differ slightly from those provided by McNeil and Hanley [4]. 
FPF = false-positive fraction, TPF = true-positive fraction, OOP = optimal operating point. 

TABLE 2: ROC Analysis for Interpretation of Computed Tomography Studies of the Head with and Without a 
Clinical History 

Variable With History Without History p 

ROC parameters a = 3.6 a = 1,8 
b = 1.29 b = 0.59 
Area = 0,986 Area = 0.939 .06 

FPF TPF with history TPF without history 

0.1 0.97 0.85 .03 
0.2 0.99 0.91 .03 
0.3 1.00 0.93 .05 
0.4 1.00 0.95 .06 
0.5 1.00 0.96 .08 
0.6 1.00 0.97 .09 
0.7 1.00 0.98 .10 
0.8 1.00 0.99 .12 
0.9 1.00 1.00 .13 

Isocost slope 13 OOP with history OOP without history 

FPF TPF FPF TPF 

0.1 0.18 0.99 0.56 0.97 .02 
0.5 0.09 0.97 0.15 0.88 .01 
1.0 0.07 0.95 0.08 0.83 .02 
1.5 0.05 0.94 0.05 0.80 .05 
2.0 0.05 0.92 0.04 0.78 .08 
2.5 0.04 0.91 0.03 0.76 .13 
3.0 0.04 0.90 0.03 0.75 .18 

ROC = receiver operating characteristic, FPF = false-positive fraction, TPF = true-positive fraction, OOP = optimal operating point. 

range of  0.1-3.0 was not  significant. In this data set, all 

three methods  led to the same conclusion. 

Table 2 shows the results o f  a compar i son  for reading 

c o m p u t e d  t omography  studies of  the head  with and 

wi thout  a clinical history [7]. The AUCs were  0.986 -+ 

0.009 with a clinical history and 0.939 -+ 0.029 wi thout  a 

clinical history. The difference be tween  these areas was 
marginally significant (two-tailed Z test, p = .06). A 
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comparison of.TPFs from these ROC curves was signifi- 

cant (p < .05) for FPFs of  0.10-0.30. A comparison of 

utilities associated with the OOPs was significant for 

values of [3 ranging from 0.1 to 1.5. This range corre- 

sponded to FPFs of 0.05-0.18 for interpretations with a 

clinical history and 0.05-0.56 for interpretations without 

a clinical history. The results of all three analyses sug- 

gested a significant difference between readings with 

and without a clinical history. However, the compari- 

son based on OOPs showed a significant difference 

between the curves over a larger range of false-positive 

values than was found in comparisons at fixed FPFs. 

The comparison based on OOPs did not necessarily 

compare points at identical FPFs. For example, at ~ = 

0.1, the cost of interpretation with a clinical history at 

an FPF of 0.18 was compared with the cost of interpre- 

tation without a clinical history at an FPF of 0.56. 

Table 3 shows a comparison of two Doppler ultra- 

sound measurements for the detection of renal arte 

stenosis: Doppler interrogation of the main renal artery 

(the renal artery-to-aortic ratio [RAR]) and Doppler 
interrogation of segmental vessels (minimum early sys- 

tolic acceleration [ESA]) [8]. The AUCs were 0.798 -+ 

0.070 for RAR and 0.926 -+ 0.044 for ESA. The difference 

between these areas was marginally significant (two- 

tailed Z test, p = .05). A comparison of TPFs for these 

two techniques showed a significant difference at FPFs 

of 0.05-0.30. A comparison of the two techniques 

based on OOPs indicated that ESA was significantly 

superior to RAR over a range of 13 = 0.3-3.0. This range 

corresponded to a range of FPFs of 0.03-0.70 for RAR. 

In this situation, the comparison based on OOPs pro- 

vided evidence that ESA is superior to RAR over the 

entire range of clinically feasible FPFs for RAR. 

DISCUSSION 

The most established technique for comparing ROC 

curves is that of the AUC [2, 3]. The AUC represents an 

average of the true-positive rate over the entire range of 

possible false-positive rates and is inversely related to the 

average of the false-positive rate over the full range of 

tree-positive rates. Theoretically, the area may vary from 

0.5 to 1.0. Area provides a single number to characterize 

the ROC curve, thereby simplifying the comparison of 

any two curves. However, in any real clinical situation, 

only a small portion of the ROC curve (near the OOP) 

should be used when interpreting a diagnostic study 

result. Thus, the comparison of two ROC curves on the 

basis of their respective areas will include portions of the 

ROC curves that are not relevant in clinical practice. 

TABLE 3: ROC Analysis for Doppler Detection of Renal Artery Stenosis by Renal Artery-to-Aortic Ratios 
(RARs) in the Main Renal Artery and by Early Systolic Acceleration (ESA) in Segmental Vessels 

Variable RAR ESA p 

ROC parameters a = 0.9745 a = 1.5840 
b = 0.6001 b = 0.4421 
Area = 0.798 Area = 0.926 .05 

FPF TPF with RAR TPF with ESA 

0.1 0.58 0.85 .03 
0.2 0.68 0.89 .03 
0.3 0.75 0.91 .05 
0.4 0.79 0.93 .08 
0.5 0.84 0.94 .13 
0.6 0.87 0.96 .19 
0.7 0.90 0.97 .28 
0.8 0.93 0.97 .38 
0.9 0.96 0.98 .52 

Isocost slope 13 OOP with RAR OOP with ESA 

FPF TPF FPF TPF 

0.1 1.0 1.0 0.67 0.96 .90 
0.5 0.34 0.77 0.12 0.85 .02 
1.0 0.14 0.63 0.06 0.81 .02 
1.5 0.09 0.56 0.04 0.79 .03 
2.0 0.06 0.52 0.03 0.77 .03 
2.5 0.05 0.48 0.02 0.76 .03 
3.0 0.03 0.46 0.02 0.75 .03 

ROC = receiver operating characteristic, FPF = false-positive fraction, TPF = true-positive fraction, OOP = optimal operating point. 
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To achieve a more  clinically meaningful  compar i son  

of  ROC curves, techniques have been  descr ibed to 

focus the compar ison  on  limited port ions o f ' the  curves 

[4]. In these techniques,  it is a s sumed  that two ROC 

curves should  be  compared  at' similar TPFs or  FPFs. 

However ,  as demonst ra ted  in Table 1 for 13 = 0.5-2.5, in 

Table 2 for [3 = 0.1-1.0, and in Table 3 for [~ = 0.1-3.0, 

the OOPs on  two ROC curves may  occur  in different 

port ions of  the curves. Furthermore,  w h e n  compar ing  

partial areas, one  encounters  the additional uncertainty 

of  whe ther  to compare  the areas be low or to the right 

of  the curve segments  to be c o m p a r e d  [9]. We have 

therefore deve loped  a me thod  for compar ing  ROC 

curves that is based on  the utilities associated with 

OOPs. The OOP of a ROC cu rve , co r r e sponds  to the 

discriminating cutoff (be tween  normal  and abnormal)  

that is most  appropriate  to use w h e n  the test is applied 

in clinical practice. 

The utility associated with the OOP of  a ROC curve is 

a numeric  estimate of  the expec ted  value of  the clinical 

ou tcomes  associated with that curve. Utility, as assessed 

by  a s tandard reference gamble,  is a measure  of  prefer- 

ence  that incorporates patients'  attitudes about  various 

states of  health and disease [10]. Unfortunately, utilities 

often vary a m o n g  individuals as well as within one  

individual over  time. Nonetheless,  utility assessment 

provides  an important  quantitative tool for medical 

decision making. W h e n  faced with a choice be tween  

two compet ing  diagnostic modalities represented by 

two ROC curves, the ROC curve with the greater utility 

should  be chosen  to maximize patients '  well-being. 

The location of  the OOP of  a ROC curve depends  on  

the expec ted  utilities and costs associated with true- 

positive and false-positive test results, the prevalence of  

the disease, and the shape  of  the ROC curve. The first 

two of  these three factors are summar ized  in the vari- 

able [~ (equat ion 1). The shape  of  the ROC curve is 

def ined by  the parameters  a and  b. For any particular 

clinical situation, the value of  [3 must  be estimated in 

order  to calculate the OOP. Because this estimate 

depends  on  an individual's evaluat ion of  the relative 

utilities of  different states of  health and disease, the 

estimate may  be considered subjective and will be sub- 

ject to criticism. To ove rcome  this issue, we  p ropose  

that the compar ison  of  utilities be  pe r fo rmed  over  a 

range of  OOPs. Ideally, the range of  clinically relevant 

values of  [3 should be defined before  the statistical com-  

parison is performed.  

We have found  empirically that by  varying the value 

of  [3 f rom 0.1 to 3.0, the compar i son  of  OOPs tends to 

include port ions of  the ROC curves that we  w o u l d  con- 

sider clinically relevant. W h e n  the value of  [3 is less 

than 0.1, the OOP occurs  along the u p p e r  por t ion of  

the ROC curve and is usually so far to the right that the 

test result is almost always interpreted to be  negative. 

W h e n  the value of  [3 is greater than 3.0, the OOP 

occurs  a long the lower  por t ion of  the ROC curve and is 

usually so far to the left that the test result is almost 

always interpreted to be positive. These extreme values 

of  13 cor respond  to clinical situations in which  a diag- 

nostic test p robably  is not  relevant. Thus, in general,  an 

appropria te  compar i son  of  ROC curves may  be  per- 

fo rmed  as a sensitivity analysis that includes a subset  of  

OOPs  over  the range of  0.1-3.0. 

In our  technique for compar ing  two ROC curves, it is 

assumed that the costs of  the diagnostic studies them- 

selves, Cstudy, are relatively similar and m a y  be  disre- 

garded. For many  clinical situations, this assumpt ion 

holds true. However ,  w h e n  the cost of  the diagnostic 

s tudy is high relative to the potential cost of  the disease 

under  study, or w h e n  the diagnostic s tudy involves 

potential risk to the patient, the cost of  the s tudy must  

be considered.  Unfortunately, this cost in t roduces  n e w  

u n k n o w n s  into the Cstudy term in equat ion 3 and  into 

the calculation of  variance for the cost difference. If an 

estimate of ACstudy is included in the calculation of  the 

expec ted  cost difference, the X term (in equat ion  3) 

must  be k n o w n  in order  to calculate the Z statistic. 

Thus, in situations in which  such a limitation exists, it 

may  be more  appropria te  to use one  of  the more  tradi- 

tional methods  of  compar i son  (i.e., area or TPF at a 

fixed FPF) rather than to guess at the OOP. 

The  OOP approach  to ROC curve compar i son  forces 

the analysis to consider  the clinically relevant port ions 

of  the ROC curves. The clinically relevant port ions of  

two paired ROC curves may  occur  at similar or  different 

FPFs. The benefit  of  our  me thod  can be clearly demon-  

strated with an example.  In Table 2, w h e n  [~ = 1.5, the 

clinically relevant compar i son  occurs at an FPF of  0.05 

for bo th  types of  interpretations. A simple compar i son  

of  TPFs is appropria te  ,in this scenario. However ,  w h e n  

[3 = 0.2, the clinically relevant compar i son  occurs  at an 

FPF of  0.14 for interpretations with a clinical history 

and at an FPF of  0.33 for interpretation wi thout  a clini- 

cal history. A compar i son  of  TPFs at these different 

FPFs is meaningless.  However ,  analysis of  the utilities 

associated with these two OOPs does al low a direct 

compar i son  of  the two ROC curves. 

W h e n  two diagnostic studies involve comparab le  

costs and risks to the patient, a ROC compar i son  based  

250 



Vol. 3, No. 3, March 1996 C O M P A R I N G  R O C  C U R V E S  

on  the OOPs  directly compares  the most  clinically rele- 

vant  port ions of  the R o e  curves. This type of  compari-  

son should  provide  more  clinically meaningful  results 

than a compar i son  of  total AUCs or  of  TPFs at fixed 

FPFs. To facilitate this type  of  analysis, a compute r  pro- 

gram is available f rom the authors to compare  R o e  

curves on  the basis of  the utilities associated with the 

OOPs as a sensitivity analysis over  any selected range 

of  values for 13. 
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A P P E N D I X  

De te rmina t ion  of the  Opt ima l  O p e r a t i n g  Point  

Figure 1 demonstrates  the classical situation in which  

receiver operat ing characteristic (ROe) analysis is 

applied. Both the signal and  noise in a system are nor-  

mally distributed. The noise is distributed about  a m e a n  

o f / i  N (N = normal)  with a s tandard deviation of  c5 N. 
The signal is distributed about  a m e a n  of  gs  (S = abnor-  

mal) with a s tandard deviation of  ~s. A discriminating 

value, c, was  chosen  to distinguish signal f rom noise. 

As the value of  c is varied, the discriminating p o w e r  of  

the test changes.  Small values of  c will result in large 

true-positive and false-positive rates. Large values o f  c 

will result in small true-positive and false-positive rates. 

The collection of  true- and  false-positive rates associ- 

ated with various values o f  c define the ROC curve. 

Any value of  c may be represented as a Z value in either 

the noise or signal distribution: Z N = (c - btN)/~N or Z s = (c 

- / . ts) /C s. Solving both equations for c, we find that 

Z N(5 N+  ltl N = C = ZS(~ S + ~S 

Z S = ((JN/C~s)ZN -- (~t S --[LtN)/(~ S 
Z S = b Z  N - a , 

which  is in the form Y = b X -  a. Thus, for fixed values 

of  a and b, the Z value cor responding  to c in the signal 

distribution (Y) is a linear funct ion of  the Z value corre- 

sponding  to c in the noise distribution (X). The points 

on a R o e  curve (false-positive fraction [FPF], true-posi- 

tive fraction [TPF]) may  be  expressed  as a funct ion of  c: 

(FPF, TPF) = [(1/a/2~) I e x p ( - t i / 2 ) d t ,  
t=ZN(c) 

(1/~/2~) S e x p ( - t i / 2 ) d t ]  
t=Zs(C) 

or as a function of  the Z values associated with c 

(FPF, TPF)= [(1/a/2~) I e x p ( - t 2 / 2 ) d t ,  
t=X  

(1/~2~) I exp(-tV2)dt]. 
t= KJO 

Differentiating the points on the R o e  curve with 

respect  to X yields 

(3FPF/o3X, 3TPF/OX) = 

[(--1/2~g-) exp ( -X  2/2), ( - b / 2 - ~ )  exp ( -y2 /2 ) ]  . 

Thus, the slope of the R o e  curve (OTPF/OFPF) is simply 

[b e x p ( - y 2 / 2 ) ] / [ e x p ( - X 2 / 2 ) ]  = 

b exp{-0.5[(b 2 - 1)X 2 - 2 a b X  + a2]} . 

The shape of  the R o e  curve as de termined from this 

equat ion is shown in Figure 2. W h e n  b is greater than 

one, the X 2 term is dominan t  and positive; as X 

becomes  a large positive or  negative n u m b e r  the slope 

of  the R o e  curve approaches  zero (Fig. 2A). W h e n  b is 
less than one, the X 2 term is dominan t  and negative; as 

X becomes  a large positive or negative number,  the 

s lope of  the R o e  curve approaches  infinity (Fig. 2B). 

W h e n  b = 1, the quadratic term falls out. Then, as X 

becomes  a large positive n u m b e r  (the left side of  the 

R o e  curve), the slope approaches  infinity; as X 

becomes  a large negative n u m b e r  (the right side of  the 

R o e  curve), the slope approaches  zero (Fig. 2C). 
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Isocost lines in ROC space are defined by  a positive 

slope 13, which depends  on the prevalence of disease and 
on the relative costs of  false-positive and f:ilse-negative 

diagnoses. For any value of 13, w e  can define a family of  
parallel isocost lines. The optimal Operating point of a ROC 

curve must be  tangent to the isocost line. This point can be 
found by  setting the slope of the ROC curve equal to 13. 

13 = b exp{-0.5[(b 2 - 1)X 2 - 2abX  + a2]} . 

W h e n  b is not  equal  to one,  solving the resulting 

quadrat ic  equa t ion  yields 

X = lab +_ a~ a 2 - i ( b  2 - 1) In(13/b) ] / ( b  2 - 1) .  

W h e n  b is equal  to one,  solving the resulting linear 

equa t ion  yields 

X = a /2  + In(13)/a. 

W h e n  b is not  equal  to one,  there are two possible  

solutions to the quadratic.  These  solutions co r re spond  
to two  points  on  the ROC curve that are tangent  to an 
isocost  line. Of  these two solutions,  the isocost  line that 
is h igher  and  to the left in ROC space  has greater  utility. 

W h e n  b is greater  than  one,  the opt imal  solut ion can be  
found  to the right of  the poin t  of  inflection of  the ROC 
curve (Fig. 3A). W h e n  b is less than one,  the opt imal  
solut ion can be  found  to the left of  the point  of  inflec- 

t ion of  the ROC curve (Fig. 3B). Both of  these solutions 
co r re spond  to the value 

X = [ a b - ~ /  a2-2(b 2 -  1) ln(13/b)] / (b  2 -  1) .  

X represents  the Z value  in the noise distr ibution of  
the opt imal  discriminating cutoff. The  co r respond ing  Z 
value  in the signal distribution is g iven b y  Y = b X -  a. 
W h e n  b is not  equal  to one,  

Y = [ a -  b a/ a 2 + 2(b 2- 1) ln(~/ b) ] / ( b  2 -  1). 

W h e n  b = 1, Y = ln(13) /a-  a/2. The co r respond ing  
FPFs and TPFs m a y  be  calculated f rom the areas under  
the no rma l  curve to the right of  the Z values  X and  Y, 

respectively.  Alternatively, the FPFs and  TPFs m a y  be  
expres sed  as the areas  unde r  the normal  curve  to the 
left o f - X  and -Y, respectively.  This is the fo rm pre-  

sen ted  earlier in equa t ion  2. 

The Cost  Function and Its Variance 

Assuming that the intrinsic cost of  the diagnostic study, 

Cstudy, is insignificant relative to the clinical ou t come  or 
that the costs of  two diagnostic studies that are to be  

c o m p a r e d  are roughly equivalent,  the cost funct ion was 
def ined in equat ion 3 as follows: K = X[ [3(FPF) - (TPF)]. 

In terms of  the values  of  X and Fa t  the opt imal  oper-  

ating point  (call t h e m  X 0 and I1o), 

K=)~[13(1/a/~) S exp(- ta/a)dt-  (1/a[~) [. exp(-t2/ i)dt]  
t=Xo t= Yo 

Differentiating with  respec t  to a 

aK/a a =  )v (-[3(1/a/~-) exp(-X02/2) OXo/Oa + 

(1 / .~- )  exp(-Yo2/2) (baXo/aa- 1)). 

1.0 

TPF 

1.0 

TPF 

0 
FPF 1.0 FPF 1,0 

1.0 . ~  

TPF 

FPF 1.0 

A B C 

FIGURE 2. A, Receiver operating characteristic (ROC) curve shape. When b is greater than 1, the slope of the ROC curve approaches 0 as the false-positive fraction 
(FPF) approaches O or 1. B, ROC curve shape. When b is less than 1, the slope of the ROC curve approaches infinity as the FPF approaches 0 or 1. C, ROC curve 
shape. When b = 1, the quadratic term disappears. When the FPF approaches 0, the slope approaches infinity. When the FPF is near 1, the slope approaches 0. There 
is no point of inflection in this curve. TPF = true-positive fraction. 
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FIGURE 3. A, Isocost lines in receiver operating 
characteristic (ROC) space. When b is greater than 1, 
the optimal solution is located where the isocost line 
is tangent with the ROC curve to the right of the point 
of inflection on the ROC curve. B, Isocost lines in 
ROC space. When b is tess than 1, the optimal solu- 
tion is located where the isocost line is tangent with 
the ROC curve to the left of the point of inflection on 
the ROC curve. TPT = true-positive fraction, FPF = 
false-positive fraction. 

FPF 1.0 

A B 

0 FPF 1.0 

However, at the optimal operating point~ we k n o w  
that [3 = [b exp(-y2/2)]/[exp(-X2/2)]. Using this equal- 

ity, we can simplify the partial derivative to 

3KI3 a = -(~L/ - ~ )  exp(-0.51702) 

Similarly, differentiating K with respect to b, 

aK/a b= ~ [-[} (1/a/~) exp(-X02/2) aXo/ab+ 

( 1 / ~ - )  exp(-Y02/2) (b ax0/ab + x0)] 

Once again, at the optimal operating point, we know 
that [~ = [b exp(-y2/2)]/[exp(-X2/2)]. Thus, the deriva- 

tive simplifies to 

aK/a b = -(;L/ . ~ ) x  0 exp(-0.5Y02) . 

For two diagnostic procedures, the difference in costs 

is simply K 1 - K 2. A first-order approximation for the 
changes in each K 1 and K 2 around their respective opti- 
mal operating points may be expressed as a linear func- 

tion of OK/3a and 3K/3 b. Because the variances of a and 
b are calculated when  the ROC curve is constructed, the 

variance of K 1 - K 2 may be expressed as a linear combi- 
nation of the variances and covariance of a and b for the 
two curves. Specifically, variance(K 1 - K2) = ATvA, where 

A T= (3K1/aa1, aK1/abl, -cQK2/Oa2, --c]K2/ab 2) and V rep- 
resents the covariance matrix, which is provided by 

Metz's ROCFIT [11] and CORROC [12] algorithms, for 
example. The Z statistic for a comparison of two diagnos- 
tic procedures is calculated as the ratio of (K 1 - K 2) and 

the standard deviation of (K 1 - K2). The constant ~L is 
eliminated in this ratio. 

A n n o u n c e m e n t  

The Soc ie ty  f o r  H e a l t h  Serv ices  R e s e a r c h  in  R a d i o l o g y  (SHSRR) has recently been  chartered with the goals of 
promoting health services research and education in radiology through (1) establishing educational programs; (2) 
developing forums in which investigators can present their research; (3) fostering collaborations in research among 
its members;  (4) encouraging the development  of careers in health services research; and (5) disseminating mem-  
bers'  research findings. 

The SHSRR will hold annual meetings comprised of short instructional courses, a postgraduate educational pro- 
gram, and presentations of competitive abstracts proffered by both members  and nonmembers .  The first annual 
SHSRR meeting will be held in Philadelphia, PA, September 9-11, 1996, in cooperation with the third annual post- 
graduate course on health services organized by the University of  Pennsylvania. 

Membership in the SHSRR is open  to both physicians and nonphysicians with an interest in technology assess- 
ment, decision analysis, health financing and economics, quality assurance, epidemiology, biostatistics, research 
methods development,  informatics, disease management ,  or related fields. Individuals interested in joining the 
SHSRR should contact Bridgette Bienacker, Executive Director, SHSRR, c/o American College of Radiology, 1891 
Preston White Drive, Reston, VA 22091. 
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