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We have evaluated a method for synthesizing mammograms by comparing the texture of clinical
and synthetic mammograms. The synthesis algorithm is based upon simulations of breast tissue and
the mammographic imaging process. Mammogram texture was synthesized by projections of simu-
lated adipose tissue compartments. It was hypothesized that the synthetic and clinical texture have
similar properties, assuming that the mammogram texture reflects the 3D tissue distribution. The
size of the projected compartments was computed by mathematical morphology. The texture energy
and fractal dimension were also computed and analyzed in terms of the distribution of texture
features within four different tissue regions in clinical and synthetic mammograms. Comparison of
the cumulative distributions of the mean features computed from 95 mammograms showed that the
synthetic images simulate the mean features of the texture of clinical mammograms. Correlation of
clinical and synthetic texture feature histograms, averaged over all images, showed that the syn-
thetic images can simulate the range of features seen over a large group of mammograms. The best
agreement with clinical texture was achieved for simulated compartments with radii of 4–13.3 mm
in predominantly adipose tissue regions, and radii of 2.7–5.33 and 1.3–2.7 mm in retroareolar and
dense fibroglandular tissue regions, respectively. ©2002 American Association of Physicists in
Medicine. @DOI: 10.1118/1.1501144#
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I. INTRODUCTION

We have proposed an approach to generate synthetic mam-
mograms based upon a 3D simulation of mammography.1

Synthetic mammographic texture is produced by projecting
simulated 3D breast anatomic structures. In clinical images,
the overlapped projections of normal anatomic tissue struc-
tures generate a background texture in mammograms which
can mask the existing abnormalities or introduce false ones.
The simulation can be used to optimize positioning, com-
pression and acquisition in order to improve the visibility of
the breast tissue, and to test new breast imaging modalities.

The proposed mammography simulation consists of three
major components. First, a 3D software breast phantom con-
tains two ellipsoidal regions of large scale tissue elements:
predominantly adipose tissue~AT! and predominantly fibro-
glandular tissue~FGT! regions. Internal structures of these
regions, namely the adipose compartments and breast ductal
network, are approximated by realistically distributed me-
dium scale phantom elements: shells filled with simulated
adipose tissue and a synthetic ductal tree. Second, a com-
pression model of the breast deformation occurring during a
mammographic exam is based upon tissue elasticity proper-
ties. Deformation is simulated separately for layers of tissue
positioned normal to the compression plates. Each slice is

approximated by a rectangular beam composed of AT and
FGT regions. The slices are computationally deformed, as-
suming clinical values of the compression force. Deformed
slices are stacked together to produce a model of the com-
pressed breast. Third, mammogram image acquisition is
modeled assuming monoenergetic x rays and a parallel beam
geometry without scatter. Details of the simulation are given
in the accompanying paper.1

Ideally, each of the three components of the simulation
should be evaluated separately by a 3D imaging technique.
There is, however, a significant difference in tissue properties
captured by the clinically available 3D breast imaging mo-
dalities ~ultrasound and MRI! and mammography which is
the focus of our simulation. Breast ultrasound and MRI also
have different resolution and compression than mammogra-
phy. With these issues in mind we have evaluated the tissue
model indirectly, assuming that a relationship exists between
the distribution of 3D breast tissue structures and the 2D
parenchymal pattern. It is our hypothesis that the texture
properties computed in synthetic and clinical images have
similar distributions.

There are two approaches to mammogram synthesis
found in the literature:~i! direct modeling of 2D distribution
of pixels and~ii ! simulation of 3D tissue distribution and the

2140 2140Med. Phys. 29 „9…, September 2002 0094-2405 Õ2002Õ29„9…Õ2140Õ12Õ$19.00 © 2002 Am. Assoc. Phys. Med.



mammographic imaging. Bochudet al.2 modeled mammo-
gram texture as a ‘‘clustered lumpy background’’ by random
placement of ‘‘blob’’ clusters, visually resembling tissue ap-
pearance in mammograms. Synthetic images were evaluated
by comparing their power spectra and statistical moments
with the values from 32 clinical mammograms. Good agree-
ment of the first and the second moments in clinical and
synthetic images were observed, with similar statistical prop-
erties overall. Heineet al.3 modeled a mammogram as evolv-
ing from a process of passing a random field~colored noise!
through a linear filter with a self-similar characteristic, based
upon the analysis of 60 clinical mammograms. Such an ap-
proach can match some of the statistical properties of clinical
images but cannot relate the 3D tissue structures and their
mammographic appearance. Both papers do not model breast
ducts or the large scale tissue regions. Consequently, the im-
ages of the same simulated breast, with modified positioning,
compression, or x-ray parameters cannot be consistently syn-
thesized.

Taylor et al.4 generated synthetic images by mammogra-
phy simulation, in an approach similar to our work. The fo-
cus of their simulation is on modeling breast ducts based
upon the fractal properties of the duct length and diameter.
They have evaluated the synthetic images so obtained by
comparing the Fourier spectrum with that computed in im-
ages of tissue slices with contrast enhanced ducts. Good
agreement using a small number of samples was observed.

Separate evaluations were performed for the simulation of
the ductal network, the compression model, and the synthetic
parenchymal pattern. Initial feasibility tests of the ductal
model and compression simulation are presented
elsewhere.5,6 This paper describes the analysis of the syn-
thetic mammogram texture.

Synthetic images were generated by simulating the x-ray
image acquisition on a computationally compressed phan-
tom. Images of the phantoms were generated containing dif-
ferent sizes of simulated medium scale elements: spherical
shells and blobs. The synthetic mammograms, so obtained,
were evaluated by comparing them with clinical images
taken from the MIAS database of digitized mammograms.7

Subimages taken from regions corresponding to different tis-
sues were compared separately, including the subcutaneous
AT, retromammary AT, retroareolar FGT, and dense FGT re-
gions. Three texture features were used for description of the
parenchymal pattern:~i! the average size of image structures

computed using mathematical morphology,~ii ! the texture
energy, and~iii ! the fractal dimension. Feature values were
computed over each clinical and synthetic subimage and sta-
tistically compared using the Kolmogorov–Smirnov test and
histogram correlation. Details of the analysis of synthetic and
clinical mammographic texture are given in Sec. II and the
results of the comparison are discussed in Sec. III.

II. TEXTURE ANALYSIS OF SYNTHETIC
MAMMOGRAMS

A. Texture descriptors

The following texture descriptors were used for the evalu-
ation of synthetic mammogram texture. First, size analysis
was performed by a sequence of morphological closings with
disks of increasing size as structuring elements.8 Average
image brightness increases after the closing operation. The
change in brightness as a function of the disk radius is re-
lated to the size distribution of radiolucent~adipose! areas in
the mammograms. Second, texture energy analysis was per-
formed by convolving each image with a small mask.9 Treat-
ing gray scale image intensity as the height of a 3D object,
this mask is sensitive to local roughness of the image sur-
face. Third, fractal dimension was computed by the blanket
box counting method of self-similarity analysis.10

1. Morphological analysis of image structure size

Morphological image analysis is based upon the shape of
image objects and is used to simplify image data while pre-
serving shape characteristics. The theory of mathematical
morphology is discussed in the books of Matheron11 and
Serra.8 An application oriented tutorial of morphological im-
age processing is given by Haralick.12

Morphological operations are performed on a set of image
pixels using a second set of pixels called the structuring el-
ement. Definitions of the basic operations are given in the
Appendix. The opening operation is used for size analysis of
bright objects, and closing for the analysis of dark objects.
This analysis is sensitive to the radiolucent areas of the
mammogram, corresponding to the adipose tissue which ap-
pears darker than the surrounding tissue. X rays are less at-
tenuated by adipose tissue, producing greater film density
than connective tissue.

The gray scale closing first replaces each pixel with the
maximum from its neighborhood defined by the structuring
element~a disk!. The original values are then recovered for
all of the pixels, except for those from regions which are
both darker than their surroundings and smaller than the
structuring element. As an illustration, Fig. 1~a! shows an
image with several objects of different size. After the closing
operation with the structuring element from Fig. 1~b!, the
resulting image is given in Fig. 1~c!. It can be seen that dark
objects smaller than the structuring element have been elimi-
nated; the resulting image is thus brighter than the original.

FIG. 1. Illustration of morphological closing.~a! The original image with
objects of different size.~b! The image of the structuring element.~c! The
resulting image obtained by the morphological closing with the structuring
element from~b! applied to the image from~a!.
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This is the basis for morphological size analysis, whereby
the change in average image brightness~i.e., the total pixel
sum after the closing! is used to describe the size distribution
of the image objects. The derivative of the brightness as a
function of size shows the contribution of the objects equal
in size to the structuring element.

Morphological size analysis of mammograms has been
reported previously in the literature.13,14 Behrens and
Dengler13 reported examples of applying morphological size
analysis at global, regional, and local image levels; analysis
of calcifications was presented as a local processing. Miller
and Astley14 used morphological size analysis to segment the
FGT region from mammograms. They used the opening op-
eration which is dual to closing; it replaces the bright regions
smaller than the structuring element by their dark surround-
ing pixels. The overall image brightness is, thus, reduced.
However, the authors did not analyze the relationship be-
tween morphological feature values and the physical proper-
ties of the anatomic structures. Our research represents a
novel application of morphological image analysis as a result
of using the simulated 3D tissue structures to synthesize pa-
renchymal patterns.

2. Texture energy analysis

Texture energy features are the statistical estimates of the
outputs from a filter bank implemented in the form of local
linear transformations. They were introduced with the goal
of achieving texture segmentation and description at each
image pixel, corresponding to a hypothetical low level func-
tion of the human visual system.9 The filter bank consists of
small 2D convolution masks whose coefficients are com-
puted as the product of 1D masks with different numbers of
zero crossings. Contrast invariance of the filter outputs is
achieved by the normalization with the output of the filter
sensitive to the average local image intensity. The absolute
values or variances of the convolved images are used for
analysis. A generalization of this approach can include a
larger set of local linear transformations, and the estimation
of higher order moments of the output channel histograms.15

In mammogram processing applications14,16 texture en-
ergy was usually computed using a single or a few convolu-
tion masks. The mask sensitive to image ‘‘ripple’’ was found
to be the most efficient in segmenting potentially abnormal
regions in mammograms, a task which is related to the local
roughness of the image surface. Texture energy features have
also been used in mammogram registration.17,18

The mask coefficients are given in the Appendix. A 535
‘‘ripple’’ convolution mask, R5R5@Eq. ~A2!#, was used, cap-
turing local roughness of the image surface. The absolute
values of the convolved data were averaged on a 15315
window and normalized by the ‘‘level’’ mask, L5L5@Eq.
~A2!#, providing contrast invariance.

3. Fractal analysis

Fractal dimension describes self-similarity of image prop-
erties at different spatial scales. It is common to perform
fractal analysis on the area of the image surface, obtained by

considering the pixel values as local surface heights. This
area is related to the roughness of the image texture. A com-
plete definition of the fractal dimension of image surface
area is given in the Appendix.

There are numerous reports in the literature on fractal
analysis of mammograms.19–22Caldwellet al.19 analyzed the
fractal dimension of various parenchymal patterns and the
difference between the fractal dimensions computed over the
whole image and within a region near the nipple. A feature
space defined by these two fractal features was segmented
and a relatively good agreement with the original Wolfe
classification23 was observed. Mammographic calcifications
have been segmented using a variety of methods for comput-
ing fractal dimension, including box counting,20 iterated
function systems,21 and fractal Brownian motion.22

We computed fractal dimension by the blanket algo-
rithm.10 This method has been used previously in the detec-
tion of calcifications in mammograms.20 The fractal dimen-
sion is computed for each pixel by analyzing the local image
surface around the pixel. A 15315 window was selected,
centered on each pixel. This corresponds to the nonlinear
averaging window size used in the texture energy method. A
log–log plot of Alocal(e) is generated for the local surface
around each pixel. The local fractal dimension valueD local is
computed as the slope through three points on the log–log
plot, corresponding to the scale parameter values ofe52, 3,
and 4 pixels.

B. Image selection

The following criteria were used for selection of the clini-
cal and synthetic mammograms to be used for comparison.
First, the clinical images had to represent normal breast tis-
sue. Second, the glandularity seen in the mammograms
should approximately represent the average breast glandular-
ity ~not too dense and not predominantly adipose!. Third,
spatial resolution of the clinical and synthetic mammograms
should be matched. The clinical images were selected from
the MIAS database7 of digitized mammograms and the syn-
thetic mammograms were generated for varying properties of
the medium scale elements, i.e., different sizes of simulated
adipose compartments in the AT and FGT regions. In addi-
tion, the comparison was repeated for the same set of clinical
and synthetic mammograms at a reduced resolution. The im-
ages with reduced resolution were generated by averaging
232 blocks of pixels from the original mammograms.

1. Clinical mammograms

Sixty-five mammograms from the Mini-MIAS database of
clinical mammograms were used, having a spatial resolution
of 200 mm/pixel. The Mini-MIAS database was obtained by
averaging 434 pixel blocks in the original MIAS mammo-
gram database.7 This resolution is sufficient for the evalua-
tion of our synthetic mammograms since presently they do
not include fine, small scale tissue detail. The selected im-
ages represent normal cases in the MIAS database with the
background tissue classified as ‘‘fatty-glandular.’’ As the
sizes of adipose compartments differ for various tissue re-
gions, up to four 25 mm325 mm subimages per mammo-
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gram were selected manually, giving a total of 219 sub-
images, from the following regions~see Fig. 2!: ~1! subcuta-
neous fat;~2! retromammary fat;~3! retroareolar glandular
tissue, immediately posterior to the nipple; and~4! dense
glandular tissue. If the extent of a tissue region could not be
unambiguously determined, or if it was too small for a sub-
image window, the corresponding tissue sample was ex-
cluded from analysis.

2. Synthetic mammograms

Synthetic images were generated at a spatial resolution of
200mm/pixel, matching that of the database. Four subimages
per synthetic mammogram were selected from different re-
gions in the same manner as for the clinical images. The
positions of the subimages were determined from the known
extent of the large scale model elements, the AT and FGT
regions. Model parameters controlling the distribution of me-
dium scale tissue structures, modeled by shells in the AT and
spheres in the FGT regions, were varied to match the statis-
tical properties of real images. Three groups of synthetic
mammograms were tested. The groups consisted of ten syn-
thetic mammograms each, generated randomly using the
same range of size of simulated adipose tissue compart-

ments. The ranges of compartment sizes differed between the
groups by 30%~see Table I and Fig. 8 in the accompanying
paper1!.

C. Statistical comparison

Two methods were used for statistical comparison of the
texture features. First, feature histograms were computed for
each subimage. Synthetic histograms were then averaged
over all subimages of the same tissue type and were com-
pared with similarly computed clinical histograms. The cor-
relation between the corresponding clinical and synthetic av-
eraged histograms was used to measure how well the
synthetic images approximated the clinical images. Next,
mean feature values~i.e., the histogram first moments! were
computed for each subimage. Distributions of these means
for all subimages of the same tissue type were then analyzed
and compared with the distributions of means of the clinical
images, using the Kolmogorov–Smirnov~KS! test.24 The
maximum difference between the cumulative distribution
functions~CDFs! of the clinical and synthetic mean feature
values was used as another measure of quality of mammo-
gram synthesis. In both methods the average texture features
were compared, thereby testing the ability of the simulation
to match the average properties of a large set of clinical
mammograms, rather than simulating an image of a particu-
lar breast.

1. Analysis of feature histograms

As a measure of similarity between the real and synthetic
feature distributions, the correlation between the feature his-
tograms was calculated for each of the clinical and synthetic
subimages, and averaged over all subimages of the same
tissue type. In the case of size analysis, the correlation was
computed between the brightness gradient~as a function of
the structuring element radius! of clinical and synthetic im-
ages. In the following text, these derivative values are re-
ferred to as the ‘‘average histogram of the size analysis fea-
ture.’’

The coefficient of correlation,R, between the real,hR ,
and synthetic,hS , histograms averaged over all subimages
~in a given category! is computed as:

R~hR ,hS!5
( ihR~ i !hS~ i !

A( i@hR~ i !#2( i@hS~ i !#2
, ~1!

where the summation runs over histogram binsi.

2. Kolmogorov –Smirnov (KS) test

The KS test compares two random distributions based
upon the maximum difference between their CDFs.24 It be-
longs to a group of nonparametric methods which make no
assumptions about the types of distributions used. The maxi-
mum difference between two CDFs,D, is a measure of the
discrepancy between the two sets of samples. Kolmogorov
showed that for two sets of samples with the same parent
distribution, the CDF ofD is given asymptotically by:24

FIG. 2. Tissue regions used in texture analysis, illustrated on a clinical mam-
mogram from the MIAS database:~1! subcutaneous adipose tissue,~2! ret-
romammary adipose tissue,~3! retroareolar fibroglandular tissue~immedi-
ately posterior to the nipple!, and~4! dense fibroglandular tissue.
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lim
m,n→`

P~Dm,n<z!5122(
r 51

`

~21!r 21

3expF22r 2z2S 1

m
1

1

nD G , ~2!

wherem andn are the numbers of samples in the two sets,
Dm,n is the maximum CDF difference for the given number
of samples, andP is the probability thatDm,n is less than a
given valuez. The level of significance,a, is defined as

P~Dm,n.da!5a, ~3!

whereda is the critical value ofDm,n corresponding to the
significancea. Thus, the observed discrepancy between a
CDF drawn from clinical mammograms and a CDF drawn
from simulated mammograms can be quantified in terms of

the significance,a, which is the probability that a greater
discrepancy than observed would occur due to chance alone.
The relationship betweena andda for various sample sizes
is tabulated in several textbooks.24,25

The CDFs of statistics for each subimage from the clinical
and synthetic mammograms were compared. In the texture
energy analysis and the fractal analysis, for each subimage
the appropriate feature value was averaged over all of the
pixels in the subimage, and this average was used as a
sample for the KS test. In the morphological analysis, for
each subimage the first moment of the brightness gradient
was used as a sample value.

Both the KS test and the histogram correlation show how
well, on average,the synthetic images can approximate the
properties of the clinical mammographic texture. The differ-

FIG. 3. Texture energy histograms of the FGT from clinical~left! and synthetic~right, primed! mammograms.~a! Sample subimage.~b! Image of texture
energy values.~c! Texture energy histogram~normalized for the range of feature values!.
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ence between the two methods is that the KS test compares
the mean feature values averaged over each subimage, while
the histogram correlation takes into account the range of fea-
ture values computed locally at each pixel.

3. Illustration of the analysis

An illustration of the histogram analysis is given in Fig. 3
by the texture energy features computed on subimages of
retroareolar glandular tissue. The histogram of a clinical FGT
subimage is shown on the left and of a synthetic subimage on
the right. Histograms averaged over all clinical and over all

synthetic subimages are shown in Fig. 5~c!. Figure 4 illus-
trates the analysis of object size distribution for the retroar-
eolar glandular tissue. The left-hand side shows the results
for the clinical FGT and the right-hand side for the synthetic
FGT. The upper graphs show the average brightness~offset
for the brightness of the original image! after each morpho-
logical closing as a function of structuring element~disk!
size in pixels. Note that the output images get brighter with
increasing disk size, as seen in the examples of the images
obtained for the disk radii of 10 and 40 pixels. The graph in
Fig. 4~e! shows the gradient of the features graphed in Fig.

FIG. 4. Size analysis of the FGT from clinical~left! and synthetic~right, primed! mammograms.~a! Sample subimage.~b! Result of closing with a 10 pixel
disk structuring element.~c! Result of closing with a 40 pixel disk.~d! Change in brightness~sum of all pixels! before and after closing.~e! Gradient of the
brightness.

2145 Bakic et al. : Mammogram synthesis using a 3D simulation. II 2145

Medical Physics, Vol. 29, No. 9, September 2002



4~d!. The gradient is used in place of the feature histogram
for the size analysis.~Running averages of the gradients are
shown for clarity.! Mean feature values, whose distributions
were analyzed by the KS test, are also indicated on the
graphs in Fig. 4~e!. For texture energy and fractal dimension,
the mean feature values were computed as the first moments
of the feature histograms of each subimage. CDFs for all
clinical and three groups of synthetic subimage means are
shown in Fig. 6~b!.

Figure 5 shows the CDF of the mean feature values and
the average histograms for texture energy and fractal dimen-
sion computed for the samples of retroareolar glandular tis-
sue regions in clinical and synthetic mammograms. Figure 6

gives the cumulative distributions of the first moments of the
brightness gradients and the average brightness gradients for
the size analysis of the clinical and synthetic samples of the
subcutaneous adipose tissue~left! and the retroareolar glan-
dular tissue~right!.

III. RESULTS AND DISCUSSION

Results of the synthetic texture evaluation are presented in
the form of graphs of the histogram correlation coefficients
and maximum CDF differences computed for several texture
features. Simulations were performed for three ranges of
compartment size and for two spatial resolutions. Figures

FIG. 5. Comparison between clinical and synthetic images of retroareolar fibroglandular tissue: CDFs of the~a! mean texture energy feature and~b! mean
fractal analysis feature; average histograms of the~c! mean texture energy feature and~d! mean fractal analysis feature.
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7–10 show the results for subcutaneous adipose tissue, ret-
romammary adipose tissue, retroareolar glandular and dense
glandular tissue regions, respectively. The abscissa in these
graphs is not a continuous variable, but indicates the size
range of the simulated breast anatomic structures~adipose
compartments!. Texture features are labeled by different
symbols: circle5average structure size, diamond5texture
energy, and triangle5fractal dimension.

The graphs labeled~a! in Figs. 7–10 show the values of
histogram correlation. Higher values indicate better correla-
tion, with a maximum possible value of unity. A boot-strap
analysis of the histogram correlation~averaged over all tissue

types, texture measures, and synthetic structure sizes! was
used to calculate a standard deviation of approximately
0.003. In the CDF difference graphs@labeled~b!#, the maxi-
mum difference between the CDFs is equal to one. Thus, the
lower the value, the better the agreement between the clinical
and synthetic textures. The CDF difference is translated into
a significance level, as explained previously, on the vertical
axis at the right of the graphs. Values of the CDF difference
corresponding to significance levels of 1%, 5%, and 20% are
shown.

It can be seen that the size analysis~represented by
circles! shows better agreement between the clinical and syn-

FIG. 6. Comparison between clinical and synthetic images using size analysis: CDFs of the mean features for~a! subcutaneous adipose tissue and~b!
retroareolar fibroglandular tissue; average histograms for~c! subcutaneous adipose tissue and~d! retroareolar fibroglandular tissue.
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thetic texture, than the other two features. This is expected as
the size of the radiolucencies is related to the size of the
adipose compartments, while the other features are more sen-
sitive to local, small scale structure. The current version of
our model does not include fine, local tissue detail.

Results for the retroareolar glandular tissue regions are
shown in Fig. 9. Most of the feature values are concentrated
very close to one in the histogram correlation graph, indicat-
ing good agreement between the simulation and the real
mammograms. Also, the CDF difference for the retroareolar
glandular tissue are lower that for the other tissue regions.
The dense glandular region shows similarly good agreement
~Fig. 10!. By comparison, both glandular tissue regions are
simulated better than the adipose regions~Figs. 7 and 8!.

A repeated comparison between synthetic and real mam-
mograms at a resolution of 400mm/pixel ~not plotted!
showed that the simulation results were not affected signifi-
cantly by the change of resolution. In addition, from Figs. 7
to 10 one can see that the analyzed features are sensitive to
the size of simulated anatomical structures and that the
agreement between the synthetic and clinical mammograms
depends upon our selection of the simulated structure size. A

partial analysis of a larger set of synthetic mammograms was
also performed and no significant changes in the comparison
with the set of real images were found.

The agreement between distributions of mean texture fea-
tures suggests that the synthetic images sufficiently well
simulate mean features of the clinical texture. Similarity be-
tween the averaged histograms of real and synthetic texture
features means that our synthetic images can simulate the
range of features seen over a large group of mammograms,
not necessarily matching the feature distribution of any par-
ticular mammogram.

By varying the parameters which control the sizes of
breast tissue model elements, we were able to match the
average statistical properties of clinical mammograms for all
tissue types except the retromammary fat. The best match for
clinical mammogram texture was achieved for the simulated
compartments with radii of 4–13.3 mm~‘‘Medium’’ and
‘‘Large,’’ as labeled in Table I in the accompanying paper1!
in predominantly adipose tissue region, and with radii of
2.7–5.33 mm~‘‘Large’’ ! and 1.3–2.7 mm~‘‘Small’’ ! in the
retroareolar and dense FGT region, respectively. These pa-

FIG. 7. Summary of~a! histogram correlation and~b! the results of the KS
test, for subcutaneous adipose tissue. The data are presented for three ranges
of size of synthetic tissue structures and for the three texture analysis meth-
ods.

FIG. 8. Summary of~a! histogram correlation and~b! the results of the KS
test, for retromammary adipose tissue. The data are presented for three
ranges of size of synthetic tissue structures and for the three texture analysis
methods.
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rameters were chosen because of high histogram correlation
values and low maximum CDF difference; the corresponding
distribution of the size analysis features for real and synthetic
images cannot be distinguished at the 5% level. A difference
between the retroareolar and dense FGT region is expected,
since the retroareolar region contains more fat clustered in
larger compartments than in dense regions. Further under-
standing of the clinical retromammary adipose tissue struc-
ture is needed to improve the simulation.

IV. CONCLUSIONS

Evaluation of the synthetic mammograms was performed
by texture analysis and comparison with normal clinical
mammograms from the MIAS database. By varying the dis-
tribution of tissue structures in the model we have been able
to match some of the statistical properties of clinical mam-
mograms. Quantitatively, the synthetic mammograms have a
similar distribution of the values averaged over a large num-
ber of mammograms for several texture features, namely the
average size of image objects, the texture energy, and the
fractal dimension. The analysis of mammogram object size is

closely related to the size analysis of the medium scale phan-
tom elements, simulating adipose compartments in the
breast, which are responsible for generation of the synthetic
mammogram texture. This was the first such use of the mor-
phological analysis of lucent mammogram regions, repre-
senting the projections of adipose compartments. Previous
applications of morphology focused on the mammogram re-
gions brighter than their surroundings, such as the fibrous
structures and microcalcifications. The texture energy and
the fractal dimension are more sensitive to the local variation
of pixel intensities due to the small scale breast tissue struc-
tures.

Our model clearly captures the coarse tissue structures of
the breast for all the tissue subregions except the retromam-
mary fat. This exception is likely due to the fact that cur-
rently the retromammary adipose tissue is simulated in the
same way as the subcutaneous tissue, although it is possible
that the amount of fibroglandular tissue differs in these two
regions. The model is less capable of capturing the small
scale structures of the breast, e.g., blood and lymph vessels
and fine tissue detail, which affect fine texture and give or-

FIG. 9. Summary of~a! histogram correlation and~b! the results of the KS
test, for retroareolar fibroglandular tissue. The data are presented for three
ranges of size of synthetic tissue structures and for the three texture analysis
methods.

FIG. 10. Summary of~a! histogram correlation and~b! the results of the
KS test, for dense fibroglandular tissue. The data are presented for three
ranges of size of synthetic tissue structures and for the three texture analysis
methods.
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ganized structure familiar to radiologists. The overly geomet-
ric appearance of the borders between the AT and FGT re-
gions in the synthetic mammograms can be improved by
small, random variations in the position of the borders in the
compressed tissue model. Differences between the synthetic
and clinical images are more evident for texture measures
that emphasize smaller spatial scales, in agreement with the
qualitative visual assessment. We expect that the introduction
of detailed tissue structures in our breast model will enhance
the local variations of synthetic mammograms and the varia-
tions in feature distribution needed to better match clinical
images.
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APPENDIX: BACKGROUND ON TEXTURE
ANALYSIS

1. Mathematical morphology

Morphological operations are performed on an image,
f (x,y), using a second set of pixels,S, called the structuring
element. The basic morphological operations, are defined
by:13

Dilation: ~ f % S!~x,y!5max$ f ~x1x8,y1y8!u~x8,y8!PS%,

Erosion: ~ f *S!~x,y!5min$ f ~x2x8,y2y8!u~x8,y8!PS%,
~A1!

Opening: f sS5~ f *S! % S,

Closing: f dS5~ f % S!*S.

2. Texture energy analysis

2D convolution masks for texture energy analysis are de-
rived using 1D masks with different number of zero-
crossings, designed to detect different texture properties. For
example, the five-element 1D masks are:9

Level: L55@1 4 6 4 1#,

Edge: E55@21 22 0 2 1#,

Spot: S55@21 0 2 0 21#,

Wave: W55@21 2 0 22 1#,

Ripple: R55@1 24 6 24 1#.

The most often used 2D masks in mammogram analysis
are 535 ‘‘level’’ and ‘‘ripple’’ masks, obtained by the prod-
uct of the corresponding 1D masks (R5R55R5TR5 and
L5L55L5TL5):

R5R55F 1 24 6 24 1

24 16 224 16 24

6 224 36 224 6

24 16 224 16 24

1 24 6 24 1

G ,

~A2!

L5L55F 1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1

G .

3. Fractal analysis

Image fractal dimension is usually defined using the area
of the image surface. When the scale,e, is increased~which
corresponds to decreasing the resolution! the area of a fractal
surface,A(e), decreases. The fractal dimension,D, is related
to the slope of decreasing area on a log–log plot, as

logA~e!5 log const1~22D !loge. ~A3!

There are several algorithms for computing fractal dimension
based upon box counting, image power spectrum, or iterated
function systems.26 Any attempt at measuring fractal dimen-
sion must deal with the fact that self-similarity of real images
holds only over a limited range of scales, due to actual struc-
ture and limitations of the imaging process.27
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