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Mammogram synthesis using a 3D simulation.
[I. Evaluation of synthetic mammogram texture
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We have evaluated a method for synthesizing mammograms by comparing the texture of clinical
and synthetic mammograms. The synthesis algorithm is based upon simulations of breast tissue and
the mammographic imaging process. Mammogram texture was synthesized by projections of simu-
lated adipose tissue compartments. It was hypothesized that the synthetic and clinical texture have
similar properties, assuming that the mammogram texture reflects the 3D tissue distribution. The
size of the projected compartments was computed by mathematical morphology. The texture energy
and fractal dimension were also computed and analyzed in terms of the distribution of texture
features within four different tissue regions in clinical and synthetic mammograms. Comparison of
the cumulative distributions of the mean features computed from 95 mammograms showed that the
synthetic images simulate the mean features of the texture of clinical mammograms. Correlation of
clinical and synthetic texture feature histograms, averaged over all images, showed that the syn-
thetic images can simulate the range of features seen over a large group of mammograms. The best
agreement with clinical texture was achieved for simulated compartments with radii of 4—13.3 mm

in predominantly adipose tissue regions, and radii of 2.7—-5.33 and 1.3—2.7 mm in retroareolar and
dense fibroglandular tissue regions, respectively. 2@2 American Association of Physicists in
Medicine. [DOI: 10.1118/1.1501144

Key words: mammography simulation, 3D, synthetic mammograms, texture analysis

[. INTRODUCTION approximated by a rectangular beam composed of AT and

We have proposed an approach to generate synthetic marh® ! regions. The slices are computationally deformed, as-
mograms based upon a 3D simulation of mammogr&phy.SUming clinical values of the compression force. Deformed
Synthetic mammographic texture is produced by projecting|CeS are stacked together to produce a model of the com-
simulated 3D breast anatomic structures. In clinical imaged?ressed breast. Third, mammogram image acquisition is
the overlapped projections of normal anatomic tissue strudnodeled assuming monoenergetic x rays and a parallel beam
tures generate a background texture in mammograms Whi(g\eometry without _scatter. Details of the simulation are given
can mask the existing abnormalities or introduce false oned? the accompanying papr. _ _
The simulation can be used to optimize positioning, com- Ideally, each of the three components of the simulation
pression and acquisition in order to improve the visibility of Should be evaluated separately by a 3D imaging technique.
the breast tissue, and to test new breast imaging modalitied.here is, however, a significant difference in tissue properties
The proposed mammography simulation consists of thregaptured by the clinically available 3D breast imaging mo-
major components. First, a 3D software breast phantom corflalities (ultrasound and MRIand mammography which is
tains two ellipsoidal regions of large scale tissue elementghe focus of our simulation. Breast ultrasound and MRI also
predominantly adipose tissy&T) and predominantly fibro- have different resolution and compression than mammogra-
glandular tissugFGT) regions. Internal structures of these phy. With these issues in mind we have evaluated the tissue
regions, namely the adipose compartments and breast ductaiodel indirectly, assuming that a relationship exists between
network, are approximated by realistically distributed me-the distribution of 3D breast tissue structures and the 2D
dium scale phantom elements: shells filled with simulatedparenchymal pattern. It is our hypothesis that the texture
adipose tissue and a synthetic ductal tree. Second, a corproperties computed in synthetic and clinical images have
pression model of the breast deformation occurring during similar distributions.
mammographic exam is based upon tissue elasticity proper- There are two approaches to mammogram synthesis
ties. Deformation is simulated separately for layers of tissudound in the literature(i) direct modeling of 2D distribution
positioned normal to the compression plates. Each slice ief pixels and(ii) simulation of 3D tissue distribution and the
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mammographic imaging. Bochuet al?> modeled mammo- computed using mathematical morphologj) the texture
gram texture as a “clustered lumpy background” by randomenergy, andiii) the fractal dimension. Feature values were
placement of “blob” clusters, visually resembling tissue ap-computed over each clinical and synthetic subimage and sta-
pearance in mammograms. Synthetic images were evaluatédtically compared using the Kolmogorov—Smirnov test and
by comparing their power spectra and statistical momentsistogram correlation. Details of the analysis of synthetic and
with the values from 32 clinical mammograms. Good agree<linical mammographic texture are given in Sec. Il and the
ment of the first and the second moments in clinical andesults of the comparison are discussed in Sec. ll.
synthetic images were observed, with similar statistical prop-

erties overall. Heinet al2 modeled a mammogram as evolv-

ing from a process of passing a random fiaddlored noisg

through a linear filter with a self-similar characteristic, basedl. TEXTURE ANALYSIS OF SYNTHETIC

upon the analysis of 60 clinical mammograms. Such an apMAMMOGRAMS

proach can match some of the statistical properties of cIinicaA
images but cannot relate the 3D tissue structures and their
mammographic appearance. Both papers do not model breast The following texture descriptors were used for the evalu-
ducts or the large scale tissue regions. Consequently, the ination of synthetic mammogram texture. First, size analysis
ages of the same simulated breast, with modified positioningyas performed by a sequence of morphological closings with
compression, or x-ray parameters cannot be consistently sydisks of increasing size as structuring eleméntserage
thesized. image brightness increases after the closing operation. The

Taylor et al* generated synthetic images by mammogra-change in brightness as a function of the disk radius is re-
phy simulation, in an approach similar to our work. The fo- lated to the size distribution of radiolucefedipose areas in
cus of their simulation is on modeling breast ducts basedhe mammograms. Second, texture energy analysis was per-
upon the fractal properties of the duct length and diameteformed by convolving each image with a small mdskeat-
They have evaluated the synthetic images so obtained bipg gray scale image intensity as the height of a 3D object,
comparing the Fourier spectrum with that computed in im-this mask is sensitive to local roughness of the image sur-
ages of tissue slices with contrast enhanced ducts. Goddce. Third, fractal dimension was computed by the blanket
agreement using a small number of samples was observedoox counting method of self-similarity analysfs.

Separate evaluations were performed for the simulation of
the ductal network, the compression model, and the synthetic
parenchymal pattern. Initial feasibility tests of the ductal
model and compression simulation are presente
elsewhere:® This paper describes the analysis of the syn- Morphological image analysis is based upon the shape of
thetic mammogram texture. image objects and is used to simplify image data while pre-

Synthetic images were generated by simulating the x-ragerving shape characteristics. The theory of mathematical
image acquisition on a computationally compressed phanmmorphology is discussed in the books of Mathétoand
tom. Images of the phantoms were generated containing difSerra® An application oriented tutorial of morphological im-
ferent sizes of simulated medium scale elements: sphericalge processing is given by Haralitk.
shells and blobs. The synthetic mammograms, so obtained, Morphological operations are performed on a set of image
were evaluated by comparing them with clinical imagespixels using a second set of pixels called the structuring el-
taken from the MIAS database of digitized mammogrdms. ement. Definitions of the basic operations are given in the
Subimages taken from regions corresponding to different tisAppendix. The opening operation is used for size analysis of
sues were compared separately, including the subcutaneobfight objects, and closing for the analysis of dark objects.
AT, retromammary AT, retroareolar FGT, and dense FGT reThis analysis is sensitive to the radiolucent areas of the
gions. Three texture features were used for description of thmammogram, corresponding to the adipose tissue which ap-
parenchymal patterrii) the average size of image structurespears darker than the surrounding tissue. X rays are less at-
tenuated by adipose tissue, producing greater film density
than connective tissue.

The gray scale closing first replaces each pixel with the
maximum from its neighborhood defined by the structuring
element(a disk. The original values are then recovered for
all of the pixels, except for those from regions which are
both darker than their surroundings and smaller than the
structuring element. As an illustration, Fig(al shows an
(a) (b) (© image with several objects of different size. After the closing

operation with the structuring element from Figb), the
Fic. 1. lllustration of morphological closinga) The original image with

objects of different size(b) The image of the structuring elemeit) The reS,UItmg Image IS given in Flg'(df)' It can be seen that darl.( .
resulting image obtained by the morphological closing with the structuring@Pj€cts smaller than the structuring element have been elimi-

element from(b) applied to the image frorfa). nated; the resulting image is thus brighter than the original.

Texture descriptors

dl. Morphological analysis of image structure size
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This is the basis for morphological size analysis, wherebyonsidering the pixel values as local surface heights. This
the change in average image brightnéss., the total pixel area is related to the roughness of the image texture. A com-
sum after the closings used to describe the size distribution plete definition of the fractal dimension of image surface
of the image objects. The derivative of the brightness as area is given in the Appendix.
function of size shows the contribution of the objects equal There are numerous reports in the literature on fractal
in size to the structuring element. analysis of mammograms-??Caldwellet al® analyzed the
Morphological size analysis of mammograms has beeiffractal dimension of various parenchymal patterns and the
reported previously in the literatutél* Behrens and difference between the fractal dimensions computed over the
Dengler® reported examples of applying morphological sizewhole image and within a region near the nipple. A feature
analysis at global, regional, and local image levels; analysispace defined by these two fractal features was segmented
of calcifications was presented as a local processing. Milleand a relatively good agreement with the original Wolfe
and Astley* used morphological size analysis to segment theclassificatioR® was observed. Mammographic calcifications
FGT region from mammograms. They used the opening ophave been segmented using a variety of methods for comput-
eration which is dual to closing; it replaces the bright regionsng fractal dimension, including box countiiy,iterated
smaller than the structuring element by their dark surroundfunction systemé! and fractal Brownian motiof?
ing pixels. The overall image brightness is, thus, reduced. We computed fractal dimension by the blanket algo-
However, the authors did not analyze the relationship berithm.X® This method has been used previously in the detec-
tween morphological feature values and the physical propetion of calcifications in mammograni8.The fractal dimen-
ties of the anatomic structures. Our research representssion is computed for each pixel by analyzing the local image
novel application of morphological image analysis as a resulsurface around the pixel. A ¥8L5 window was selected,
of using the simulated 3D tissue structures to synthesize paentered on each pixel. This corresponds to the nonlinear

renchymal patterns. averaging window size used in the texture energy method. A
log—log plot of Ao €) is generated for the local surface
2. Texture energy analysis around each pixel. The local fractal dimension valyg,, is

- . computed as the slope through three points on the log—Ilo
Texture energy features are the statistical estimates of th pu P ug pol g-lo9

outputs from a filter bank implemented in the form of local &:(; :ori;tzslis)ondmg to the scale parameter values=d, 3,
linear transformations. They were introduced with the goafi P '
of achieving texture segmentation and description at eac
image pixel, corresponding to a hypothetical low level func-
tion of the human visual systefirhe filter bank consists of The following criteria were used for selection of the clini-
small 2D convolution masks whose coefficients are comcal and synthetic mammograms to be used for comparison.
puted as the product of 1D masks with different numbers ofFirst, the clinical images had to represent normal breast tis-
zero crossings. Contrast invariance of the filter outputs isue. Second, the glandularity seen in the mammograms
achieved by the normalization with the output of the filter should approximately represent the average breast glandular-
sensitive to the average local image intensity. The absolutéy (not too dense and not predominantly adiposhird,
values or variances of the convolved images are used fagpatial resolution of the clinical and synthetic mammograms
analysis_ A generalization of this approach can include should be matched. The clinical images were selected from
larger set of local linear transformations, and the estimatiothe MIAS databaseof digitized mammograms and the syn-
of higher order moments of the output channel histograims. thetic mammograms were generated for varying properties of
In mammogram processing applicatibh® texture en-  the medium scale elements, i.e., different sizes of simulated
ergy was usually computed using a single or a few convoluadipose compartments in the AT and FGT regions. In addi-
tion masks. The mask sensitive to image “ripple” was foundtion, the comparison was repeated for the same set of clinical
to be the most efficient in segmenting potentially abnormaRnd synthetic mammograms at a reduced resolution. The im-
regions in mammograms, a task which is related to the locatges with reduced resolution were generated by averaging
roughness of the image surface. Texture energy features hade<2 blocks of pixels from the original mammograms.
also been used in mammogram registratiot. 1. Clinical mammograms
The mask coefficients are given in the Appendix. A%

B. Image selection

Sixty-five mammograms from the Mini-MIAS database of
glinical mammograms were used, having a spatial resolution
of 200 um/pixel. The Mini-MIAS database was obtained by
averaging &4 pixel blocks in the original MIAS mammo-
gram databas&This resolution is sufficient for the evalua-
tion of our synthetic mammograms since presently they do
not include fine, small scale tissue detail. The selected im-
ages represent normal cases in the MIAS database with the

Fractal dimension describes self-similarity of image prop-background tissue classified as “fatty-glandular.” As the
erties at different spatial scales. It is common to performsizes of adipose compartments differ for various tissue re-
fractal analysis on the area of the image surface, obtained kgions, up to four 25 mm25 mm subimages per mammo-

values of the convolved data were averaged on & 1B
window and normalized by the “level” mask, L5L5EQ.
(A2)], providing contrast invariance.

3. Fractal analysis

Medical Physics, Vol. 29, No. 9, September 2002
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ments. The ranges of compartment sizes differed between the
groups by 30%see Table | and Fig. 8 in the accompanying
papet).

C. Statistical comparison

Two methods were used for statistical comparison of the
texture features. First, feature histograms were computed for
each subimage. Synthetic histograms were then averaged
over all subimages of the same tissue type and were com-
pared with similarly computed clinical histograms. The cor-
relation between the corresponding clinical and synthetic av-
eraged histograms was used to measure how well the
synthetic images approximated the clinical images. Next,
mean feature valugg.e., the histogram first momentaere
computed for each subimage. Distributions of these means
for all subimages of the same tissue type were then analyzed
and compared with the distributions of means of the clinical
images, using the Kolmogorov—SmirndKS) test®* The
maximum difference between the cumulative distribution
functions (CDFs9 of the clinical and synthetic mean feature
values was used as another measure of quality of mammo-
gram synthesis. In both methods the average texture features
were compared, thereby testing the ability of the simulation
to match the average properties of a large set of clinical
mammograms, rather than simulating an image of a particu-
lar breast.

. . . o . 1. Analysis of feature histograms
Fic. 2. Tissue regions used in texture analysis, illustrated on a clinical mam-

mogram from the MIAS databasét) subcutaneous adipose tissu®), ret- As a measure of similarity between the real and synthetic
romammary adipose tissueg) retroareolar fibroglandular tissuenmedi-  featyre distributions, the correlation between the feature his-
ately posterior to the nippleand(4) dense fibroglandular tissue. . .
tograms was calculated for each of the clinical and synthetic
subimages, and averaged over all subimages of the same
tissue type. In the case of size analysis, the correlation was
‘computed between the brightness gradi@st a function of
the structuring element radiusf clinical and synthetic im-
ages. In the following text, these derivative values are re-
ferred to as the “average histogram of the size analysis fea-

gram were selected manually, giving a total of 219 sub
images, from the following regionsee Fig. 2 (1) subcuta-
neous fat;(2) retromammary fat{3) retroareolar glandular
tissue, immediately posterior to the nipple; a@) dense
glandular tissue. If the extent of a tissue region could not b ”
. . s ure.
unambiguously determined, or if it was too small for a sub-

) . . : The coefficient of correlationR, between the reahg,
image window, the corresponding tissue sample was ex- . . !

: and synthetichg, histograms averaged over all subimages
cluded from analysis.

(in a given categoryis computed as:
Zihg(i)hg(i)

12 N2’

Synthetic images were generated at a spatial resolution of VELhe(DI2 Thg()]
200 um/pixel, matching that of the database. Four subimagewhere the summation runs over histogram kins
per synthetic mammogram were selected from different re-
gions in the same manner as for the clinical images. Th
positions of the subimages were determined from the know
extent of the large scale model elements, the AT and FGT The KS test compares two random distributions based
regions. Model parameters controlling the distribution of me-upon the maximum difference between their CBE#. be-
dium scale tissue structures, modeled by shells in the AT antbngs to a group of nonparametric methods which make no
spheres in the FGT regions, were varied to match the statisssumptions about the types of distributions used. The maxi-
tical properties of real images. Three groups of synthetienum difference between two CDFB, is a measure of the
mammograms were tested. The groups consisted of ten sydiscrepancy between the two sets of samples. Kolmogorov
thetic mammograms each, generated randomly using thehowed that for two sets of samples with the same parent
same range of size of simulated adipose tissue compartlistribution, the CDF oD is given asymptotically by*

2. Synthetic mammograms R(hg,hg) =

@

. Kolmogorov —Smirnov (KS) test

Medical Physics, Vol. 29, No. 9, September 2002
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Fic. 3. Texture energy histograms of the FGT from clinidelft) and synthetidright, primed mammograms(a) Sample subimageb) Image of texture
energy values(c) Texture energy histograiimormalized for the range of feature valiies
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wherem andn are the numbers of samples in the two sets
D is the maximum CDF difference for the given number
of samples, andP is the probability thaD, , is less than a
given valuez. The level of significancegy, is defined as

)

the significanceq, which is the probability that a greater
discrepancy than observed would occur due to chance alone.
The relationship betweea andd,, for various sample sizes
is tabulated in several textbooks?®

The CDFs of statistics for each subimage from the clinical
and synthetic mammograms were compared. In the texture
'energy analysis and the fractal analysis, for each subimage
the appropriate feature value was averaged over all of the
pixels in the subimage, and this average was used as a
sample for the KS test. In the morphological analysis, for
each subimage the first moment of the brightness gradient

whered,, is the critical value oD, , corresponding to the Was used as a sample value.

significancea. Thus, the observed discrepancy between a Both the KS test and the histogram correlation show how
CDF drawn from clinical mammograms and a CDF drawnwell, on averagethe synthetic images can approximate the
from simulated mammograms can be quantified in terms oproperties of the clinical mammographic texture. The differ-
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Fic. 4. Size analysis of the FGT from clinicéleft) and synthetidright, primed mammograms(a) Sample subimageb) Result of closing with a 10 pixel
disk structuring elementc) Result of closing with a 40 pixel diskd) Change in brightnessum of all pixel$ before and after closinge) Gradient of the
brightness.

ence between the two methods is that the KS test comparaynthetic subimages are shown in Figc)5 Figure 4 illus-
the mean feature values averaged over each subimage, whilates the analysis of object size distribution for the retroar-
the histogram correlation takes into account the range of feasolar glandular tissue. The left-hand side shows the results

ture values computed locally at each pixel. for the clinical FGT and the right-hand side for the synthetic
FGT. The upper graphs show the average brightefset
3. lllustration of the analysis for the brightness of the original imapefter each morpho-

An illustration of the histogram analysis is given in Fig. 3 logical closing as a function of structuring elemefdtsk)
by the texture energy features computed on subimages &fze in pixels. Note that the output images get brighter with
retroareolar glandular tissue. The histogram of a clinical FGTncreasing disk size, as seen in the examples of the images
subimage is shown on the left and of a synthetic subimage oabtained for the disk radii of 10 and 40 pixels. The graph in
the right. Histograms averaged over all clinical and over allFig. 4(e) shows the gradient of the features graphed in Fig.
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Fic. 5. Comparison between clinical and synthetic images of retroareolar fibroglandular tissue: CDFgapfintean texture energy feature afi mean
fractal analysis feature; average histograms of(thenean texture energy feature a@ mean fractal analysis feature.

4(d). The gradient is used in place of the feature histograngives the cumulative distributions of the first moments of the
for the size analysigRunning averages of the gradients arebrightness gradients and the average brightness gradients for
shown for clarity) Mean feature values, whose distributions the size analysis of the clinical and synthetic samples of the
were analyzed by the KS test, are also indicated on thsubcutaneous adipose tissleft) and the retroareolar glan-
graphs in Fig. ). For texture energy and fractal dimension, dular tissug(right).
the mean feature values were computed as the first moments
of the feature histograms of each subimage. CDFs for al
clinical and three g?oups of synthetic subi%age means arhl' RESULTS AND DISCUSSION
shown in Fig. @b). Results of the synthetic texture evaluation are presented in
Figure 5 shows the CDF of the mean feature values anthe form of graphs of the histogram correlation coefficients
the average histograms for texture energy and fractal dimerand maximum CDF differences computed for several texture
sion computed for the samples of retroareolar glandular tisfeatures. Simulations were performed for three ranges of
sue regions in clinical and synthetic mammograms. Figure @ompartment size and for two spatial resolutions. Figures
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Fic. 6. Comparison between clinical and synthetic images using size analysis: CDFs of the mean feat{@esufocutaneous adipose tissue dbyl
retroareolar fibroglandular tissue; average histogramscjosubcutaneous adipose tissue d@ddretroareolar fibroglandular tissue.

7-10 show the results for subcutaneous adipose tissue, raypes, texture measures, and synthetic structure )sizas
romammary adipose tissue, retroareolar glandular and denssed to calculate a standard deviation of approximately
glandular tissue regions, respectively. The abscissa in the€003. In the CDF difference graphsabeled(b)], the maxi-
graphs is not a continuous variable, but indicates the sizenum difference between the CDFs is equal to one. Thus, the
range of the simulated breast anatomic structfesbpose lower the value, the better the agreement between the clinical
compartments Texture features are labeled by different and synthetic textures. The CDF difference is translated into
symbols: circleeaverage structure size, diamenxture a significance level, as explained previously, on the vertical
energy, and triangtefractal dimension. axis at the right of the graphs. Values of the CDF difference
The graphs labele¢h) in Figs. 7—10 show the values of corresponding to significance levels of 1%, 5%, and 20% are
histogram correlation. Higher values indicate better correlashown.
tion, with a maximum possible value of unity. A boot-strap It can be seen that the size analygigpresented by
analysis of the histogram correlati¢averaged over all tissue circles shows better agreement between the clinical and syn-
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Fic. 7. Summary of@ histogram correlation antb) the results of the KS (*)
test, for subcutaneous adipose tissue. The data are presented for three ranges 8. Summary ofa) histogram correlation antb) the results of the KS
of size of synthetic tissue structures and for the three texture analysis methiest, for retromammary adipose tissue. The data are presented for three
ods. ranges of size of synthetic tissue structures and for the three texture analysis
methods.

thetic texture, than the other two features. This is expected as
the size of the radiolucencies is related to the size of theartial analysis of a larger set of synthetic mammograms was
adipose compartments, while the other features are more sealso performed and no significant changes in the comparison
sitive to local, small scale structure. The current version ofwith the set of real images were found.
our model does not include fine, local tissue detalil. The agreement between distributions of mean texture fea-
Results for the retroareolar glandular tissue regions aréures suggests that the synthetic images sufficiently well
shown in Fig. 9. Most of the feature values are concentratedimulate mean features of the clinical texture. Similarity be-
very close to one in the histogram correlation graph, indicatiween the averaged histograms of real and synthetic texture
ing good agreement between the simulation and the redéatures means that our synthetic images can simulate the
mammograms. Also, the CDF difference for the retroareolarange of features seen over a large group of mammograms,
glandular tissue are lower that for the other tissue regionsot necessarily matching the feature distribution of any par-
The dense glandular region shows similarly good agreemerticular mammogram.

(Fig. 10. By comparison, both glandular tissue regions are By varying the parameters which control the sizes of
simulated better than the adipose regidfigs. 7 and 8 breast tissue model elements, we were able to match the
A repeated comparison between synthetic and real manaverage statistical properties of clinical mammograms for all
mograms at a resolution of 40@.m/pixel (not plotted  tissue types except the retromammary fat. The best match for
showed that the simulation results were not affected significlinical mammogram texture was achieved for the simulated

cantly by the change of resolution. In addition, from Figs. 7compartments with radii of 4-13.3 mrfMedium” and

to 10 one can see that the analyzed features are sensitive ‘ioarge,” as labeled in Table | in the accompanying paper
the size of simulated anatomical structures and that then predominantly adipose tissue region, and with radii of
agreement between the synthetic and clinical mammogran®7-5.33 mm(“Large” ) and 1.3-2.7 mm{“Small” ) in the
depends upon our selection of the simulated structure size. etroareolar and dense FGT region, respectively. These pa-

Medical Physics, Vol. 29, No. 9, September 2002



2149 Bakic et al.: Mammogram synthesis using a 3D simulation. Il 2149

i SESTeTe———— SES — e ¢
———————— b e
08t 1 08t T ~
i=
£ 5
Sos| 5 06 [ 1
£ (8]
5 §
3041 1 > 04 1
2 2
: 2
02 | 1 02 b ]
©—® Size Analysis, 200um/pix @—@ Size Analysis
Retroareolar FGT #-— Texture Energy Dense FGT 4 —# Texture Energy
A -~ Fractal Dimension - -4 Fractal Dimension
0.0 o .
Small Medium Large O'gmall Medium . Large
Size of Synthetic Tissue Structures Size of Synthetic Tissue Structures
(a) (a)
1.0 T 1.0 T ==
"""
N -
e - - -
08} R ]
><
@ s S~
5 8 T .
3 8 Ple Theo .
£ 8 S 06g” AT ) 8
a 1% g (= T T 1% 5
= [’ 3
g £ a £
: & 8 o 5
£ E 204} 1 2]
£ o
< %8 % 20% 8
= 3 2 2
s 5
@
02} 1 026 1
®—® Size Analysis ©—® Size Analysis
Retroareolar FGT - — ¢ Toxture Energy Dense FGT &-— ¢ Texture Energy
& - -4 Fractal Dimension & - - 4 Fractal Dimension
0.0 ™ 0.0 L
Small Medium Large “Small Medium Large

Size of Synthetic Tissue Structures Size of Synthetic Tissue Structures

(b) (b)

Fic. 9. Summary ofa) histogram correlation an(b) the results of the KS  Fig. 10. Summary of(@) histogram correlation an¢b) the results of the

test, for retroareolar fibroglandular tissue. The data are presented for thraes test, for dense fibroglandular tissue. The data are presented for three
ranges of size of synthetic tissue structures and for the three texture analysignges of size of synthetic tissue structures and for the three texture analysis
methods. methods.

rameters were chosen because of high histogram correlation . . .
: . ) . closely related to the size analysis of the medium scale phan-
values and low maximum CDF difference; the correspondin

Yom elements, simulating adipose compartments in the

distribution of the size analysis features for real and syntheu% : ; : )
. L . reast, which are responsible for generation of the synthetic
images cannot be distinguished at the 5% level. A difference ammogram texture. This was the first such use of the mor-

between the retroareolar and dense FGT region is expecteré1

: . . .Rhological analysis of lucent mammogram regions, repre-
since the retroareolar region contains more fat clustered i . . . .
senting the projections of adipose compartments. Previous

larger compartments than in dense regions. Further under-~ . ~ .

. - . } applications of morphology focused on the mammogram re-
standing of the clinical retromammary adipose tissue struc-. . : . .

X . . ! gions brighter than their surroundings, such as the fibrous
ture is needed to improve the simulation. . D

structures and microcalcifications. The texture energy and
the fractal dimension are more sensitive to the local variation
IV. CONCLUSIONS of pixel intensities due to the small scale breast tissue struc-
Evaluation of the synthetic mammograms was performedures.

by texture analysis and comparison with normal clinical Our model clearly captures the coarse tissue structures of
mammograms from the MIAS database. By varying the disthe breast for all the tissue subregions except the retromam-
tribution of tissue structures in the model we have been ablenary fat. This exception is likely due to the fact that cur-
to match some of the statistical properties of clinical mam-ently the retromammary adipose tissue is simulated in the
mograms. Quantitatively, the synthetic mammograms have same way as the subcutaneous tissue, although it is possible
similar distribution of the values averaged over a large numthat the amount of fibroglandular tissue differs in these two
ber of mammograms for several texture features, namely theegions. The model is less capable of capturing the small
average size of image objects, the texture energy, and theeale structures of the breast, e.g., blood and lymph vessels

fractal dimension. The analysis of mammogram object size ignd fine tissue detail, which affect fine texture and give or-
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ganized structure familiar to radiologists. The overly geomet- -1 —4 6 —4 1 7
ric appearance of the borders between the AT and FGT re- 4 16 -24 16 -4
gions in the synthetic mammograms can be improved by
small, random variations in the position of the borders inthe R5R5=| 6 —24 36 —-24 6 |,
compressed tissue model. Differences between the synthetic -4 16 —-24 16 —4
and clinical images are more evident for texture measures

. . . : 1 -4 6 -4 1
that emphasize smaller spatial scales, in agreement with the - - A2
qualitative visual assessment. We expect that the introduction "1 4 6 4 17 (A2)
of detailed tissue structures in our breast model will enhance

o . . 4 16 24 16 4
the local variations of synthetic mammograms and the varia-
tions in feature distribution needed to better match clinical L5L5=| 6 24 36 24 6.
images. 4 16 24 16 4

|1 4 6 4 1
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