
Conditioning data for calculation of the modulation transfer function
Andrew D. A. Maidment and Michael Albert 
 
Citation: Medical Physics 30, 248 (2003); doi: 10.1118/1.1534111 
View online: http://dx.doi.org/10.1118/1.1534111 
View Table of Contents: http://scitation.aip.org/content/aapm/journal/medphys/30/2?ver=pdfcov 
Published by the American Association of Physicists in Medicine 
 
Articles you may be interested in 
Cascaded-systems analyses and the detective quantum efficiency of single-Z x-ray detectors including
photoelectric, coherent and incoherent interactions 
Med. Phys. 40, 041916 (2013); 10.1118/1.4794495 
 
Technical Note: Further development of a resolution modification routine for the simulation of the modulation
transfer function of digital x-ray detectors 
Med. Phys. 38, 5916 (2011); 10.1118/1.3644845 
 
Characterization of a mammographic system based on single photon counting pixel arrays coupled to GaAs x-
ray detectors 
Med. Phys. 36, 1330 (2009); 10.1118/1.3097284 
 
Experimental validation of a three-dimensional linear system model for breast tomosynthesis 
Med. Phys. 36, 240 (2009); 10.1118/1.3040178 
 
Validity of the line-pair bar-pattern method in the measurement of the modulation transfer function (MTF) in
megavoltage imaging 
Med. Phys. 35, 270 (2008); 10.1118/1.2816108 
 
 

http://scitation.aip.org/content/aapm/journal/medphys?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/1896364155/x01/AIP/RIT_MPHCovAd_1640x440Banner_2016/AAPM2016_PDF_ad_.jpg/5471704f346c5a6e5169774141374272?x
http://scitation.aip.org/search?value1=Andrew+D.+A.+Maidment&option1=author
http://scitation.aip.org/search?value1=Michael+Albert&option1=author
http://scitation.aip.org/content/aapm/journal/medphys?ver=pdfcov
http://dx.doi.org/10.1118/1.1534111
http://scitation.aip.org/content/aapm/journal/medphys/30/2?ver=pdfcov
http://scitation.aip.org/content/aapm?ver=pdfcov
http://scitation.aip.org/content/aapm/journal/medphys/40/4/10.1118/1.4794495?ver=pdfcov
http://scitation.aip.org/content/aapm/journal/medphys/40/4/10.1118/1.4794495?ver=pdfcov
http://scitation.aip.org/content/aapm/journal/medphys/38/11/10.1118/1.3644845?ver=pdfcov
http://scitation.aip.org/content/aapm/journal/medphys/38/11/10.1118/1.3644845?ver=pdfcov
http://scitation.aip.org/content/aapm/journal/medphys/36/4/10.1118/1.3097284?ver=pdfcov
http://scitation.aip.org/content/aapm/journal/medphys/36/4/10.1118/1.3097284?ver=pdfcov
http://scitation.aip.org/content/aapm/journal/medphys/36/1/10.1118/1.3040178?ver=pdfcov
http://scitation.aip.org/content/aapm/journal/medphys/35/1/10.1118/1.2816108?ver=pdfcov
http://scitation.aip.org/content/aapm/journal/medphys/35/1/10.1118/1.2816108?ver=pdfcov


Conditioning data for calculation of the modulation transfer function
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A method for conditioning data used in the measurement of the modulation transfer function~MTF!
is discussed. This method is based upon imposing the constraint that the edge spread function~ESF!
is monotonic. The advantages of this technique, when applicable, are demonstrated with simulated
examples for which the true MTF is known. The application of this technique in the measurement
of the MTF of a digital detector in clinical use is also demonstrated. ©2003 American Association
of Physicists in Medicine.@DOI: 10.1118/1.1534111#
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I. INTRODUCTION
The measurement of the modulation transfer function~MTF!
is one of the key steps in characterizing a system in terms of
linear response theory.1,2 This measurement can be per-
formed by imaging an object whose spatial frequency con-
tent is known, such as a linear object3 or an edge.4,5 In the
latter case, it is necessary to differentiate6 the edge spread
function ~ESF! to obtain the line spread function~LSF!. The
MTF is then the normalized magnitude of the Fourier trans-
form of the LSF.

While the MTF of most systems is expected to vary
smoothly as a function of spatial frequency, noise in the im-
aging system can result in a measured MTF which fluctuates
significantly. Although the noise can generally be reduced by
acquiring and averaging over multiple images, this is not
always practical or feasible. For example, if MTF measure-
ments are to become part of routine quality assurance for
digital detectors~as estimates of the MTF with line-pair
phantoms can be problematic7! then it is highly desirable that
the measurement can be made with a single image acquisi-
tion. Attempts to reduce the apparent noise in the MTF with-
out increasing the amount of data acquired have generally
taken the form of various regularization procedures, includ-
ing assuming a Gaussian point spread function,8 locally fit-
ting to cubic splines,9 locally fitting to lines,4 and a variety of
smoothing techniques including~in a more general linear
systems context! adaptive smoothing.10,11 All regularization
techniques are based upon somea priori assumptions about
the nature of the detector response. These assumptions have
generally fallen into two categories: either an assumed func-
tional form or the assumption that a certain degree of
smoothing would not significantly affect the result. In this
note we discuss regularization based upon the assumption
that the ESF is monotonic. This assumption does not impose
an arbitrary functional form on the spread functions and is
consistent, for many systems, with expectations based upon
the underlying physical principles.

II. BACKGROUND
In measuring the MTF of a digital device using the ESF,

an object with a well defined edge is oriented so that the

edge is almost parallel to the columns of detector elements
and imaged.3–5 The precise orientation of the edge can be
determined from the acquired image. The signal recorded by
each detector element is a function of the perpendicular dis-
tance of the detector element from the edge. By combining
multiple rows of detector elements, the ESF can be
super-sampled,3,4 i.e., sampled with a spacing finer than the
spacing between detector elements on the detector surface.
Since the MTF is the absolute value of a Fourier transform,
the estimation of position of the edge does not affect the final
result.

Given a region of interest containing an image of the
edge, letxi be the signed perpendicular distance of thei th
detector element from the edge andYi the signal in thei th
detector element, where the indexi assigned to each detector
element has been chosen so thatxi<xi 11 . Thus Yi is an
estimate of the ESF atxi . However, it is often desirable to
condition the data, producing a data set$yi% which also
serves as an estimate of the ESF but which contains less
noise. We propose to obtain such values$yi% by minimizing

x25(
i

~yi2Yi !
2, ~1!

subject to the constraints

yi<yi 11 . ~2!

This represents a type of quadratic optimization problem
which is particularly amenable to solution.12,13 A detailed
solution is described in the Appendix.

In calculating the MTF from the super-sampled data, one
must deal with the fact that the combined data from multiple
rows does not sample the ESF at uniform intervals. This is
due to the fact that the slope of the edge generally is not a
simple ratio in terms of the spacing of the detector elements.
One method of handling this is to resample the data so as to
obtain a uniform sampling interval, for example, by rebin-
ning the data.3,4 Alternatively, one can calculate the Fourier
transform directly from the data. Calculation without resam-
pling has the advantage that one does not need to arbitrarily
impose a sampling scheme and one does not introduce any
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related artifacts. The chief disadvantage is that, as one can no
longer use the fast Fourier transform~FFT! algorithm, the
calculation is significantly more time consuming. For in-
stance, without any significant effort at optimization, our cal-
culations without the FFT took a few minutes, compared to
on the order of a second for a highly tuned FFT.14 Several
techniques have been recommended for calculating the Fou-
rier transform of nonuniformly spaced data,15,16 particularly
in astronomy where sample times can not be completely con-
trolled, but as the sample spacing here does not vary greatly
from uniform spacing we have used a simple direct calcula-
tion of the Fourier transform of the derivative:

MTF~ f !5CU(
i

W„~xi 111xi !/2…

3~yi 112yi !e
2p i f (xi 111xi )/2U, ~3!

where f is the magnitude of the spatial frequency at which
the MTF is being estimated~the direction being perpendicu-
lar to the edge!, W is an optional windowing function, and
the constantC is chosen so that MTF(0)51. We have gen-
erally used a Hann window,17

W~x!512cosS 2p~x2xmin!

xmax2xmin
D , ~4!

wherexmin andxmax are the limits of the data interval.

III. RESULTS

A. Simulations

Figure 1 shows a numerical example of the application of
this technique to an idealized set of data. Figure 1~a! shows
the ESF for a one-dimensional detector element which is
modeled as being uniformly sensitive along its length and
completely insensitive beyond its endpoints. For this ex-
ample, the length of the detector element is 4 times the
sample spacing, and the entire data set consists of 512
samples. Figure 1~b! shows the MTF obtained from the ab-
solute value of the Fourier transform of the derivative of the
ESF, normalized to unity at zero spatial frequency. Since the
spacing between the detector elements is equal to their
lengths, the first two zeros of the MTF in Fig. 1~b! corre-
spond to twice and four times the highest un-aliased fre-
quency supported by the detector array. In Fig. 1~c! additive
white noise has been introduced~for the added Gaussian
noise,s corresponds to 1/40 of the difference in the ESF at
the endpoints!. Figure 1~d! shows the direct calculation of
the MTF by taking the Fourier transform of the numerical
derivative of Fig. 1~c!. Clearly the MTF is significantly de-
graded by the noise. In Fig. 1~e! the data set from Fig. 1~c!
was smoothed with a box-car filter~five sample points wide!
before differentiating. The noise in the MTF is reduced, but
the value of the MTF is systematically underestimated. In
Fig. 1~f! the data from Fig. 1~e! was corrected by dividing by
the appropriate sinc function, but this also restores the noise.
Figure 1~g! shows the fit to the data from Fig. 1~c! using

constraints from Eq.~2!. Both Figs. 1~g! and 1~h!, the result-
ing estimate of the MTF, show a significant reduction in
noise. Further, the estimate of the MTF tracks the known
MTF used in the simulation, including the position at which

FIG. 1. The ESF~a! of a hypothetical one-dimensional detector element,
which integrates uniformly over a region of a given length~here four times
the sample spacing!, gives an MTF~b! whose shape is the absolute value of
a ‘‘sinc’’ function. The addition of noise~c! significantly changes the ap-
pearance of the calculated MTF~d!. Uncorrected smoothing of the spatial
data causes an underestimate of the MTF~e!, while correcting the MTF~f!
by division by the absolute value of the Fourier transform of the smoothing
function gives noise similar to the uncorrected calculation~d!. The mono-
tonic fit ~g! to the noisy data~c! gives an estimate of the MTF~h! which
appears both smooth and without systematic error.

TABLE I. A comparison of errors in the estimate of the MTF by various
metrics for a simple one-dimensional detector. The corresponding graphs are
shown in Fig. 1.

Technique
Max.
error

Root-mean-square
error

Average
error

Direct 1.57 0.419 0.301
Smoothed 0.44 0.199 0.158
Smoothed and corrected 2.22 0.444 0.313
Monotonically constrained 0.06 0.031 0.026
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the MTF vanishes. In Table I the errors in the various tech-
niques of estimating the MTF are compared by means of the
maximum, root-mean-square, and average error. In all cases,
the estimate based on the monotonicity constraint shows the
lowest error, in agreement with visual inspection of the
graphs in Fig. 1. Figure 2 shows a superposition of details of
Figs. 1~a!, 1~c!, and 1~g! near the edge. The conditioned fit
tracks the simulated data in the region of the edge itself, but
away from the edge random fluctuations in the simulated
data are quickly dampened by the monotonicity constraint.

Figure 3 shows a more realistic simulated example. The
hypothetical detector consists of a two-dimensional array of
2003200 mm elements with 200mm spacing. The detector
response was modeled as a Gaussian transfer function (s
520 mm) convolved with the aperture of the individual de-
tector elements. The aperture was modeled as the convolu-
tion of the characteristic functions of two squares with sides
200mm and 50mm. Using this model, the image of an edge
oriented at 1.7° to the detector grid was simulated. The MTF
at this angle is shown as the dark, dashed curve in Figs. 3~b!,
3~c!, and 3~d!. Colored noise with a noise power spectrum
~NPS! shown in Fig. 3~a! was introduced additively. The
resulting population standard deviation in the values as-
signed to the individual detector elements was approximately
2% of the change in mean value across the simulated edge.
The MTF estimates were then calculated using 50 rows of
the simulated array, with 512 detector elements in each row.
The angle of the edge relative to the detector array was de-
termined by an automatic fit~as would be necessary in the
actual application of the technique!. The estimate of the MTF
resulting from resampling the ESF data using an algorithm
based on rebinning the data points is shown in Fig. 3~b!. The
result of calculating the MTF without resampling and using a
Hann window is shown in Fig. 3~c!. The level of noise is
similar to the resampled calculation shown in Fig. 3~b!. The
result of applying the monotonicity constraint of Eq.~2! and
calculating the MTF with a Hann window but no resampling
@Eq. ~3!# give a significant reduction in noise, as shown in
Fig. 3~d!. Quantitative measures of the error in the estimate
of the MTF agree with the visual impression that the mono-

tonic constraint improves the estimate of the MTF, as de-
tailed in Table II. Figure 4 shows a detailed profile near the
edge of both the theoretical shape of the ESF used in the
simulation, the simulated data, and the conditioned fit.
Again, the monotonicity constraint allows the fitted data to
follow the simulated data in the region of the edge, but
quickly dampens random fluctuations beyond this region.
The inset in Fig. 4 illustrates the texture of the colored noise.

B. Practical example

Figure 5 shows the application of this technique to data
acquired from a digital detector in clinical use. The MTF test
tool consisted of a 27mm niobium foil with four ground
edges arranged in a 5 cmsquare, supported on a 0.8 mm
aluminum sheet 10 cm square. The tool was aligned so that
the edges were at a slight angle~measured at 0.86°) to the
detector array. The MTF test tool was designed for routine
measurement of the MTF.18 The test tool has now been used
in a number of clinical trials of digital mammography. A
single image at 28 kVp, 60 mAs was acquired on a prototype
of the GE Senographe 2000D full-field digital mammogra-
phy system. This system incorporates a detector consisting of
a large area matrix of photodiodes on an amorphous silicon
substrate. The entire detector is coated with a layer of
CsI~Tl!. The detector element size is approximately 100mm

FIG. 2. Details of the simulated one-dimensional detector near the edge,
showing the ideal ESF used in the simulation, the simulated data, and the
conditioned data.

FIG. 3. Using additive noise with the power spectrum shown in~a!, the
estimation of the MTF via the ESF was simulated for a detector with
200 mm detector elements. Three different computational procedures are
compared:~b! resampling,~c! no resampling, and~d! imposition of the
monotonicity constraint and no resampling. In~b!, ~c!, and ~d! the dashed
curve shows the known MTF used in the simulation.

TABLE II. A comparison of errors in the estimate of the MTF by various
metrics for a two-dimensional detector. The corresponding graphs are shown
in Fig. 3.

Technique
Max.
error

Root-mean-square
error

Average
error

Resampled 3.75 0.769 0.533
Un-resampled 3.38 0.596 0.400
Monotonically restrained 0.09 0.028 0.022

250 A. D. A. Maidment and M. Albert: Calculation of the modulation transfer function 250

Medical Physics, Vol. 30, No. 2, February 2003



and digitization is performed to a precision of 14 bits/pixel.
The system uses a mammography unit that is essentially
identical to the GE DMR mammography system used for
screen-film mammography. For clinical image processing,
the GE system applies a logarithmic rescaling and a propri-
etary peripheral equalization algorithm to the images after
dark subtraction and flat-fielding. As a prototype, both the
raw ~dark subtraction and flat-fielding only! and processed
~rescaled and peripherally equalized! images were available.
The raw images were used in the calculation of the MTF. A
region of interest consisting of 60 rows of data each 256
samples long straddling the edge was then selected for analy-
sis. In Fig. 5, curve~A! shows the MTF calculated using
resampling, curve~B! show the MTF calculated without re-
sampling, and curve~C! shows the curve calculated using the
monotonicity constraint. Again, the monotonicity constraints
greatly reduces the noise in the estimated MTF.

IV. DISCUSSION

All methods of measuring the MTF of a system rely upon
measuring the spectral response to a known signal. The im-
age of a sharp edge is relatively easy to produce and contains
all spatial frequencies~or more precisely, all spatial frequen-
cies whose frequency vector is perpendicular to the edge!.
By slanting the edge slightly relative to the matrix of detec-
tor elements one can obtain a super-sampled data set which
allows one to estimate the response of the detector at fre-
quencies above the highest unaliased frequency supported by
the detector array. The MTF can then be estimated by calcu-
lating the Fourier transform of the derivative of the ESF.

Estimation in this manner tends to introduce a significant
amount of noise in the estimate of the MTF. All methods of
reducing this noise depend upona priori assumptions about
the nature of the MTF. Generally these assumptions result in
a smoothing of either the spatial or frequency data. In either
case, this can lead to systematic errors in the estimate of the
MTF. Smoothing the spatial data tends to underestimate the
response at high spatial frequencies, as convolution with the

smoothing kernel corresponds to multiplication in frequency
space with a function which decreases at high frequencies.
Smoothing the MTF can lead to the systematic loss of fea-
tures such as peaks and valleys in the MTF.

The use of monotonicity of the ESF as a constraint intro-
duces an alternative which, to the best of our knowledge, has
not been previously investigated. As seen in the examples,
this constraint reduces the noise in the MTF. The two simu-
lated examples indicate that, when applicable, the use of this
constraint does not distort the MTF. Further, the application
to an actual, clinical system showed no difficulty.

One particular aspect of the use of this constraint is that it
is ‘‘adaptive’’ in the sense that near the edge the fitted func-
tion is able to change rapidly, while as one moves away from
the edge the fit is more and more constrained by the accu-
mulated data points. This is significant because in estimating
the MTF by more conventional methods, the length of the
rows of data used in the calculation represents a compromise
between the desire to measure low-frequency components
~which requires long data rows! and the desire to reduce
noise in the estimated MTF~by using data rows of moderate
length!. The nature of this compromise is made clear in light
of the fact that the variance in the estimate of each Fourier
component is proportional to the row-length, while the ex-
pectation value of each Fourier component rapidly ap-
proaches its asymptotic limit once the length of the rows is
great enough to properly contain the edge. Indeed for most
practical digital detectors most of the power in the derivative

FIG. 4. Details of the simulated two-dimensional detector near the edge
being imaged, showing the ideal ESF used in the simulated, the simulated
data, and the conditioned data. The inset demonstrates the appearance of the
colored noise used in the simulation~the horizontal bar is 1 cm long!.

FIG. 5. Demonstration of the estimation of the MTF for a detector in clinical
use ~GE Senographe 2000D! with 100 mm spacing of detector elements.
Curve ~A! shows the estimated MTF based upon resampling, curve~B!
shows the estimated MTF based on a Fourier transform without resampling,
and curve~C! shows the result of the monotonicity constraint and no
resampling.
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of the ESF occurs within a distance from the edge of only a
few times the detector spacing. By using monotonicity, data
far from the edge is highly constrained, so that the noise in
the Fourier components does not increase with increasing
row length.

As with other methods for measuring the MTF using the
image of a sharp edge, this technique relies on several crite-
ria being satisfied. First, if the edge is not sufficiently sharp
then the apparent MTF of the detector will be decreased.
Second, if the edge curves appreciably over the region of
interest being analyzed, this will also produce an apparent
broadening of the LSF and decrease the apparent MTF.
Third, as with similar techniques, the region-of-interest must
be chosen sufficiently small so that nonuniformity in the
x-ray flux does not cause unacceptable systematic errors.
While a major advantage of the regularization procedure dis-
cussed here is that increasing the size of the region-of-
interest~in the direction perpendicular to the edge! does not
greatly increase the statistical noise in the estimate of the
MTF, this procedure does not aide in distinguishing spatial
variations associated with the response function from spatial
variations due to nonuniformity of the incident x-ray flux.

The use of the monotonicity constraint may be misleading
if the detector shows significant structural nonuniformity. For
example, some types of detectors present problems in that
the geometric arrangement of the regions to which the detec-
tor elements respond is not easily determined with precision,
such as detectors using bundles of optical fiber tapers. To the
extent that such artifacts are evident, the system violates the
assumptions of shift-invariance upon which the definition of
the MTF is based. In general, such effects are not so large as
to render the MTF useless, although the use of non-Fourier
based techniques has been suggested.19 The data condition-
ing described in this paper does not address these issues.

As with anya priori constraint, monotonicity is only use-
ful when the constraint is~at least approximately! valid. In
particular, some detectors show overshoot and undershoot in
the ESF, as in xeroradiography. Clearly, this technique would
distort the MTF of such devices by removing the overshoot
and undershoot. Given these caveats, for appropriate devices
the monotonicity constraint should be useful, particularly
when the amount of data available is limited, as shown by
the examples in this paper.

ACKNOWLEDGMENTS

This work was conducted under the auspices of the Inter-
national Digital Mammography Development Group, and
was supported in part by NIH Grant No. R01-CA60192, and
the Department of Health and Human Services, Office of
Women’s Health Grant No. 282-97-0078. The authors wish
to thank Dr. Dev Chakraborty of the Hospital of the Univer-
sity of Pennsylvania for assistance in obtaining the GE Se-
nographe 2000D images.

APPENDIX: MINIMIZATION PROCEDURE

The minimization problem given by Eq.~1! subject to the
monotonicity constraint, Eq.~2!, is a special case of a class

of problems which can be solved by the techniques of qua-
dratic programming. The case is sufficiently special that it is
worth discussing the algorithm for its solution without refer-
ence to the more general problems handled by quadratic pro-
gramming.

Slightly generalizing the problem, given data
Y1 ,Y2 ,...,YN , the goal is to minimize

x25(
i

wi~yi2Yi !
2, ~A1!

subject to the monotonicity constraint

y1<y2<¯<yN , ~A2!

where the$wi% are positive weights associated with the mea-
sured values. In the main text we have treated the weights
associated with each of the data points as being equal to a
common value, so that this common value can be factored
out ~or equivalently, setwi51). In a more careful treatment
one might take each weight as the reciprocal of the variance
in the corresponding detector element, but it is questionable
as to whether this will greatly improve the precision of the
result, and in any case would require the acquisition of mul-
tiple data sets, which is a requirement we are attempting to
avoid.

Any collection of values$yi% satisfying the monotonicity
constraint is said to befeasible. Considered as points inRN,
the set of feasible~i.e., potential! solutions is a convex set
~i.e., given two feasible solutions inRN, all points on the
line segment between them are also feasible!. The function
x2 is itself strictly convex, i.e., given two points$yi% and
$yi8% in RN the value ofx2 at any point on the line segment
between the two points is less than the value estimated by
linear interpolation from the endpoints, with equality only at
the endpoints.

Lemma 1:If for some indexm, Ym.Ym11 , and$yi% is a
feasible solution, then there is a valuey8 such that whenym

and ym11 in $yi% are both set equal toy8, the result is a
feasible solution for which the value ofx2 is not greater than
for the original$yi%.

Proof: Since $yi% is feasible,ym<ym11 . If ym>Ym11 ,
let y85ym . If ym,Ym11 , let y8 be the lesser of the two
valuesYm11 andym11 .

Lemma 2: If Ym.Ym11 , then one can reduce the search
for a minimum to a search inRN21 as follows. Let$zj% be an
N21 vector, with constraintz1<z1<¯<zN21 , and let

x̃25(
j

w̃ j~zj2Zj !
2, ~A3!

where

Zi5Yi , w̃i5wi , i ,m,

Zm5
wmYm1wm11Ym11

wm1wm11
, w̃m5wm1wm11 , ~A4!

Zi5Yi 11 , w̃i5wi 11 , i .m,

and translate the minimization of the new problem back to
the original via
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yi5zi , i ,m,

ym5ym115zm , ~A5!

yi 115zi , i .m.

Proof: By the first lemma, the search can be confined to
the feasible solutions which satisfy the additional constraint
ym5ym115y8. Translatingy8 to zm , the relevant terms of
x2 can be written as

wm~y82Ym!21wm11~y82Ym11!2

5~wm1wm11!~zm2Zm!21wm~Ym2Zm!2

1wm11~Ym112Zm!2, ~A6!

whereZm is the weighted average ofYm andYm11 . As Ym ,
Ym11 , andZm are constants, only the first term on the right
is relevant in the search for the point$yi% which minimizes
x2, and relabeling the relevant quantities gives the lemma.

By applying Lemma 2, one can iteratively reduce the di-
mensionality of the problem until the data itself$Zi% is
monotonic, at which point the solution is simplyzi5Zi . This
also proves the existence and uniqueness of the solution, as
at each reduction of the dimensionality one obtains a state-
ment of the problem equivalent to the previous one, and for
the final version of the problem the data itself is monotonic.
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