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A method for conditioning data used in the measurement of the modulation transfer fuihTien

is discussed. This method is based upon imposing the constraint that the edge spread(fg€&tion

is monotonic. The advantages of this technique, when applicable, are demonstrated with simulated
examples for which the true MTF is known. The application of this technique in the measurement
of the MTF of a digital detector in clinical use is also demonstrated2@®3 American Association

of Physicists in Medicine[DOI: 10.1118/1.1534111
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[. INTRODUCTION edge is almost parallel to the columns of detector elements

The measurement of the modulation transfer funciitF) ~ and imaged:® The precise orientation of the edge can be
is one of the key steps in characterizing a system in terms di€términed from the acquired image. The signal recorded by
linear response theofy This measurement can be per- €ach detector element is a function of the perpendicular dis-
formed by |mag|ng an Object whose Spatia| frequency ConIance of the detector element from the edge. By Combining
tent is known, such as a linear objeor an edgé:® In the ~ multiple rows of detector elements, the ESF can be
latter case, it is necessary to differentfatee edge spread Super-sampled'i.e., sampled with a spacing finer than the

function (ESP to obtain the line spread functichSF). The ~ spacing between detector elements on the detector surface.
MTF is then the normalized magnitude of the Fourier trans_since the MTF is the absolute value of a Fourier transform,

form of the LSF. the estimation of position of the edge does not affect the final

While the MTF of most systems is expected to varyresult.
smoothly as a function of spatial frequency, noise in the im- Given a region of interest containing an image of the
aging system can result in a measured MTF which fluctuate8dge, letx; be the signed perpendicular distance of itte
significantly. Although the noise can generally be reduced byletector element from the edge a¥dthe signal in theith
acquiring and averaging over multiple images, this is notdetector element, where the indeassigned to each detector
always practical or feasible. For example, if MTF measure-element has been chosen so thatx;,;. ThusY; is an
ments are to become part of routine quality assurance fogestimate of the ESF a . However, it is often desirable to
digital detectors(as estimates of the MTF with line-pair condition the data, producing a data ggt} which also
phantoms can be prob|emdm¢hen itis hlghly desirable that serves as an estimate of the ESF but which contains less
the measurement can be made with a single image acquidioise. We propose to obtain such valdgg by minimizing
tion. Attempts to reduce the apparent noise in the MTF with-
out increasing the amount of data acquired have generally X2=E (yi—Y))?, (1)
taken the form of various regularization procedures, includ- '
ing assuming a Gaussian point spread funclitogally fit-
ting to cubic splines,locally fitting to lines? and a variety of
smoothing techniques includinGn a more general linear VisVii1. 2)
systems contextadaptive smoothing”* All regularization
techniques are based upon soapriori assumptions about This represents a type of quadratic optimization problem
the nature of the detector response. These assumptions havgich is particularly amenable to solutioh™® A detailed
generally fallen into two categories: either an assumed funcsolution is described in the Appendix.
tional form or the assumption that a certain degree of In calculating the MTF from the super-sampled data, one
smoothing would not significantly affect the result. In this must deal with the fact that the combined data from multiple
note we discuss regularization based upon the assumptidAws does not sample the ESF at uniform intervals. This is
that the ESF is monotonic. This assumption does not impos@ue to the fact that the slope of the edge generally is not a
an arbitrary functional form on the spread functions and isSimple ratio in terms of the spacing of the detector elements.
consistent, for many systems, with expectations based updane method of handling this is to resample the data so as to

subject to the constraints

the underlying physical principles. obtain a uniform sampling interval, for example, by rebin-
ning the data:* Alternatively, one can calculate the Fourier
Il. BACKGROUND transform directly from the data. Calculation without resam-

In measuring the MTF of a digital device using the ESF,pling has the advantage that one does not need to arbitrarily
an object with a well defined edge is oriented so that thémpose a sampling scheme and one does not introduce any
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related artifacts. The chief disadvantage is that, as one can n

longer use the fast Fourier transfort®FT) algorithm, the a b
calculation is significantly more time consuming. For in-
stance, without any significant effort at optimization, our cal- g)
culations without the FFT took a few minutes, compared to g
on the order of a second for a highly tuned P Beveral
techniques have been recommended for calculating the FoL
rier transform of nonuniformly spaced dafa® particularly distance frequency
in astronomy where sample times can not be completely con
trolled, but as the sample spacing here does not vary greatl c d
from uniform spacing we have used a simple direct calcula-_
tion of the Fourier transform of the derivative:

MTF

signa
MTF

MTF(f)=C| >, W((X;;+1+X))/2)

27mif(Xj 4 1+X()/2

X(Yir1—Yi)e 3 distance frequency

wheref is the magnitude of the spatial frequency at which e f
the MTF is being estimatethe direction being perpendicu-
lar to the edgkg W is an optional windowing function, and
the constanC is chosen so that MTF(G) 1. We have gen-
erally used a Hann windot,

TF
MTF

W= 1— COS( 27T(Xxmm)) , 7 frequency frequency

Xmax™ Xmin

whereXi, and Xy, are the limits of the data interval. g h

—

MTF

Ill. RESULTS

signal

A. Simulations

Figure 1 shows a numerical example of the application of -
this technique to an idealized set of data. Figu@ $hows distance frequency
the ESF for a _one-dl_mensmnal d_e_teCtor element which I‘lctle. 1. The ESF(a) of a hypothetical one-dimensional detector element,
modeled as being uniformly sensitive along its length andyhich integrates uniformly over a region of a given lengtiere four times
completely insensitive beyond its endpoints. For this exthe sample spacinggives an MTHb) whose shape is the absolute value of
ample, the length of the detector element is 4 times thé “sinc” function. The addition of noiséc) significantly changes the ap-

| . d th fi dat t ist f 51zarance of the calculated MTH). Uncorrected smoothing of the spatial
sample spacing, an € enure data set consists o ta causes an underestimate of the M@&F- while correcting the MTHR(f)

samples. Figure (b) shows the MTF obtained from the ab- py division by the absolute value of the Fourier transform of the smoothing
solute value of the Fourier transform of the derivative of thefunction gives noise similar to the uncorrected calculatidn The mono-
ESF, normalized to unity at zero spatial frequency. Since th&"ic fit (9 to the noisy datdc) gives an estimate of the MTH) which
. - alppears both smooth and without systematic error.

spacing between the detector elements is equal to thel
lengths, the _f|rst two ZEros of the MT.F in Fig(b} Corre=  onstraints from Eq2). Both Figs. 1g) and Xh), the result-
spond to twice and four times the highest un-aliased fre- . N S

uency supported by the detector array. In Figg) hdditive ing estimate of the MTF, show a significant reduction in
quency supp y the Y- ) noise. Further, the estimate of the MTF tracks the known
white noise has been introducétbr the added Gaussian

noise. - corresponds to 1/40 of the difference in the ESF atMTF used in the simulation, including the position at which
the endpoints F_igure 1d) Sh_OWS the direct calculation _Of TasLeE |. A comparison of errors in the estimate of the MTF by various
the MTF by taking the Fourier transform of the numerical metrics for a simple one-dimensional detector. The corresponding graphs are
derivative of Fig. 1c). Clearly the MTF is significantly de- shown in Fig. 1.

graded by the noise. In Fig(d) the data set from Fig.(t)
was smoothed with a box-car filtéive sample points wide

Max. Root-mean-square Average

. o o . Technique error error error
before differentiating. The noise in the MTF is reduced, but—
the value of the MTF is systematically underestimated. Ing'fe‘“th . 1(-)514 0641159 063:(3518
. . PR mootne . . .
Fig. 1(f) the .data Trom Flg'. € was cqrrected by dividing by. Smoothed and corrected 2.22 0.444 0.313
the appropriate sinc function, but this also restores the NOIS§4onotonically constrained 0.06 0.031 0.026

Figure Xg) shows the fit to the data from Fig(d using
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Fic. 2. Details of the simulated one-dimensional detector near the edge, 05,3 10.0 05,5 700
showing the ideal ESF used in the simulation, the simulated data, and the frequency (Ip/mm) frequency (Ip/mm)
conditioned data.
Fic. 3. Using additive noise with the power spectrum shown(@n the
estimation of the MTF via the ESF was simulated for a detector with
200 um detector elements. Three different computational procedures are
the MTF vanishes. In Table | the errors in the various tech-compared:(b) resampling,(c) no resampling, andd) imposition of the

niques of estimating the MTF are compared by means of thaonotonicity constraint and no resgmpling_.(b), ((_:), and (d) the dashed
maximum, root-mean-square, and average error. In all case®@/Ve Shows the known MTF used in the simulation.
the estimate based on the monotonicity constraint shows the

lowest error, in agreement with visual inspection of thetonic constraint improves the estimate of the MTF, as de-
graphs in Fig. 1. Figure 2 shows a superposition of details ofajled in Table II. Figure 4 shows a detailed profile near the
Figs. 1@), 1(c), and 1g) near the edge. The conditioned fit edge of both the theoretical shape of the ESF used in the
tracks the simulated data in the region of the edge itself, bu§imulation, the simulated data, and the conditioned fit.
away from the edge random fluctuations in the simulatedygain, the monotonicity constraint allows the fitted data to
data are quickly dampened by the monotonicity constraint. follow the simulated data in the region of the edge, but
Figure 3 shows a more realistic simulated example. Theuickly dampens random fluctuations beyond this region.

hypothetical detector consists of a two-dimensional array ofrhe inset in Fig. 4 illustrates the texture of the colored noise.
200X 200 um elements with 20Qum spacing. The detector

response was modeled as a Gaussian transfer function (8. practical example

=20 um) convolved with the aperture of the individual de- ) — . .

tector elements. The aperture was modeled as the convolu- Figureé 5 shows the application of this technique to data
tion of the characteristic functions of two squares with side2cduired from a digital detector in clinical use. The MTF test
200 um and 50um. Using this model, the image of an edge tool consisted of_ a 27um niobium foil with four ground
oriented at 1.7° to the detector grid was simulated. The MTFEJges arrangechia 5 cmsquare, supported on a 0.8 mm
at this angle is shown as the dark, dashed curve in Figs, 3 aluminum sheet 10 cm square. The tool was aligned so that

3(c), and 3d). Colored noise with a noise power spectrum the €dges were at a slight angleeasured at 0.86°) to the
(NPS shown in Fig. 8) was introduced additively. The detector array. The MTF test tool was designed for routine

resulting population standard deviation in the values asMeasurement of the MTH The test tool has now been used

signed to the individual detector elements was approximatel{! & number of clinical trials of digital mammography. A
2% of the change in mean value across the simulated edggl"d!e image at 28 kVp, 60 mAs was acquired on a prototype
The MTF estimates were then calculated using 50 rows off theé GE Senographe 2000D full-field digital mammogra-
the simulated array, with 512 detector elements in each rowPhY Systeém. This system incorporates a detector consisting of
The angle of the edge relative to the detector array was dé? 1arge area matrix of photodiodes on an amorphous silicon
termined by an automatic fias would be necessary in the substrate. The entire detector. is coated ywth a layer of
actual application of the techniquéhe estimate of the MTF  CSI(TD. The detector element size is approximately 100
resulting from resampling the ESF data using an algorithm

based on rebinning the data points is shown in F{g).3The  TagLe 11 A comparison of errors in the estimate of the MTF by various
result of calculating the MTF without resampling and using ametrics for a two-dimensional detector. The corresponding graphs are shown
Hann window is shown in Fig. (8). The level of noise is inFig. 3.

similar to the resampled calculation shown in Figo)3 The Max.  Rootmean-square Average
result of applying the monotonicity constraint of £g) and Technique error error error
calculating the MTF with a Hann window but no resampling

[Eq. (3)] give a significant reduction in noise, as shown inSi?;'::r'ﬁdle J g;g 8'282 g'igg

Fig. 3(d). Quantitative measures of the error in the estimatqﬂonotonicg”y restrained 0.09 0028 0022

of the MTF agree with the visual impression that the mono
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Fic. 4. Details of the simulated two-dimensional detector near the edge
being imaged, showing the ideal ESF used in the simulated, the simulated
data, and the conditioned data. The inset demonstrates the appearance of the 02k
colored noise used in the simulati¢tie horizontal bar is 1 cm long '
and digitization is performed to a precision of 14 bits/pixel.

i i i 0.0
The system uses a mammography unit that is essentially 00 50 00 150 20.0

identical to the GE DMR mammaography system used for Ip/mm

screen-film mammography. For clinical image processin
grapny ge p g-he. 5. Demonstration of the estimation of the MTF for a detector in clinical

the GE system applles a lOgamhmIC rescallng and a prOpnGse (GE Senographe 20000with 100 um spacing of detector elements.

etary peripheral equalization algorithm to the images afteturve (A) shows the estimated MTF based upon resampling, c@je
dark subtraction and flat-fielding. As a prototype, both theshows the estimated MTF based on a Fourier transform without resampling,

raw (dark subtraction and flat-fielding onlyand processed @and curve(C) shows the result of the monotonicity constraint and no
. N . lina.

(rescaled and peripherally equalizéchages were available. >0 P9

The raw images were used in the calculation of the MTF. A

region of interest consisting of 60 rows of data each 256 . S
samples long straddling the edge was then selected for ana@moothmg kernel corresponds to multiplication in frequency

sis. In Fig. 5, curve(A) shows the MTF calculated using SPace with a function which decreases at high frequencies.
resampling, curvéB) show the MTF calculated without re- Smoothing the MTF can lead to f[he systematic loss of fea-
sampling, and curvéC) shows the curve calculated using the tUres such as peaks and valleys in the MTF.

monotonicity constraint. Again, the monotonicity constraints 1€ use of monotonicity of the ESF as a constraint intro-
greatly reduces the noise in the estimated MTF. duces an alternative which, to the best of our knowledge, has

not been previously investigated. As seen in the examples,

this constraint reduces the noise in the MTF. The two simu-
IV. DISCUSSION lated examples indicate that, when applicable, the use of this

All methods of measuring the MTF of a system rely uponconstraint does not distort the MTF. Further, the application
measuring the spectral response to a known signal. The inte an actual, clinical system showed no difficulty.
age of a sharp edge is relatively easy to produce and contains One particular aspect of the use of this constraint is that it
all spatial frequencie®r more precisely, all spatial frequen- is “adaptive” in the sense that near the edge the fitted func-
cies whose frequency vector is perpendicular to the edgetion is able to change rapidly, while as one moves away from
By slanting the edge slightly relative to the matrix of detec-the edge the fit is more and more constrained by the accu-
tor elements one can obtain a super-sampled data set whichulated data points. This is significant because in estimating
allows one to estimate the response of the detector at fre¢he MTF by more conventional methods, the length of the
guencies above the highest unaliased frequency supported byws of data used in the calculation represents a compromise
the detector array. The MTF can then be estimated by calcibetween the desire to measure low-frequency components
lating the Fourier transform of the derivative of the ESF.  (which requires long data rowsnd the desire to reduce
Estimation in this manner tends to introduce a significaninoise in the estimated MTfby using data rows of moderate

amount of noise in the estimate of the MTF. All methods oflength. The nature of this compromise is made clear in light
reducing this noise depend uparpriori assumptions about of the fact that the variance in the estimate of each Fourier
the nature of the MTF. Generally these assumptions result inomponent is proportional to the row-length, while the ex-
a smoothing of either the spatial or frequency data. In eithepectation value of each Fourier component rapidly ap-
case, this can lead to systematic errors in the estimate of thoaches its asymptotic limit once the length of the rows is
MTF. Smoothing the spatial data tends to underestimate thgreat enough to properly contain the edge. Indeed for most
response at high spatial frequencies, as convolution with thpractical digital detectors most of the power in the derivative

Medical Physics, Vol. 30, No. 2, February 2003
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of the ESF occurs within a distance from the edge of only aof problems which can be solved by the techniques of qua-
few times the detector spacing. By using monotonicity, datalratic programming. The case is sufficiently special that it is
far from the edge is highly constrained, so that the noise iworth discussing the algorithm for its solution without refer-
the Fourier components does not increase with increasingnce to the more general problems handled by quadratic pro-
row length. gramming.

As with other methods for measuring the MTF using the Slightly generalizing the problem, given data
image of a sharp edge, this technique relies on several crité;,Y,,...,Yy, the goal is to minimize
ria being satisfied. First, if the edge is not sufficiently sharp
then the apparent MTF of the detector will be decreased. XZZE w;i(yi—Y;)?, (A1)
Second, if the edge curves appreciably over the region of i
interest being analyzed, this will also produce an apparer‘gubject to the monotonicity constraint
broadening of the LSF and decrease the apparent MTF.
Third, as with similar techniques, the region-of-interest must  Y1=Y2<"""<Yn, (A2)

be chosen sufficiently small so that nonuniformity_ in the yhere the{w;} are positive weights associated with the mea-
x-ray flux does not cause unacceptable systematic erorgred values. In the main text we have treated the weights
While a major advantage of the regularization procedure disassociated with each of the data points as being equal to a
cussed here is that increasing the size of the region-ofzommon value, so that this common value can be factored
interest(in the direction perpendicular to the edgtoes not 4t (or equivalently, set;=1). In a more careful treatment
greatly increase the statistical noise in the estimate of thgne might take each weight as the reciprocal of the variance
MTF, .thIS procedure dqes not aide in dlstmg_UlShlng spat|g|n the corresponding detector element, but it is questionable
variations associated with the response function from spatig{g 1o whether this will greatly improve the precision of the
variations due to nonuniformity of the incident x-ray flux. - resyit, and in any case would require the acquisition of mul-
_The use of the monotonicity constraint may be misleading;p|e data sets, which is a requirement we are attempting to
if the detector shows significant structural nonuniformity. For5y,0iq.
example, some types of detectors present problems in that any collection of valueqy;} satisfying the monotonicity
the geometric arrangement of the regions to which the deteqsonstraint is said to beeasible Considered as points B,
tor elements respond is not easily determined with precisionne set of feasibldi.e., potential solutions is a convex set
such as detectors using bundles of optical fiber tapers. To thg e given two feasible solutions ", all points on the
extent that such artifacts are evident, the system violates thg,e segment between them are also feagiblée function
assumptions of shift-invariance upon which the definition of, 2 s jtself strictly convexi.e., given two pointsly;} and
the MTF is based. In general, such effects are not so large a$/1 in %N the value ofy? at any point on the line segment
to render the MTF useless, althoue%t: the use of non-Fourigfetween the two points is less than the value estimated by
based techniques has been suggestdthe data condition- jinear interpolation from the endpoints, with equality only at
ing described in this paper does not address these issues. ihe endpoints.

As with anya priori constraint, monotonicity is only use- | emma 1:If for some indexm, Y ;> Y, 1 and{y;} is a
ful when the constraint i¢at least approximatelyvalid. In feasible solution, then there is a valye such that whery,,
particular, some detectors show overshoot and undershoot it} Yms1 in {y;} are both set equal tg’, the result is a
the ESF, as in xeroradiography. Clearly, this technique wouldesiple solution for which the value gf is not greater than
distort the MTF of such devices by removing the overshootg, ihe original{y;}.
and undershoot. Given these caveats, for appropriate devices pqof- Since{y;} is feasible,yn<Ymi1. If Ym=Ymi1
the monotonicity constraint should be useful, particularly|ot V' =Y. If yu<Yms1, lety’ be the lesser of the two
when the amount of data available is limited, as shown bX/aIuestH andy,,. ;.

the examples in this paper. Lemma 2If Y>> Y. 1, then one can reduce the search
for a minimum to a search "~ * as follows. Lef{z;} be an
ACKNOWLEDGMENTS N—1 vector, with constraint;<z;<---<zy_,, and let
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APPENDIX: MINIMIZATION PROCEDURE Zi=Yit1, Wi=Wjyq, i>m,

The minimization problem given by E¢l) subject to the and translate the minimization of the new problem back to
monotonicity constraint, Eq2), is a special case of a class the original via
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