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A method is proposed for realistic simulation of the breast ductal network as part of a computer
three-dimensional3-D) breast phantom. The ductal network is simulated using tree models. Syn-
thetic trees are generated based upon a description of ductal branching by ramification rfRitrices
matriceg, whose elements represent the probabilities of branching at various levels of a tree. We
simulated the ductal network of the breast, consisting of multiple lobes, by random binary trees
(RBT). Each lobe extends from the ampulla and consists of branching ductal segments of decreas-
ing size, and the associated terminal ductal-lobular units. The lobes follow curved paths that project
from the nipple toward the chest wall. We have evaluated the RBT model by comparing manually-
traced ductal networks from 25 projections of ductal lobes in clinical galactograms and manually-
traced networks from 23 projections of synthetic RBTs. A root-mean-squas fractional error

of 41%, between the R-matrix elements corresponding to clinical and synthetic images, was com-
puted. This difference was influenced by projection and segmentation artifacts and by the limited
number of available images. In addition, we analyzed 23 synthetic trees generated using R matrices
computed from clinical images. A comparison of these synthetic and clinical images yielded a rms
fractional error of 11%, suggesting the possibility that a more appropriate model of the ductal
branching morphology may be developed. Rejection of the RBT model also suggests the existence
of a relationship between ductal branching morphology and the state of mammary development and
pathology. © 2003 American Association of Physicists in Medicif®OI: 10.1118/1.15864533

Key words: mammography simulation, breast ductal network, galactography, branching analysis,
ramification matrices

[. INTRODUCTION converging to the nipple. The lobes are not physically sepa-

A model of the breast ductal network has been developed d&t€d and the branches from various lobes can overlap. Local
a component of a 3-D computer-generated breast phéntongrOWth of'the ductal epﬂheha} t|ss'ue is influenced by h.or-
used in an approach to generate simulated mammogram&©nal activity as well as by signaling from the surrounding
The breast phantom and mammography simulation hav&tromal tissué.” The existence of ductal anastomoses, con-
been proposed for analyzing the effects of breast positioninagec'“‘)n.S between the ducts from different breast lobes, has
and compression during mammography, estimation of the ra€en discussed in the literature but is not uniformly accepted
diation dose received during mammographyevelopment a@mong researchefs. Each lobe is drained by a major duct,
and optimization of breast imaging modalitiés.g., tomo- extending from the nipple toward the chest wall in a branch-
synthesis, stereomammography, etmammogram sequence ing network of smaller ducts. Several major ducts join in a
registration, and the development and evaluation oflilated segment beneath the nipple, known as the ampulla or
computer-aided diagnosis methods. The synthetic mammadactiferous sinus. There are six to eight orifices in the nipple.
grams produced using the breast phantom have been previhe major ducts and the nipple openings are 2—4.5 mm and
ously evaluated by texture analyif this paper, the model 0.4—0.7 mm in diameter, respectivéfy:* Branching of the
of the ductal network is assessed. ducts toward the chest wall continues until a duct finally
The breast is a modified sweat gland, located at midends in blunt finger-like ductules formed by the acini, the
thorax, within the superficial fascia beneath the $kihe  basic glandular secretory units. Lobules consist of the acini
gland develops under genetic and hormonal influences froraurrounded by specialized connective tissue. The lobules, to-
very early life, with a significant development in women gether with the associated terminal duct, are histologically
during puberty. The adult female breast consists of 15—2@dentified as the terminal ductal lobular utitDLU). Hor-
irregularly shaped lobes, i.e., subnetworks of breast ductsnonal influences in the adult female breast during pregnancy
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SEGMENTAL MODEL CONNECTED MODEL ductal networkl The segmental approximation is consistent

with published descriptions of mammographic image

element$? since only short segments of the ductal network

can be seen distinctly in mammograms, albeit with minimal

contrast. This linear approximation roughly simulates the ap-
pearance of ducts in mammograms but was found to lack
realism by neglecting connectivity, and thus will not be dis-

cussed further.

More realistic models of the ductal network can be
achieved by a variety of tree modeling algorithffis?® Mod-
eling of a tree is typically approached at two levels. At the
topological level, the tree is described in terms of the con-
nections between nodése., duct branching pointsAt the
metrical level, the lengths and spatial directions of the
branches are specified. In an example of a computer-
generated tree model of breast ducts, Tagibal>’ used an
algorithm based upon fractal set theory, justified by the self-
similarity of ductal sub-trees within the entire tree. In their
Fic. 1. Two approaches to simulate breast ducts illustrated by sections of th&/Ork, the topological branching pattern of a perfectly bal-
breast software phantom. Segmental mdtit) contains short linear seg- anced binary treéeach duct branches uniformly into two

ments distributed within the predominantly fibroglandular tissue region,; ; ;
with the average direction toward the nipple. A connected maddght) identical new segmer)tswas used for all simulated trees,

consists of a computer generated ramified tree-like structure. Note that trQrOdUCmg a very regular image texture. We postulated that
connected tree-like structure appears in the model section as a collection 8he realism of the textural appearance would be improved by

segments. Small spheres simulate TDLUs in both segmental and connect¢e introduction of a stochastically-generated branching pat-
duct models. tern.
The ductal network model used in our 3-D breast
phantont is based upon ramification matrix analySi® pro-

result in the proliferation and differentiation of the TDLU’s, vide a realistic appearing ductal branching pattern. Ramifi-
ultimately responsible for the production of milk, which is cation matriceYR matrice$ represent parameters in a sto-
stored in the ducts and expressed through the nipple. Involwshastic model for generating trees at the topological level.
tion occurs after weaning following each pregnancy. ThisThe R-matrix elements represent probabilities of different
developmental cycle can be repeated until the atrophy opatterns of branching for the nodes at various levels of a tree.
ductal and lobular structures in the post-menopausal breastannimenus and Vienn8thave observed that a large variety
unless the woman is on hormone-replacement therapy. of botanical trees can be simulated by varying the topologi-

The ductal network is an important element of the breastal parametergbranching probabilitigs using the same geo-
anatomy since practically all breast cancers originate in thenetric construction rulesbranch widths and branching
ductal(=90%) or lobular(~10%) epithelium, with very few angle$. This is in contrast with the frequently used computer
arising in the connective or adipose tiséueis believed that ~ graphics approach of modeling diverse tree forms by chang-
these breast carcinomas most often begin development g the metric rules while using a fixed topological tree. R
spreading along the lumen of the ducts or lobules. For thignatrices are an extension of approaches used by Hdrton
reason microcalcification clusters associated with earlyand Strahle¥ in geological studies of river networks.
breast cancer often follow a ductal distributithAlterna- Woldenberél listed various natural hierarchical structures
tively, some breast cancers are revealed by nipple dischargbat can be analyzed using a similar approach. A section of
with no palpable or mammographically visible lesions. Suchthe breast phantom incorporating this connected ductal
cases are usually evaluated using galactography, a procedur@del is shown in Fig. (b). Note that the simulated ductal
for imaging the contrast-enhanced ductal netwdfR°There  trees in the phantom section appear as a collection of seg-
has also been an increased interest in breast duct examinatiorents passing through the section.
for the early detection of cancer using several approaches, An algorithm for tree generation based upon R matrices is
e.g., breast lavag¥, nipple aspirate fluid analysi, or  described in the next section. Results of an evaluation of the
ductoscopy:*® Breast ducts also contribute to the parenchy-proposed model of the ductal network, by comparing the R
mal pattern, the background texture in mammograms. It hagatrices computed on synthetic ductal trees and on clinical
been shown that there is a correlation between the appeagalactograms, are given in Sec. Ill.
ance of the parenchyma and the risk of breast cafic@r.

We have considered two approaches for modeling thél. MATERIALS AND METHODS
breast ductal network, shown in Fig. @) an approximation A Imol : f the ductal K model
of the ducts by short linear segments, placed randomly™ mplementation of the ductal network mode
within the predominantly fibroglandular tissue region and The ductal network model is implemented based upon the
oriented toward the nippl&-?> and (2) a tree model of the description of branching patterns of tree-like structures given

Ramified tree

BN

Linear segments
converging to nipple
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by R matrices. The model was developed using two algo-
rithms: one for computing R matrices from a given tree and
another for generating tree topology from a given or inferred
R matrix. The tree generation algorithm was used to simulate
the ductal network, assuming a branching pattern of random
binary treegRBT9 that, in theory, minimally constrains the
tree morphology® We have analyzed clinical galactograms
by computing their R matrices in order to evaluate the pro-
posed ductal model. Evaluation results are given in Sec. lll.
The following is a brief description of the R-matrix compu-
tation and tree generation, and the selection of the properties
of the metrical trees used for duct simulation.

(b)

1. Computation of an R matrix from a given tree

The algorithm begins by identifying the root, the internal
and terminal nodes, and the branches between the nodes in
tree. Next, the nodes are labeled by their orders and biorders,
as follows.

(1) All terminal nodes have order 1.
(2) An internal node, with children nodes of ordérandj, (c) (d)
assuming bmary branchlng, will have order mq>)(|f Fic. 2. Examples of computer-generated tréasA perfectly balanced tree.

i#]jor(i+1)ifi=j. The labeling procedure continues (p) A thin fern. (c) and (d) Two random binary trees, generated using dif-
until reaching the root node. The order of the root nodeferent seeds for random number generation.

s, is called the Strahler number of the tree structure, and
measures the topological size of a tfée.
(3) A parent node of ordek, with two children-nodes of

ordersi andj, with =], has biorder ). of child nodes. These new child nodes are randomly assigned

orders based on the probabilities given by the R-matrix ele-
ments ryq,...rck-1, Tfkk, [See Eq. (1)]. Here,
Nc1,---Fkk—1 are the probabilities that the child nodes will

R=[ry;=byjlax.ke(2s),je(1k)], (1) be assigned orderk(l),..., & k—1), respectively, and, ,

is the probability that the assigned orders will be—(1,

where a, is equal to the number of nodes with ordetk  k—1). When there remains no childless nodes of order
=2). Forj<k, by; is the number of nodes with biorder greater than one, the tree is complete. Once the tree is com-
(k,j), while for j=k, by; is the number of nodes with peted, the orders assigned to each node during construction
biorder k—1k—1), (k=2). Thereforer, ;=by ;/ayis the  agree with the orders that would be determined by the appli-
probability for a node of ordek to have biorderK— 4y ;.j  cation of the algorithm in Sec. IIA1 to the completed tree.

The R matrix of a tree-like structure with Strahler number
sis a lower triangular matrix of sizes¢-1)x s, defined a®

—dj), whered ; is the Kronecker delta. As an illustration of the algorithm, a few examples of R
For example, the R matrix correspondingste 4 has, at  matrices and the corresponding tree models are given in Fig.
most, nine nonzero elements: 2. Trees in Figs. @) and 2b) are a perfectly balanced tree
o1 T, 0 O and a thin fern, respectively, with the R matrices equal to
R(s=4)=|T r r 0. 2
(s=4)=|T31 I3z T33 2 010 O
Fa1 Ta2 Taz Taa
Rpert Balancs 0 0 1 0|, Rreri=[0.9 0.1. (©)
2. Generation of a topological tree from a given R 0 0 01

matrix

A given R matrix, determined either experimentally or TWO random binary trees, wite=4 in Figs. Zc) and 2d)
from theoretical considerations, defines a stochastic procegé€ generated with the same R matrix equal to
for the generation of binary trees. The algorithm which de-
fines this process begins with an incomplete tree containing 0.5 0.5 0 0
of only the root node. This root node is assigned an osder _
corresponding to the Strahler number of the R matrix, i.e., Rrgr=| 0.5 0.25 0.25 01 @)
the Strahler number that the tree will have when completed. 05 025 0125 0.12
At each iteration, a node with assigned ordter1, which
does not yet have child nodes, is selected and assigned a pasing two different seeds for random number generation.

Medical Physics, Vol. 30, No. 7, July 2003



1917 Bakic et al.: Mammogram synthesis using a 3D simulation. IIl. 1917

3. Selection of topological and metrical tree when the orders of the children ducts ajeand k# ]
properties (k#1). ®" and®” are randomly chosen from the intervals
—10°,109 and[—5°,5°, respectively. A more accurate esti-

The proposed 3-D model of the breast ductal network[
prop ate of the anglesp, 6,, and 6, will be possible after a

consists of several ramified trees, each representing a duc . .

lobe. Each ductal lobe is modeled by an RBT. The ampulla,Uture analys!s of 3D Images of the_ breast ductal network.

modeled by a short, ellipsoidal widening beneath the nipple The mapping _Of a vertl_cal trge Into thg_geometry of the
§>reast phantom is determined Gy the position of the am-

is modeled as 10 mm long and 4 mm in diameter. There arBu”a’ serving as an anterior_. endpoint and connepting root

no published results on the statistics of branching of thenodes of all simulated lobei) the chosen posterior end-

breast ductal network. Thus. we selected RBTs for modelin%omt on the intersection of the anterior and posterior ellip-

ductal lobes, since they represent theoretically a minimum o qidT_\l) bforders gf}he phanto(;n fibLogIandulsr regisee 'Fig. h
constraints on the tree morpholoyThe R matrix used for in et ]) an (".') a curve p.".ﬂ » an aren, conneptlng the
generation of the RBTs, given by E¢4), represents the two endpoints demed by) and(u_). Th'? arch, modeling the_
asymptotic values of branching probabilities when the numSUTvature of the simulated lobe, is defined by a user-supplied

ber of nodes in a tree increases to infirffty> Each lobe was angle between the root of the lobe and the straight line con-

generated using the same matrix; the variation in the appea?—eCtlng the two endpoints. In this work, a lobe curvature

ance of the lobes is due to the stochastic nature of the tre%ngle of 20° was used. In the simulated lobe, each branch is

generating process generated with position and direction relative to the arch of
The number of branching levels of a tree is related to théhe lobe[defined in(iii)], equal to the position and direction

order of the tree root and this parameter is specified at th8f the corresponding branch in the vertical tree relative to the

beginning of the simulation. Real ductal trees have a relall€€’s vertical axis. The posterior end points for each tree are

tively high number of branching levels. However, only the selected, assuming an approximately equal angular distance

larger ducts are visualized by galactography. Based on aIaetween the lobes around the nipple—chest wall line, as sug-

initial analysis of several galactograms, we limited the treegested bY an ultrasound_z_inalyas of breast dtis.
root order tos=4. In addition to the ramified trees, our 3-D breast phantom

The metrical structure of each tree is generated in twdnCIUdes models of the TDLUs. Each TDLU is simulated by

steps. First, avertical treeis generated in a separate rectan-2 sphere of 1-2 mm diameter, according to descriptions in

. 23 .
gular coordinate system. This vertical tree is then mappegqe Ilterature‘f Exar_nplgs of some simulated ducts are
éhown in Fig. 3. Projections of individual ductal lobes are

shown in Figs. 8) and 3b), and a projection of five simu-
lated lobes is given in Fig.(8). For clarity, all other simu-
lated medium scale anatomic structdrémve been sup-
pressed in these images. Several views of the same five
simulated lobes, generated from a virtual reality representa-
tion, were shown in Fig. 6 of Ref. 1. The virtual reality
representation was generated using the VRML modeling
languag@* by transforming each voxel of the 3-D model of
%fe ductal network into a cube within the virtual reality
space. This virtual reality representation of the five simulated
lobes is available via EPAPS.

length N and radiusp of the individual branches decrease
with the orderk of the associated distal node according to

K K
>\(k)=7\(s)g and p(k)=p(s)§, 5)

wheres is the order of the root node. Preliminary values of
\(s) andp(s) were selected as 1 cm and 1 mm, respectively
More accurate values of these parameters will be estimat
from future analyses of a larger number of galactograms.
In producing the vertical tree, initially, a vertical branch is
associated with the root node. At each node of older,
the branches leading to the child nodes are generated in a
plane containing the vertical axis and rotated at an agigle B. Evaluation of the ductal network model

h ical axis. Th i i
about the vertical axis. The angieis determined by We evaluated the breast ductal network model by compar-

p=pt+d'+90° (6)  ing simulated trees with real ducts from galactogram images.

where ¢, is the angle of rotation used at the parent nable, Ducts are barely seen in conventiqnal mammograms. On t.he
is a random angle uniformly selected in the interval other hand, galactograms, x-ray images of the breast with
[—15°,159, and the phyllotaxy of the branching network is contrast enhanced ducts, allow the visualization and analysis

assumed to be such that the plane of branching rotates by t_he ductal network. We havg retr_ospectively analyzed
approximately 90° between parent and child nodes. Withi inical galactograms from 15 patients imaged at the Thomas

this plane, the branches to the child nodes are at artijles Jeﬁec;so_n Univer;it()j/ Bfrez_ast In(;agir;]g IfCent@RhiladeIphia,
and 6, relative to the vertical axis, where PA) during a period of six and a al yea(3une 1994
January 2001 The total number of patients who had under-

6,=60°+0', 6,=-60°+0’, (7)  gone galactography during this period was 41. Galactograms
from 17 patients were unavailable because they had been
_ i returned to the patients or the primary health care institu-
o o ) o am K7 tions, and galactograms from another nine patients were not
= + —_— =(— + — ; ; i
61=(30°+0 62=(=30°+6") k-1’ ® used because of obstruction or poor image quality. The mean

when the orders of both children ducts are the same, and

k-1’

Medical Physics, Vol. 30, No. 7, July 2003
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Fic. 3. Examples of computer-
generated duct lobe¢a) and (b) Two
synthetic mammograms, each with a
single simulated duct lobéc) A simu-
lated mammogram with five duct
lobes. (In these simulated images,
other simulated anatomical structures,
e.g., Cooper’s ligaments and adipose
compartments, have been suppressed.

(b)

age of the 15 patients whose cases were analyzed, was 4Qjdence of consecutive tree branches starting on a node of
years(range, 29—75 yearsOf these 15 patients, eigiinean  orderk and ending at a node of order>k. Thus?®
age, 44.2 years; range, 29—-74 yedrad no reported galac- _
to A . Brk=2k/Zk11, 9
graphic findings and sevdmean age, 54.8 years; range,
43-75 yearshad findings of ductal ectasia, cysts, or papil-whereX, and3,, , are the numbers of segments of oréter
loma. There were no reported findings of malignancy fromand k+ 1), respectively. The bifurcation ratios correspond-
the analyzed cases. ing to an RBT are equal t8,=8,= ;=428
Here 25 galactograms from the 15 patients were analyzed: The algorithm for computing R matrices, adopted from
nine mediolateral or mediolateral oblique viesereafter Viennotet al,?® was described in Sec. [1A 1, while here we
referred to in combination as ML/MLand 16 craniocaudal focus on the practical problems of tracing the ductal network
views (CC). Out of 25 galactograms, there weii¢ 3 MLO  from clinical images and a statistical comparison of the com-
views (2 right and 1 leftand 6 ML views(3 right and 3 leff, puted parameters.
and (ii) 16 CC views, 9 of the right breast and 7 of the left.
One of the ML views was magnified. In one case, two Iobesl Tracing the ductal network f Jact
of the same breast were imagdé comprehensive list of facing the auctal network from galactograms
patient data, showing their ages, the views available for this We traced the network of larger ducts from the clinical
study, the symptoms, and the radiologists’ diagnoses, is tab@galactograms in order to reconstruct their topological struc-
lated in our previous publicatiof?) ture. A significant difficulty in this approach, due to the pro-
The evaluation of the ductal network model was per-jective nature of galactograms, is distinguishing the points
formed using the following steps. First, the branching strucwhere ducts branch from the points where they overlap. We
tures in clinical and synthetic images were identified andadopted arad hocreasoning based on the assumption that
segmented, and the corresponding R matrices were conpoints where ducts overlap look brighter than the points of
puted. Second, the R-matrix elements were averaged over allict branching, due to the superposition of the x-ray attenu-
the nodes in the clinical and synthetic ductal trees, and thation of two ducts on top of each other, as illustrated in Fig.
averaged matrices were statistically compared. The node a¥- This approach is, however, still sensitive(tbthe orien-
eraging is discussed in more detail in Section |1 B 2 and theation of the plane in which the duct branches with respect to
Appendix. the film plane,(ii) the effects of overlapping of more than
The resultant ductal trees were also analyzed in terms dfvo ducts at the same point, afid) nonuniform filling of all
their bifurcation ratios, providing an alternative means ofducts with contrast agent.
describing ramified patterns. These were originally intro- An identification of the branching pattern was done manu-
duced for analyzing river topologies and the tree structure oélly by placing a galactogram under a semitransparent trac-
fluvial basins?®*° A bifurcation ratio is defined as the ratio ing paper on a light box. The procedure consists of three
between the number of tree segments of two consecutiveasic operations{l) marking the points where large ducts
orders. A segment of ordde is defined as the longest se- branch or overlap(2) distinguishing between branching and

Medical Physics, Vol. 30, No. 7, July 2003



1919 Bakic et al.: Mammogram synthesis using a 3D simulation. IIl. 1919

node, corresponding to the probability of ,=15/30=0.5.

In a similar manner all the elements of the R matrix shown in
Eq. (10) were computed from the galactogram shown in Fig.
5(a). In this paper we computed R matrices with nine ele-
ments and Strahler number=4, corresponding to a root
branch with label 4. The bifurcation ratios corresponding to
the same ductal tree are equal g =3.47, 8,=5.00,
B3=3.00. To illustrate a computation of the bifurcation ra-
tios, segments of order 3 and order 4 are denoted in Fig. 5
There are three segments of orde(i3:a—a’, (ii) a—a’, and
(iii) b—b’. The only segment of order 4;-c, connects all the
nodes of order 4. Using E@9), the value of the bifurcation
ratio B is equal toB;=23/3,=3/1=3.

We have also analyzed synthetic galactograms generated
by the projection of 3-D RBT models of individual ductal
lobes. The R matrices were computed from the projections of
simulated vertical ductal trees, rather than using the theoret-
ical R matrix corresponding to the RBT. By working with
clinical and synthetic trees in a comparable manner, system-
atic errors were minimized. Twenty-five synthetic galacto-
grams have been analyzed. Manual tracing was successful in
‘ 23 images; the projection of the synthetic trees in two images

contained too many ambiguous points of branching or over-
\ \ lap, which prevented the successful identification of the

branching trees.
Fic. 4. An illustration of the identification of branching structures on a part
of a synthetic galactogram. The point where ducts ovetigs brighter 2. Statistical comparison of clinical and synthetic
than the point of branchingh), except when the orientation of the plane in R matrices
which the duct branches significantly differs from the film plajeg or
when there are many ducts overlapping at the same pajint In this paper we have evaluated synthetic ductal networks

by comparing R matrices and bifurcation ratios computed

from clinical and synthetic images. We will describe in detail
overlap based on the intensity of the marked points, @d the comparison of the R-matrix elements; bifurcation ratios
connecting the marked points to reconstruct the large duct$iave been evaluated using a similar approach.
Figure 5 shows an example of an original galactogram and Elements of the R matrices computed from manually-
the corresponding network of manually traced larger ducts.traced ductal trees represent estimates of the probabilities of

Figure 5 illustrates the computation of the R matrix from branching at different levels of a tree. Each matrix element is

a manually-traced clinical ductal tree, using the procedur&qual to the ratio between the number of nodes with a given
described in Sec. IIA1. Figure(5 shows the manually- biorder(see Sec. Il Aland the total number of nodes of the
traced branches of the segmented ductal network from gorresponding order. With this in mind, there are two ways of
clinical galactogram shown in Fig.(&. Different symbols ~averaging the R-matrix element values for a given set of
represent the nodes of different ordéircle=order 2, trees® (see the Appendix An estimate of the R-matrix ap-
triangle=order 3, and squareorder 4. The corresponding R  propriate for modeling a population of trees is obtained using

matrix is equal to the node-averagesP, ;. Nodes of the same order from all
_ the trees in the analyzed set are grouped together, and the
f21 T22 ' node-averaged matrix elemeRy ; is the fraction of nodes
R=|Tr31 32 rzz - with a given biordefsee Eq(Al)]. Thetree-averageQy

is the average of R matrices computed for individual trees
) [see Eq(A2)]. This gives an estimate of the R matrix corre-
0.50 0.50 - : sponding to an individual tree from the analyzed set. Node
=/ 031 050 019 - | (10) averaging, relative to tree averaging, generally gives more
040 020 020 02 weight to nodes in larger trees. As discussed in the Appendix,
- ' ' ' node averaging provides a less biased estimate of the R ma-
To illustrate the computation of E(LO), there is a total of 30  trix that generated the trees.
nodes with order Zlabeled by circles Of these, 15 nodes We have been analyzing the branching morphology of the
have biorder(2,1), i.e., their child nodes are of orders 2 and ductal networks traced from the clinical and synthetic im-
1, corresponding to the probability of ;=15/30=0.5. The ages, which, for the purpose of comparison, can be consid-
remaining 15 nodes of order 2 have biordérl), i.e., they ered two families of trees. Thus, an appropriate approach is
bifurcate into pairs of branches both ending in a terminalto use the node averages of R matrices. In our previously

LFax Va2 Tasz Taa
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Fic. 5. An example of tracing the duc-
tal tree branching pattern from a clini-
cal galactograngright CC view. (a) A
detail of the galactogram with a
contrast-enhanced ductal network.
(Large bright regions are due to ex-
travasation, which did not affect the
segmentation of the ductal tregb)
The manually traced tree of larger
ducts from the galactogram shown in
(a), with the tree nodes of different or-
der labeled by symbolgcircle=order

2, triangle=order 3, and squareorder
4). Also, shown are three segments of
order 3:(a,a’), (a,@"), and(b,b’), and
the segment of order 4a,c).

%
%

\
(b)

published work on the classification of galactograms using R Sebl . By
matrices®® the R matrices corresponding to each analyzed Sp,, =S Pj= T" = A—'
ductal tree were compared with the tree averages computed Zra K
from two analyzed classes of galactograms, as the expected A2 (B 2 >
values of an individual tree. _ \/ S8y /K N ki A - %+ Bii

The uncertainty in estimates of the R-matrix elements and AZ AZ A2 AY

e

the bifurcation ratios were estimated using counting statis-
tics, e.g., the number of nodbg ; with specified biorder was
taken as having an uncertainty sj ~byj. The uncer- A more accurate estimate of the standard error in node-
tainties were treated as uncorrelated which is acceptablgyeraged R-matrix elements requires a bootstrap approach.
glven the limited number of cases. ThUS the standard errors Node- averaged values of the R matrices were Compared
of the node-averaged R-matrix elemersg, , have been (i) by computing differences between individual matrix ele-
estimated by ments for the clinical and synthetic images, dmniby com-

11)
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TaLE |. The average number of traced ducts per tidggqncn, and the 1.0 T T T T r T
average number of nodéise., the branching pointper tree N, qe, for the
analyzed clinical and synthetic ductal treeg.correspond to the average

number of nodes of orddc @ Theoretic RBT
G- —© Synthetic RBT, Computed
Clinical, Synthetic, ¥—% Synthetic RBT, Traced
traced(All)  (ML/MLO only)  (CC only traced 08 ]

Npranch 61.5+5.1 56.8-6.5 64.1+7.1 79.4-7.9
Nroge 30.2:2.6 27.9-3.3 31.5-3.6 39.2+3.9
a, 16.7+1.5 14.8-1.8 17.8-2.1 19.7:1.9
ag 8.6+0.9 8.4-1.3 8.6-1.2 11.0:1.5 = 06 | |
a, 5.0+0.6 4.7:0.7 5.12+0.8 8.4-1.3 &

5

w

X
puting a root-mean-squarems) fractional error of simula- & 4,4 | i
tion for the whole matrix. The rms fractional error is given

by

Psm cI|n

2
/ Nelv (12) 02 |

where PS”]n and PC"Jn are the R-matrix elements averaged
over all simulated and all clinical trees, respectively, is
the number of nonzero R-matrix elementy<9 for
— 0.0 ‘ . .
s=4, from EQ(Z) T Top Moy Tap  Tag  Tyy I'42 oz Taa
R-Matrix Element Index

IIl. RESULTS Fic. 6. A comparison of the theoretical R-matrix elements for random bi-
nary trees and the matrix elements computed for 23 simulated and manually

The branching morphology of the breast ductal networkgraced simulated random binary trees. The theoretical values have been com-
has been traced manua”y from 25 clinical galactograms puted for the limit when the number of tree nodes increases to infinity. For
. .. . the synthetic random binary trees, symbols correspond to the node-averaged
ML/MLO and 16 CC views and 23 projections of simulated matrix element values and the error bars correspond to 25-75-percentile
RBTs. The average number of traced ducts per tree and thenges.
average numbers of nodé<., the branching pointper tree
are given in Table I. Results of comparing clinical trees and
synthetic random binary trees in terms of R matrices an®ver the population of all clinical and synthetic trees are
bifurcation ratios are given below. illustrated in Fig. 7 by the 25—75-percentile ranges.
The differences between the node-averaged R-matrix ele-
ments, corresponding to the manually traced clinical and
Figure 6 compares the R-matrix elements used to generagémulated trees are
the simulated treegtheoretical with the node averages of AR= RSM_ Relin
the simulated tree&omputed and the node averages result-
ing from manually tracing the same set of simulated trees 0.085 —0.085 X X
(_tra_ced. Theoretical matrix element§ are compu_te(_j in the —1 0176 —0.088 —0.088 % (13)
limit when the number of tree nodes increases to infitfiti? '
By using manual tracings of projections of the simulated 0.228 —0.039 —0.107 —0.082
trees, the effects of projection and segmentation artifactgorresponding to a rms fractional error of 41%.
were tested. In case of perfect segmentation of all branches
without ambiguities, the traced and computed values of the I%
matrices would be the same. The rms fractional error be-
tween the theoretical and simulated RBTs was 6.3%. The rms The bifurcation ratios computed from the clinical galacto-
fractional error between the computed values and the valuggrams and the projections of simulated RBTs are given in
recovered by manually tracing the simulated projections wagable Ill. The differences between the node-averaged bifur-
1.8%. cation ratios, corresponding to the manually traced clinical
Values of the R-matrix elements, node averaged oveand simulated trees are
manually traced clinical ductal trees and over manually A(B )ZBSim— din_ 75,
traced synthetic RBTs, are given in Table Il and shown in . 1

A. Comparison of the R-matrix elements

Comparison of the bifurcation ratios

Fig. 7. Table Il also gives the expected uncertainties in the A(B,)=pg5"-g5"=0.72, (14)
node-averaged matrix element values, estimated as described

. .. . . . (,8) ,BSIm clln 0.12’

in Sec. 1B 2. Variations in R matrices of individual trees 3
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TasLE Il. Theoretical values of the R-matrix elements for random binary trees and node averages of the matrix
elements computed for 23 simulated, 23 manually traced simulated, and 25 manually traced clinical ductal trees.
(See Figs. 6 and ¥.

Theoretic Synthetic Synthetic, traced Clinical, tra¢éd) (ML/MLO only)  (CC only)

r,; 0500 0.481%0.040  0.46%0.039 0.384:0.036 0.361-0.061  0.394:0.044

r,, 0500 05190042 0.53%+0.042 0.616:0.049 0.63%0.089  0.606:0.058

rs; 0500 0.5120.055  0.5080.055 0.332:0.045 0.35%:0.080  0.319:0.055

rs» 0250  0.2180.032  0.223:0.032 0.308:0.043 0.2820.070  0.319:0.055

rss 0250  0.276:0.037  0.2720.037 0.366:0.047 0.3530.078  0.3620.060

rs; 0500 0.5240.065 0.5180.064 0.29@:0.055 0.35%0.107  0.256:0.063

s, 0250  0.24%0.040  0.244:0.040 0.2820.054 0.2140.079  0.31%0.071

rss 0125  0.1150.026  0.119:0.026 0.226:0.047 0.2140.079  0.232:0.059

rss 0125  0.126:0.026  0.11%0.026 0.202:0.044 0.2140.079  0.195:0.053
corresponding to a rms fractional error of 15%. R-matrix elements corresponding to our sets of clinical and

simulated trees are given by E{.3). These differences are

IV. DISCUSSION influenced by the projective nature of galactography, the

manual duct-tracing procedure, and the limited number of

We have simulated the breast ductal network assumin . L. .
%vallable clinical images.

that the branching structure can be modeled by RBTs, whic . . . .
. . . The difference in the matrix elements estimated from
in theory minimally constrain the tree morphology. We . . .

. . . simulated ductal trees and the matrix elements estimated
evaluated this assumption by comparing the node—averagt?(rjom clinical galactograms is approximately three times their
values of R-matrix elements estimated from manually-traced 9 9 PP y

clinical galactograms and the projections of simulated RBTSsFandard errofTable 1). This suggests that it may be pos-
(see Fig. 7. The differences between such estimatedS|bIe to develop a more appropriate model of the breast duc-

tal network than the random binary tree. As a first step, we
generated an additional set of synthetic trees using, as the
1.0 . . . . input to the simulation, the node-averaged R-matrix elements
corresponding to the clinical images. Note that due to the
9—eClinical Images probabilistic nature of R matrices, simulation using an R
<{MLO only) matrix of a given tree will produce a variety of synthetic
08 *._i(s(ﬁtﬁgﬁé) Randorn Binary Trees | trees, with statistical properties similar but not identical to
those of the original tree.

To match the number of clinical cases, we generated 9
synthetic trees using the node-averaged matrices computed
from the clinical ML/MLO galactographic views and 16
. trees using the matrices computed from clinical CC views.
The R-matrix elements used for generating the synthetic
trees are given in the two rightmost columns of Table II.
These synthetic images were manually segmented in the
same manner as the previously analyzed clinical and random
binary treeqSec. 11B 1. Out of 25 simulated vertical clini-

- - cal trees, we successfully traced the ductal morphology from
' 23 images(9 ML/MLO) and 14 CC views The average
number of branches in these 23 simulated clinical trees was
. 60.3+7.6. The average number of nodes in the simulated
clinical images was 29%3.8 (a,=16.2+2.0, a3=8.2
+0.9, anday,=5.3+1.1, see Table)! Figure 8 shows the
node averages of the R-matrix elements computed for manu-
‘ . . ally traced simulated clinical trees, compared to the node-
00 ot Tas Tar Tao Tog Ty Tas Ty i averages for the original clinical trees. The rms fractional
R-Matrix Element Index error between the original and such simulated clinical trees is
Fic. 7. A comparison of the R-matrix elements computed for 25 manuallyequal to 11%. A S_'m'lar analysis of the b'f_ur_cat'on rat_'os
traced clinical ductal trees and for 23 manually traced synthetic randongives the rms fractional error between the original and simu-
binary trees. Symbols correspond to the node-averaged matrix element vdlgted clinical trees of 3.9%. The values of the fractional rms
ues and the error bars correspond to 25—-75-percentile ranges. For_the clirlg;‘—l,ror obtained using the simulated clinical ductal trees are
cal trees, the node averages computed for all the trees are sfubavn .
monds, as well as the ML/MLO viewsleft triangles, and CC viewsright lower than when synthetic RBTs were used. However, an
triangles. analysis of additional clinical images is necessary before we

0.6 |

R-Matrix Element

02

|
|
|
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TasLE lIl. Theoretical values of the bifurcation ratigg) for random binary trees and node averages of@he
values computed for 23 simulated, 23 manually traced simulated, and 25 manually traced clinical ductal trees.

Theoretic  Synthetic ~ Synthetic, traced  Clinical, tra¢dl) (ML/MLO only) (CC only)

B1 4.00 3.8%-0.28 3.83:0.28 3.09:0.22 3.13:0.40 3.06:£0.27
B2 4.00 3.48:0.48 3.49:0.48 3.24:0.42 3.070.68 3.33:0.53
B3 4.00 2.96-0.36 3.00-0.36 3.12-0.35 3.06:0.58 3.19-0.45

would deem it appropriate to adopt a tree model other thabiliary networks. Another approach would be to analyze
RBTSs. ductal casts from cadaveric breasts.

In order to further improve the model of the ductal net- Rejection of the random binary tree model, a minimally
work, we plan a future analysis of a larger number of clinicalconstrained model, additionally suggests that ductal branch-
images. The reported results are potentially biased by thimg does not occur by chance alone; there might be some
manual segmentation approach and the long duration of caseformation about the developmental or pathological state of
accrual. We believe, however, that the manual segmentatiathe breast encoded in the ductal branching pattern. This as-
was sufficiently robust as to not affect our results. In priorsumption is supported by our preliminary results in classify-
work, we have evaluated the effect of tree pruifrand did  ing images with and without galactographic findings of cysts,
not find that the resultant R-matrices were significantly al-ductal ectasia, and papilloma, using the values of R-matrix
tered. Such concerns, however, have led us to consider othefements® The relationship between the ductal morphology
approaches. A three-dimensional analysis of the ductal ne&nd breast lesions has been known pathologically but has not
works (e.g., contrast-enhanced MRI or Ci& desirable in  been previously quantitatively described from macroscopic
order to reduce the effects of the projective nature of galacradiological images. We would also like to extend this ap-
tograms. Artifacts due to the manual segmentation of thgroach to analyses of the branching pattern in murine mam-
ducts can be reduced by developing an automated tracingary ducts under various controlled hormonal or carcino-
algorithm for 3-D galactogramésimilar to the reported au- genic influences, following the work of Atwoaet al®
tomated methods for tracing vascular, bronchial, hepatic, or

V. CONCLUSIONS

An attempt to simulate the breast ductal network branch-
ing morphology is reported. The ductal network is modeled
©— Clinical Images by a collection of binary trees, each representing a ductal
&-— 8 Simulated Clinical Trees lobe. The branching morphology is described using ramifi-
08 i cation matrices, whose elements—equal to the probabilities
of different patterns of branching for the nodes at various
levels of a ramified tree—represent parameters in a stochas-
tic model for generating the ductal tree topology. Lacking
sufficient knowledge about the statistics of ductal branching,
preliminarily, we approximated each lobe by a random bi-
nary tree, in theory, the least constrained model of topology.
T A statistical comparison between manually traced ductal
I trees from a small number of clinical galactograms and syn-
{ i thetic random binary trees indicates a certain degree of dis-
: agreement, suggesting the possibility of developing a more
I
I

0.6

R-Matrix Element

04

appropriate model of the ductal network topology in the fu-
ture. This, in turn, suggests that the ductal branching mor-
phology might be indicative of the state of development or
health of the breast. Furthermore, ramification matrices may
be an efficacious methodology for quantification of this mor-

phology.

0.0

r2,1 r2,2 I’3,1 r3,2 r3,3 r4,1 r4,2 r4,3 r4,4 AC KN OWL E DG M E NTS
R-Matrix Element Index
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APPENDIX: TREE AND NODE AVERAGING 1
OF R-MATRIX ELEMENTS

The stochastic algorithm for generating topological trees
used in this paper can be viewed as randomly selecting a 98
binary tree from the family of all binary trees with a prede-
termined Strahler numbéhere equal to ¥ The probability
that the algorithm will generate or select a given tree is sim- g6 |
ply the product of the R-matrix elements associated with all
of the nodes of order greater than one in the tree.

Given a set of trees, which are presumed to be samples¥
from a random process that can be modeled in this manner, it
is reasonable to attempt to estimate the appropriate values o
the corresponding R matrix. Here, one must use caution. Fol-
lowing Penaud? from a set of trees one can estimate the 0.2 |
R-matrix values by counting all relevant nodes in all trees, so
that

P>

04

_ Sbg; A1) % 0.2 0.4 06 08 1
Srap

K,i L7

whereT is an index over tha trees in the set al"ﬁil- andbli Fic. 9. An illustration of tree averaging and node averaging of the R-matrix

. = elements(see the Appendix The abscissa shows the valuergf, used in
are the counts of the numbers of nodes with appropriate Olifhe stochastic model for generating random trees. The ordinate shows the
der and biorder, respectively. This “node average” is referredsalue of the node averagéP, »), , which would be expected from averag-
to by Penaud as themiatrice de ramification d’'une famille ing all nodes inn trees randomly generated by this model. Rer1, the
AIternativer, one can compute ramification matrices fornode average and the tree average are the same when computed over a

. single tree{P, 41 =(Q4 4. The bias in the estimate of the parameters of the
each wree, then average over the set of trees, obtaining ﬂ;%chas'[ic model for generating the random treéBy, (), —r44), quickly

“tree average,” decreases as the number of trees increases.
1.« by
Qui=H : a—l, (A2)  where
. . L 1
which Penaud refers to as thenatrice de ramification d’un h(x)=2, >, ———————xM*+ " +m=n (A5)

arbre aleatoire d’'une famille” m o my, Myt my

The node average and tree average are not necessargin be seen to satisfy the differential equation
equal, as illustrated by Penaud with a simple example of the
set of six trees with a total of four internal nodes and Strahler
number three. Viennogt al,?® in introducing the algorithm
that we have used, determined experimentally that the rami- o
fication matrix calculated from a given tree produced by thi2nd the condition than(0)=1/n. Thus
stochastic process is “close to the given matrix R, especially 1 xn—1 1 xN—2
for the first rows(corresponding to the small orders.” x"h(x)=

While a full analysis of this effect is beyond this paper, a n
brief analysis of the, 4, element is illustrative. The element X
r44 represents the probability that a given branch of the +(—1)”m+(—1)”ln(1—x), (A7)
“trunk” of a tree (i.e., the tree segment of the order tér-
minates the trunk by having two nodes of lower order aswhere the constant of integration must be zero in order for
descendants. If a given R matrix is used to stochasticallyn(0) to be finite. Note that fon=1, corresponding to tree
generate random trees, and then a set iées so generated averages, this formula must be interpreted as
is used to estimate the ramification matrix,

n-1

d
xXneo1= (A6)

(1-x)"

-1 (1_X)nfl_ n—2 (l_x)n72+”'

xh(x)=—In(1—Xx), (A8)
Py = ... M—1ny... qMh—1 ' with no other terms in the sum, as otherwise the term with
(Picidn ;1 ;n (@ P)-( P) mg+---+my coefficient 1/6—1) would render the equation nonsensical.
(A3) The nature of this effect is illustrated in Fig. 9. The ab-

scissa shows the value of 4 used in the stochastic model.
The ordinate shows the valy®, 4, which would be ex-
pected from averaging all nodes imtrees randomly gener-
ated by this model. Fon=1, (P, 4:=(Q,4. Thus “tree
(Pkiyn=np"h(q), (A4)  averages'(i.e., taking the average of the ramification matri-

wherep=r,4,4, q=1—p, andm; is the number of nodes of
order 4 in thdth tree, i.e.m =aZ with T=i indexing theith
tree. This can be written as
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