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A method is proposed for realistic simulation of the breast ductal network as part of a computer
three-dimensional~3-D! breast phantom. The ductal network is simulated using tree models. Syn-
thetic trees are generated based upon a description of ductal branching by ramification matrices~R
matrices!, whose elements represent the probabilities of branching at various levels of a tree. We
simulated the ductal network of the breast, consisting of multiple lobes, by random binary trees
~RBT!. Each lobe extends from the ampulla and consists of branching ductal segments of decreas-
ing size, and the associated terminal ductal-lobular units. The lobes follow curved paths that project
from the nipple toward the chest wall. We have evaluated the RBT model by comparing manually-
traced ductal networks from 25 projections of ductal lobes in clinical galactograms and manually-
traced networks from 23 projections of synthetic RBTs. A root-mean-square~rms! fractional error
of 41%, between the R-matrix elements corresponding to clinical and synthetic images, was com-
puted. This difference was influenced by projection and segmentation artifacts and by the limited
number of available images. In addition, we analyzed 23 synthetic trees generated using R matrices
computed from clinical images. A comparison of these synthetic and clinical images yielded a rms
fractional error of 11%, suggesting the possibility that a more appropriate model of the ductal
branching morphology may be developed. Rejection of the RBT model also suggests the existence
of a relationship between ductal branching morphology and the state of mammary development and
pathology. © 2003 American Association of Physicists in Medicine.@DOI: 10.1118/1.1586453#

Key words: mammography simulation, breast ductal network, galactography, branching analysis,
ramification matrices

I. INTRODUCTION

A model of the breast ductal network has been developed as
a component of a 3-D computer-generated breast phantom1

used in an approach to generate simulated mammograms.
The breast phantom and mammography simulation have
been proposed for analyzing the effects of breast positioning
and compression during mammography, estimation of the ra-
diation dose received during mammography,2 development
and optimization of breast imaging modalities~e.g., tomo-
synthesis, stereomammography, etc.!, mammogram sequence
registration, and the development and evaluation of
computer-aided diagnosis methods. The synthetic mammo-
grams produced using the breast phantom have been previ-
ously evaluated by texture analysis.3 In this paper, the model
of the ductal network is assessed.

The breast is a modified sweat gland, located at mid-
thorax, within the superficial fascia beneath the skin.4,5 The
gland develops under genetic and hormonal influences from
very early life, with a significant development in women
during puberty. The adult female breast consists of 15–20
irregularly shaped lobes, i.e., subnetworks of breast ducts,

converging to the nipple. The lobes are not physically sepa-
rated and the branches from various lobes can overlap. Local
growth of the ductal epithelial tissue is influenced by hor-
monal activity as well as by signaling from the surrounding
stromal tissue.6,7 The existence of ductal anastomoses, con-
nections between the ducts from different breast lobes, has
been discussed in the literature but is not uniformly accepted
among researchers.8,9 Each lobe is drained by a major duct,
extending from the nipple toward the chest wall in a branch-
ing network of smaller ducts. Several major ducts join in a
dilated segment beneath the nipple, known as the ampulla or
lactiferous sinus. There are six to eight orifices in the nipple.
The major ducts and the nipple openings are 2–4.5 mm and
0.4–0.7 mm in diameter, respectively.10,11 Branching of the
ducts toward the chest wall continues until a duct finally
ends in blunt finger-like ductules formed by the acini, the
basic glandular secretory units. Lobules consist of the acini
surrounded by specialized connective tissue. The lobules, to-
gether with the associated terminal duct, are histologically
identified as the terminal ductal lobular unit~TDLU!. Hor-
monal influences in the adult female breast during pregnancy
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result in the proliferation and differentiation of the TDLU’s,
ultimately responsible for the production of milk, which is
stored in the ducts and expressed through the nipple. Involu-
tion occurs after weaning following each pregnancy. This
developmental cycle can be repeated until the atrophy of
ductal and lobular structures in the post-menopausal breast,
unless the woman is on hormone-replacement therapy.

The ductal network is an important element of the breast
anatomy since practically all breast cancers originate in the
ductal~'90%! or lobular~'10%! epithelium, with very few
arising in the connective or adipose tissue.4 It is believed that
these breast carcinomas most often begin development by
spreading along the lumen of the ducts or lobules. For this
reason microcalcification clusters associated with early
breast cancer often follow a ductal distribution.12 Alterna-
tively, some breast cancers are revealed by nipple discharge
with no palpable or mammographically visible lesions. Such
cases are usually evaluated using galactography, a procedure
for imaging the contrast-enhanced ductal network.13–15There
has also been an increased interest in breast duct examination
for the early detection of cancer using several approaches,
e.g., breast lavage,16 nipple aspirate fluid analysis,17 or
ductoscopy.8,18 Breast ducts also contribute to the parenchy-
mal pattern, the background texture in mammograms. It has
been shown that there is a correlation between the appear-
ance of the parenchyma and the risk of breast cancer.19,20

We have considered two approaches for modeling the
breast ductal network, shown in Fig. 1:~1! an approximation
of the ducts by short linear segments, placed randomly
within the predominantly fibroglandular tissue region and
oriented toward the nipple;21,22 and ~2! a tree model of the

ductal network.1 The segmental approximation is consistent
with published descriptions of mammographic image
elements,23 since only short segments of the ductal network
can be seen distinctly in mammograms, albeit with minimal
contrast. This linear approximation roughly simulates the ap-
pearance of ducts in mammograms but was found to lack
realism by neglecting connectivity, and thus will not be dis-
cussed further.

More realistic models of the ductal network can be
achieved by a variety of tree modeling algorithms.24–26Mod-
eling of a tree is typically approached at two levels. At the
topological level, the tree is described in terms of the con-
nections between nodes~i.e., duct branching points!. At the
metrical level, the lengths and spatial directions of the
branches are specified. In an example of a computer-
generated tree model of breast ducts, Tayloret al.27 used an
algorithm based upon fractal set theory, justified by the self-
similarity of ductal sub-trees within the entire tree. In their
work, the topological branching pattern of a perfectly bal-
anced binary tree~each duct branches uniformly into two
identical new segments! was used for all simulated trees,
producing a very regular image texture. We postulated that
the realism of the textural appearance would be improved by
the introduction of a stochastically-generated branching pat-
tern.

The ductal network model used in our 3-D breast
phantom1 is based upon ramification matrix analysis26 to pro-
vide a realistic appearing ductal branching pattern. Ramifi-
cation matrices~R matrices! represent parameters in a sto-
chastic model for generating trees at the topological level.
The R-matrix elements represent probabilities of different
patterns of branching for the nodes at various levels of a tree.
Vannimenus and Viennot28 have observed that a large variety
of botanical trees can be simulated by varying the topologi-
cal parameters~branching probabilities!, using the same geo-
metric construction rules~branch widths and branching
angles!. This is in contrast with the frequently used computer
graphics approach of modeling diverse tree forms by chang-
ing the metric rules while using a fixed topological tree. R
matrices are an extension of approaches used by Horton29

and Strahler30 in geological studies of river networks.
Woldenberg31 listed various natural hierarchical structures
that can be analyzed using a similar approach. A section of
the breast phantom incorporating this connected ductal
model is shown in Fig. 1~b!. Note that the simulated ductal
trees in the phantom section appear as a collection of seg-
ments passing through the section.

An algorithm for tree generation based upon R matrices is
described in the next section. Results of an evaluation of the
proposed model of the ductal network, by comparing the R
matrices computed on synthetic ductal trees and on clinical
galactograms, are given in Sec. III.

II. MATERIALS AND METHODS

A. Implementation of the ductal network model

The ductal network model is implemented based upon the
description of branching patterns of tree-like structures given

FIG. 1. Two approaches to simulate breast ducts illustrated by sections of the
breast software phantom. Segmental model~left! contains short linear seg-
ments distributed within the predominantly fibroglandular tissue region,
with the average direction toward the nipple. A connected model~right!
consists of a computer generated ramified tree-like structure. Note that the
connected tree-like structure appears in the model section as a collection of
segments. Small spheres simulate TDLUs in both segmental and connected
duct models.

1915 Bakic et al. : Mammogram synthesis using a 3D simulation. III. 1915

Medical Physics, Vol. 30, No. 7, July 2003



by R matrices. The model was developed using two algo-
rithms: one for computing R matrices from a given tree and
another for generating tree topology from a given or inferred
R matrix. The tree generation algorithm was used to simulate
the ductal network, assuming a branching pattern of random
binary trees~RBTs! that, in theory, minimally constrains the
tree morphology.26 We have analyzed clinical galactograms
by computing their R matrices in order to evaluate the pro-
posed ductal model. Evaluation results are given in Sec. III.
The following is a brief description of the R-matrix compu-
tation and tree generation, and the selection of the properties
of the metrical trees used for duct simulation.

1. Computation of an R matrix from a given tree

The algorithm begins by identifying the root, the internal
and terminal nodes, and the branches between the nodes in a
tree. Next, the nodes are labeled by their orders and biorders,
as follows.

~1! All terminal nodes have order 1.
~2! An internal node, with children nodes of ordersi and j,

assuming binary branching, will have order max(i,j) if
iÞ j or (i 11) if i 5 j . The labeling procedure continues
until reaching the root node. The order of the root node,
s, is called the Strahler number of the tree structure, and
measures the topological size of a tree.28

~3! A parent node of orderk, with two children-nodes of
ordersi and j, with i> j , has biorder (i , j ).

The R matrix of a tree-like structure with Strahler number
s is a lower triangular matrix of size (s21)3s, defined as26

R5@r k, j5bk, j /ak ,kP~2,s!, j P~1,k!#, ~1!

where ak is equal to the number of nodes with orderk (k
>2). For j ,k, bk, j is the number of nodes with biorder
(k, j ), while for j 5k, bk, j is the number of nodes with
biorder (k21,k21), (k>2). Therefore,r k, j5bk, j /ak is the
probability for a node of orderk to have biorder (k2dk, j , j
2dk, j ), wheredk, j is the Kronecker delta.

For example, the R matrix corresponding tos54 has, at
most, nine nonzero elements:

R~s54!5F r 2,1 r 2,2 0 0

r 3,1 r 3,2 r 3,3 0

r 4,1 r 4,2 r 4,3 r 4,4

G . ~2!

2. Generation of a topological tree from a given R
matrix

A given R matrix, determined either experimentally or
from theoretical considerations, defines a stochastic process
for the generation of binary trees. The algorithm which de-
fines this process begins with an incomplete tree containing
of only the root node. This root node is assigned an orders,
corresponding to the Strahler number of the R matrix, i.e.,
the Strahler number that the tree will have when completed.
At each iteration, a node with assigned orderk.1, which
does not yet have child nodes, is selected and assigned a pair

of child nodes. These new child nodes are randomly assigned
orders based on the probabilities given by the R-matrix ele-
ments r k,1 ,...,r k,k21 , r k,k , @see Eq. ~1!#. Here,
r k,1 ,...,r k,k21 are the probabilities that the child nodes will
be assigned orders (k,1),...,(k,k21), respectively, andr k,k

is the probability that the assigned orders will be (k21,
k21). When there remains no childless nodes of order
greater than one, the tree is complete. Once the tree is com-
pleted, the orders assigned to each node during construction
agree with the orders that would be determined by the appli-
cation of the algorithm in Sec. II A 1 to the completed tree.

As an illustration of the algorithm, a few examples of R
matrices and the corresponding tree models are given in Fig.
2. Trees in Figs. 2~a! and 2~b! are a perfectly balanced tree
and a thin fern, respectively, with the R matrices equal to

RPerf Balance5F 0 1 0 0

0 0 1 0

0 0 0 1
G , RFern5@0.9 0.1#. ~3!

Two random binary trees, withs54 in Figs. 2~c! and 2~d!
are generated with the same R matrix equal to

RRBT5F 0.5 0.5 0 0

0.5 0.25 0.25 0

0.5 0.25 0.125 0.125
G , ~4!

using two different seeds for random number generation.

FIG. 2. Examples of computer-generated trees.~a! A perfectly balanced tree.
~b! A thin fern. ~c! and ~d! Two random binary trees, generated using dif-
ferent seeds for random number generation.
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3. Selection of topological and metrical tree
properties

The proposed 3-D model of the breast ductal network
consists of several ramified trees, each representing a ductal
lobe. Each ductal lobe is modeled by an RBT. The ampulla,
modeled by a short, ellipsoidal widening beneath the nipple,
connects the roots of all the trees. In this work, the ampulla
is modeled as 10 mm long and 4 mm in diameter. There are
no published results on the statistics of branching of the
breast ductal network. Thus, we selected RBTs for modeling
ductal lobes, since they represent theoretically a minimum of
constraints on the tree morphology.26 The R matrix used for
generation of the RBTs, given by Eq.~4!, represents the
asymptotic values of branching probabilities when the num-
ber of nodes in a tree increases to infinity.26,32Each lobe was
generated using the same matrix; the variation in the appear-
ance of the lobes is due to the stochastic nature of the tree
generating process.

The number of branching levels of a tree is related to the
order of the tree root and this parameter is specified at the
beginning of the simulation. Real ductal trees have a rela-
tively high number of branching levels. However, only the
larger ducts are visualized by galactography. Based on an
initial analysis of several galactograms, we limited the tree
root order tos54.

The metrical structure of each tree is generated in two
steps. First, avertical treeis generated in a separate rectan-
gular coordinate system. This vertical tree is then mapped
into the coordinate system of the simulated breast. The
length l and radiusr of the individual branches decrease
with the orderk of the associated distal node according to

l~k!5l~s!
k

s
and r~k!5r~s!

k

s
, ~5!

wheres is the order of the root node. Preliminary values of
l(s) andr(s) were selected as 1 cm and 1 mm, respectively.
More accurate values of these parameters will be estimated
from future analyses of a larger number of galactograms.

In producing the vertical tree, initially, a vertical branch is
associated with the root node. At each node of orderk.1,
the branches leading to the child nodes are generated in a
plane containing the vertical axis and rotated at an anglef
about the vertical axis. The anglef is determined by

f5fp1F8190° ~6!

wherefp is the angle of rotation used at the parent node,F8
is a random angle uniformly selected in the interval
@215°,15°#, and the phyllotaxy of the branching network is
assumed to be such that the plane of branching rotates by
approximately 90° between parent and child nodes. Within
this plane, the branches to the child nodes are at anglesu1

andu2 relative to the vertical axis, where

u1560°1Q8, u25260°1Q8, ~7!

when the orders of both children ducts are the same, and

u15~30°1Q9!
j

k21
, u25~230°1Q9!

k2 j

k21
, ~8!

when the orders of the children ducts arej and kÞ j
(kÞ1). Q8 andQ9 are randomly chosen from the intervals
@210°,10°# and@25°,5°#, respectively. A more accurate esti-
mate of the anglesf, u1 , and u2 will be possible after a
future analysis of 3D images of the breast ductal network.

The mapping of a vertical tree into the geometry of the
breast phantom is determined by~i! the position of the am-
pulla, serving as an anterior endpoint and connecting root
nodes of all simulated lobes,~ii ! the chosen posterior end-
point on the intersection of the anterior and posterior ellip-
soidal borders of the phantom fibroglandular region~see Fig.
3 in Ref. 1!, and~iii ! a curved path, an arch, connecting the
two endpoints defined by~i! and~ii !. This arch, modeling the
curvature of the simulated lobe, is defined by a user-supplied
angle between the root of the lobe and the straight line con-
necting the two endpoints. In this work, a lobe curvature
angle of 20° was used. In the simulated lobe, each branch is
generated with position and direction relative to the arch of
the lobe@defined in~iii !#, equal to the position and direction
of the corresponding branch in the vertical tree relative to the
tree’s vertical axis. The posterior end points for each tree are
selected, assuming an approximately equal angular distance
between the lobes around the nipple–chest wall line, as sug-
gested by an ultrasound analysis of breast ducts.33

In addition to the ramified trees, our 3-D breast phantom
includes models of the TDLUs. Each TDLU is simulated by
a sphere of 1–2 mm diameter, according to descriptions in
the literature.4,23 Examples of some simulated ducts are
shown in Fig. 3. Projections of individual ductal lobes are
shown in Figs. 3~a! and 3~b!, and a projection of five simu-
lated lobes is given in Fig. 3~c!. For clarity, all other simu-
lated medium scale anatomic structures1 have been sup-
pressed in these images. Several views of the same five
simulated lobes, generated from a virtual reality representa-
tion, were shown in Fig. 6 of Ref. 1. The virtual reality
representation was generated using the VRML modeling
language34 by transforming each voxel of the 3-D model of
the ductal network into a cube within the virtual reality
space. This virtual reality representation of the five simulated
lobes is available via EPAPS.35

B. Evaluation of the ductal network model

We evaluated the breast ductal network model by compar-
ing simulated trees with real ducts from galactogram images.
Ducts are barely seen in conventional mammograms. On the
other hand, galactograms, x-ray images of the breast with
contrast enhanced ducts, allow the visualization and analysis
of the ductal network. We have retrospectively analyzed
clinical galactograms from 15 patients imaged at the Thomas
Jefferson University Breast Imaging Center~Philadelphia,
PA! during a period of six and a half years~June 1994–
January 2001!. The total number of patients who had under-
gone galactography during this period was 41. Galactograms
from 17 patients were unavailable because they had been
returned to the patients or the primary health care institu-
tions, and galactograms from another nine patients were not
used because of obstruction or poor image quality. The mean
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age of the 15 patients whose cases were analyzed, was 49.2
years~range, 29–75 years!. Of these 15 patients, eight~mean
age, 44.2 years; range, 29–74 years! had no reported galac-
tographic findings and seven~mean age, 54.8 years; range,
43–75 years! had findings of ductal ectasia, cysts, or papil-
loma. There were no reported findings of malignancy from
the analyzed cases.

Here 25 galactograms from the 15 patients were analyzed:
nine mediolateral or mediolateral oblique views~hereafter
referred to in combination as ML/MLO! and 16 craniocaudal
views ~CC!. Out of 25 galactograms, there were~i! 3 MLO
views~2 right and 1 left! and 6 ML views~3 right and 3 left!,
and ~ii ! 16 CC views, 9 of the right breast and 7 of the left.
One of the ML views was magnified. In one case, two lobes
of the same breast were imaged.~A comprehensive list of
patient data, showing their ages, the views available for this
study, the symptoms, and the radiologists’ diagnoses, is tabu-
lated in our previous publication.36!

The evaluation of the ductal network model was per-
formed using the following steps. First, the branching struc-
tures in clinical and synthetic images were identified and
segmented, and the corresponding R matrices were com-
puted. Second, the R-matrix elements were averaged over all
the nodes in the clinical and synthetic ductal trees, and the
averaged matrices were statistically compared. The node av-
eraging is discussed in more detail in Section II B 2 and the
Appendix.

The resultant ductal trees were also analyzed in terms of
their bifurcation ratios, providing an alternative means of
describing ramified patterns. These were originally intro-
duced for analyzing river topologies and the tree structure of
fluvial basins.29,30 A bifurcation ratio is defined as the ratio
between the number of tree segments of two consecutive
orders. A segment of orderk is defined as the longest se-

quence of consecutive tree branches starting on a node of
orderk and ending at a node of orderm.k. Thus,28

bk5Sk /Sk11 , ~9!

whereSk andSk11 are the numbers of segments of orderk
and (k11), respectively. The bifurcation ratios correspond-
ing to an RBT are equal tob15b25b354.28

The algorithm for computing R matrices, adopted from
Viennot et al.,26 was described in Sec. II A 1, while here we
focus on the practical problems of tracing the ductal network
from clinical images and a statistical comparison of the com-
puted parameters.

1. Tracing the ductal network from galactograms

We traced the network of larger ducts from the clinical
galactograms in order to reconstruct their topological struc-
ture. A significant difficulty in this approach, due to the pro-
jective nature of galactograms, is distinguishing the points
where ducts branch from the points where they overlap. We
adopted anad hoc reasoning based on the assumption that
points where ducts overlap look brighter than the points of
duct branching, due to the superposition of the x-ray attenu-
ation of two ducts on top of each other, as illustrated in Fig.
4. This approach is, however, still sensitive to~i! the orien-
tation of the plane in which the duct branches with respect to
the film plane,~ii ! the effects of overlapping of more than
two ducts at the same point, and~iii ! nonuniform filling of all
ducts with contrast agent.

An identification of the branching pattern was done manu-
ally by placing a galactogram under a semitransparent trac-
ing paper on a light box. The procedure consists of three
basic operations:~1! marking the points where large ducts
branch or overlap,~2! distinguishing between branching and

FIG. 3. Examples of computer-
generated duct lobes.~a! and ~b! Two
synthetic mammograms, each with a
single simulated duct lobe.~c! A simu-
lated mammogram with five duct
lobes. ~In these simulated images,
other simulated anatomical structures,
e.g., Cooper’s ligaments and adipose
compartments, have been suppressed.!
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overlap based on the intensity of the marked points, and~3!
connecting the marked points to reconstruct the large ducts.
Figure 5 shows an example of an original galactogram and
the corresponding network of manually traced larger ducts.

Figure 5 illustrates the computation of the R matrix from
a manually-traced clinical ductal tree, using the procedure
described in Sec. II A 1. Figure 5~b! shows the manually-
traced branches of the segmented ductal network from a
clinical galactogram shown in Fig. 5~a!. Different symbols
represent the nodes of different order~circle5order 2,
triangle5order 3, and square5order 4!. The corresponding R
matrix is equal to

R5F r 2,1 r 2,2 • •

r 3,1 r 3,2 r 3,3 •

r 4,1 r 4,2 r 4,3 r 4,4

G
5F 0.50 0.50 • •

0.31 0.50 0.19 •

0.40 0.20 0.20 0.20
G . ~10!

To illustrate the computation of Eq.~10!, there is a total of 30
nodes with order 2~labeled by circles!. Of these, 15 nodes
have biorder~2,1!, i.e., their child nodes are of orders 2 and
1, corresponding to the probability ofr 2,1515/3050.5. The
remaining 15 nodes of order 2 have biorder~1,1!, i.e., they
bifurcate into pairs of branches both ending in a terminal

node, corresponding to the probability ofr 2,2515/3050.5.
In a similar manner all the elements of the R matrix shown in
Eq. ~10! were computed from the galactogram shown in Fig.
5~a!. In this paper we computed R matrices with nine ele-
ments and Strahler numbers54, corresponding to a root
branch with label 4. The bifurcation ratios corresponding to
the same ductal tree are equal tob153.47, b255.00,
b353.00. To illustrate a computation of the bifurcation ra-
tios, segments of order 3 and order 4 are denoted in Fig. 5~b!.
There are three segments of order 3:~i! a–a8, ~ii ! a–a9, and
~iii ! b–b8. The only segment of order 4,a–c, connects all the
nodes of order 4. Using Eq.~9!, the value of the bifurcation
ratio b3 is equal tob35S3 /S453/153.

We have also analyzed synthetic galactograms generated
by the projection of 3-D RBT models of individual ductal
lobes. The R matrices were computed from the projections of
simulated vertical ductal trees, rather than using the theoret-
ical R matrix corresponding to the RBT. By working with
clinical and synthetic trees in a comparable manner, system-
atic errors were minimized. Twenty-five synthetic galacto-
grams have been analyzed. Manual tracing was successful in
23 images; the projection of the synthetic trees in two images
contained too many ambiguous points of branching or over-
lap, which prevented the successful identification of the
branching trees.

2. Statistical comparison of clinical and synthetic
R matrices

In this paper we have evaluated synthetic ductal networks
by comparing R matrices and bifurcation ratios computed
from clinical and synthetic images. We will describe in detail
the comparison of the R-matrix elements; bifurcation ratios
have been evaluated using a similar approach.

Elements of the R matrices computed from manually-
traced ductal trees represent estimates of the probabilities of
branching at different levels of a tree. Each matrix element is
equal to the ratio between the number of nodes with a given
biorder~see Sec. II A 1! and the total number of nodes of the
corresponding order. With this in mind, there are two ways of
averaging the R-matrix element values for a given set of
trees32 ~see the Appendix!. An estimate of the R-matrix ap-
propriate for modeling a population of trees is obtained using
the node-averages, Pk, j . Nodes of the same order from all
the trees in the analyzed set are grouped together, and the
node-averaged matrix elementPk, j is the fraction of nodes
with a given biorder@see Eq.~A1!#. The tree-average, Qk, j ,
is the average of R matrices computed for individual trees
@see Eq.~A2!#. This gives an estimate of the R matrix corre-
sponding to an individual tree from the analyzed set. Node
averaging, relative to tree averaging, generally gives more
weight to nodes in larger trees. As discussed in the Appendix,
node averaging provides a less biased estimate of the R ma-
trix that generated the trees.

We have been analyzing the branching morphology of the
ductal networks traced from the clinical and synthetic im-
ages, which, for the purpose of comparison, can be consid-
ered two families of trees. Thus, an appropriate approach is
to use the node averages of R matrices. In our previously

FIG. 4. An illustration of the identification of branching structures on a part
of a synthetic galactogram. The point where ducts overlap~a! is brighter
than the point of branching~b!, except when the orientation of the plane in
which the duct branches significantly differs from the film plane~c!, or
when there are many ducts overlapping at the same point~d!.
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published work on the classification of galactograms using R
matrices,36 the R matrices corresponding to each analyzed
ductal tree were compared with the tree averages computed
from two analyzed classes of galactograms, as the expected
values of an individual tree.

The uncertainty in estimates of the R-matrix elements and
the bifurcation ratios were estimated using counting statis-
tics, e.g., the number of nodesbk, j with specified biorder was
taken as having an uncertainty ofsbk, j

'Abk, j . The uncer-

tainties were treated as uncorrelated, which is acceptable
given the limited number of cases. Thus, the standard errors
of the node-averaged R-matrix elements,sPk, j

, have been

estimated by

sPk, j
5sS Pk, j5

(Tbk, j
T

(Tak
T

5
Bk, j

Ak
D

5AS sBk, j
Ak

Ak
2 D 2

1S Bk, j sAk

Ak
2 D 2

'ABk, j

Ak
2

1
Bk, j

2

Ak
3

.

~11!

A more accurate estimate of the standard error in node-
averaged R-matrix elements requires a bootstrap approach.

Node-averaged values of the R matrices were compared
~i! by computing differences between individual matrix ele-
ments for the clinical and synthetic images, and~ii ! by com-

FIG. 5. An example of tracing the duc-
tal tree branching pattern from a clini-
cal galactogram~right CC view!. ~a! A
detail of the galactogram with a
contrast-enhanced ductal network.
~Large bright regions are due to ex-
travasation, which did not affect the
segmentation of the ductal tree.! ~b!
The manually traced tree of larger
ducts from the galactogram shown in
~a!, with the tree nodes of different or-
der labeled by symbols~circle5order
2, triangle5order 3, and square5order
4!. Also, shown are three segments of
order 3:~a,a8!, ~a,a9!, and ~b,b8!, and
the segment of order 4:~a,c!.
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puting a root-mean-square~rms! fractional error of simula-
tion for the whole matrix. The rms fractional error is given
by

D5A(
k52

s

(
j 51

k F Pk, j
sim2Pk, j

clin

Pk, j
clin G 2Y Nel, ~12!

where Pk, j
sim and Pk, j

clin are the R-matrix elements averaged
over all simulated and all clinical trees, respectively.Nel is
the number of nonzero R-matrix elements.Nel<9 for
s54, from Eq.~2!.

III. RESULTS

The branching morphology of the breast ductal networks
has been traced manually from 25 clinical galactograms~9
ML/MLO and 16 CC views! and 23 projections of simulated
RBTs. The average number of traced ducts per tree and the
average numbers of nodes~i.e., the branching points! per tree
are given in Table I. Results of comparing clinical trees and
synthetic random binary trees in terms of R matrices and
bifurcation ratios are given below.

A. Comparison of the R-matrix elements

Figure 6 compares the R-matrix elements used to generate
the simulated trees~theoretical! with the node averages of
the simulated trees~computed! and the node averages result-
ing from manually tracing the same set of simulated trees
~traced!. Theoretical matrix elements are computed in the
limit when the number of tree nodes increases to infinity.26,32

By using manual tracings of projections of the simulated
trees, the effects of projection and segmentation artifacts
were tested. In case of perfect segmentation of all branches
without ambiguities, the traced and computed values of the R
matrices would be the same. The rms fractional error be-
tween the theoretical and simulated RBTs was 6.3%. The rms
fractional error between the computed values and the values
recovered by manually tracing the simulated projections was
1.8%.

Values of the R-matrix elements, node averaged over
manually traced clinical ductal trees and over manually
traced synthetic RBTs, are given in Table II and shown in
Fig. 7. Table II also gives the expected uncertainties in the
node-averaged matrix element values, estimated as described
in Sec. II B 2. Variations in R matrices of individual trees

over the population of all clinical and synthetic trees are
illustrated in Fig. 7 by the 25–75-percentile ranges.

The differences between the node-averaged R-matrix ele-
ments, corresponding to the manually traced clinical and
simulated trees are

DR5Rsim2Rclin

5F 0.085 20.085 3 3

0.176 20.088 20.088 3

0.228 20.039 20.107 20.082
G , ~13!

corresponding to a rms fractional error of 41%.

B. Comparison of the bifurcation ratios

The bifurcation ratios computed from the clinical galacto-
grams and the projections of simulated RBTs are given in
Table III. The differences between the node-averaged bifur-
cation ratios, corresponding to the manually traced clinical
and simulated trees are

D~b1!5b1
sim2b1

clin50.75,

D~b2!5b2
sim2b2

clin50.72, ~14!

D~b3!5b3
sim2b3

clin520.12,

FIG. 6. A comparison of the theoretical R-matrix elements for random bi-
nary trees and the matrix elements computed for 23 simulated and manually
traced simulated random binary trees. The theoretical values have been com-
puted for the limit when the number of tree nodes increases to infinity. For
the synthetic random binary trees, symbols correspond to the node-averaged
matrix element values and the error bars correspond to 25–75-percentile
ranges.

TABLE I. The average number of traced ducts per tree,Nbranch, and the
average number of nodes~i.e., the branching points! per tree,Nnode, for the
analyzed clinical and synthetic ductal trees.ak correspond to the average
number of nodes of orderk.

Clinical,
traced~All ! ~ML/MLO only ! ~CC only!

Synthetic,
traced

Nbranch 61.565.1 56.866.5 64.167.1 79.467.9
Nnode 30.262.6 27.963.3 31.563.6 39.263.9
a2 16.761.5 14.861.8 17.862.1 19.761.9
a3 8.660.9 8.461.3 8.661.2 11.061.5
a4 5.060.6 4.760.7 5.1260.8 8.461.3
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corresponding to a rms fractional error of 15%.

IV. DISCUSSION

We have simulated the breast ductal network assuming
that the branching structure can be modeled by RBTs, which
in theory minimally constrain the tree morphology. We
evaluated this assumption by comparing the node-averaged
values of R-matrix elements estimated from manually-traced
clinical galactograms and the projections of simulated RBTs
~see Fig. 7!. The differences between such estimated

R-matrix elements corresponding to our sets of clinical and
simulated trees are given by Eq.~13!. These differences are
influenced by the projective nature of galactography, the
manual duct-tracing procedure, and the limited number of
available clinical images.

The difference in the matrix elements estimated from
simulated ductal trees and the matrix elements estimated
from clinical galactograms is approximately three times their
standard error~Table II!. This suggests that it may be pos-
sible to develop a more appropriate model of the breast duc-
tal network than the random binary tree. As a first step, we
generated an additional set of synthetic trees using, as the
input to the simulation, the node-averaged R-matrix elements
corresponding to the clinical images. Note that due to the
probabilistic nature of R matrices, simulation using an R
matrix of a given tree will produce a variety of synthetic
trees, with statistical properties similar but not identical to
those of the original tree.

To match the number of clinical cases, we generated 9
synthetic trees using the node-averaged matrices computed
from the clinical ML/MLO galactographic views and 16
trees using the matrices computed from clinical CC views.
The R-matrix elements used for generating the synthetic
trees are given in the two rightmost columns of Table II.
These synthetic images were manually segmented in the
same manner as the previously analyzed clinical and random
binary trees~Sec. II B 1!. Out of 25 simulated vertical clini-
cal trees, we successfully traced the ductal morphology from
23 images~9 ML/MLO ! and 14 CC views!. The average
number of branches in these 23 simulated clinical trees was
60.367.6. The average number of nodes in the simulated
clinical images was 29.763.8 (a2516.262.0, a358.2
60.9, anda455.361.1, see Table I!. Figure 8 shows the
node averages of the R-matrix elements computed for manu-
ally traced simulated clinical trees, compared to the node-
averages for the original clinical trees. The rms fractional
error between the original and such simulated clinical trees is
equal to 11%. A similar analysis of the bifurcation ratios
gives the rms fractional error between the original and simu-
lated clinical trees of 3.9%. The values of the fractional rms
error obtained using the simulated clinical ductal trees are
lower than when synthetic RBTs were used. However, an
analysis of additional clinical images is necessary before we

FIG. 7. A comparison of the R-matrix elements computed for 25 manually
traced clinical ductal trees and for 23 manually traced synthetic random
binary trees. Symbols correspond to the node-averaged matrix element val-
ues and the error bars correspond to 25–75-percentile ranges. For the clini-
cal trees, the node averages computed for all the trees are shown~dia-
monds!, as well as the ML/MLO views~left triangles!, and CC views~right
triangles!.

TABLE II. Theoretical values of the R-matrix elements for random binary trees and node averages of the matrix
elements computed for 23 simulated, 23 manually traced simulated, and 25 manually traced clinical ductal trees.
~See Figs. 6 and 7.!

Theoretic Synthetic Synthetic, traced Clinical, traced~All ! ~ML/MLO only ! ~CC only!

r 2,1 0.500 0.48160.040 0.46960.039 0.38460.036 0.36160.061 0.39460.044
r 2,2 0.500 0.51960.042 0.53160.042 0.61660.049 0.63960.089 0.60660.058
r 3,1 0.500 0.51260.055 0.50860.055 0.33260.045 0.35560.080 0.31960.055
r 3,2 0.250 0.21860.032 0.22060.032 0.30860.043 0.28960.070 0.31960.055
r 3,3 0.250 0.27060.037 0.27260.037 0.36060.047 0.35560.078 0.36260.060
r 4,1 0.500 0.52460.065 0.51860.064 0.29060.055 0.35760.107 0.25660.063
r 4,2 0.250 0.24160.040 0.24460.040 0.28260.054 0.21460.079 0.31760.071
r 4,3 0.125 0.11560.026 0.11960.026 0.22660.047 0.21460.079 0.23260.059
r 4,4 0.125 0.12060.026 0.11960.026 0.20260.044 0.21460.079 0.19560.053
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would deem it appropriate to adopt a tree model other than
RBTs.

In order to further improve the model of the ductal net-
work, we plan a future analysis of a larger number of clinical
images. The reported results are potentially biased by the
manual segmentation approach and the long duration of case
accrual. We believe, however, that the manual segmentation
was sufficiently robust as to not affect our results. In prior
work, we have evaluated the effect of tree pruning36 and did
not find that the resultant R-matrices were significantly al-
tered. Such concerns, however, have led us to consider other
approaches. A three-dimensional analysis of the ductal net-
works ~e.g., contrast-enhanced MRI or CT! is desirable in
order to reduce the effects of the projective nature of galac-
tograms. Artifacts due to the manual segmentation of the
ducts can be reduced by developing an automated tracing
algorithm for 3-D galactograms~similar to the reported au-
tomated methods for tracing vascular, bronchial, hepatic, or

biliary networks!. Another approach would be to analyze
ductal casts from cadaveric breasts.

Rejection of the random binary tree model, a minimally
constrained model, additionally suggests that ductal branch-
ing does not occur by chance alone; there might be some
information about the developmental or pathological state of
the breast encoded in the ductal branching pattern. This as-
sumption is supported by our preliminary results in classify-
ing images with and without galactographic findings of cysts,
ductal ectasia, and papilloma, using the values of R-matrix
elements.36 The relationship between the ductal morphology
and breast lesions has been known pathologically but has not
been previously quantitatively described from macroscopic
radiological images. We would also like to extend this ap-
proach to analyses of the branching pattern in murine mam-
mary ducts under various controlled hormonal or carcino-
genic influences, following the work of Atwoodet al.6

V. CONCLUSIONS

An attempt to simulate the breast ductal network branch-
ing morphology is reported. The ductal network is modeled
by a collection of binary trees, each representing a ductal
lobe. The branching morphology is described using ramifi-
cation matrices, whose elements—equal to the probabilities
of different patterns of branching for the nodes at various
levels of a ramified tree—represent parameters in a stochas-
tic model for generating the ductal tree topology. Lacking
sufficient knowledge about the statistics of ductal branching,
preliminarily, we approximated each lobe by a random bi-
nary tree, in theory, the least constrained model of topology.
A statistical comparison between manually traced ductal
trees from a small number of clinical galactograms and syn-
thetic random binary trees indicates a certain degree of dis-
agreement, suggesting the possibility of developing a more
appropriate model of the ductal network topology in the fu-
ture. This, in turn, suggests that the ductal branching mor-
phology might be indicative of the state of development or
health of the breast. Furthermore, ramification matrices may
be an efficacious methodology for quantification of this mor-
phology.
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FIG. 8. A comparison of the R-matrix elements computed for 25 manually
traced clinical ductal trees and for 23 manually traced simulated clinical
trees~see Sec. IV!. Symbols correspond to the node-averaged matrix ele-
ment values and the error bars correspond to 25–75-percentile ranges.

TABLE III. Theoretical values of the bifurcation ratios~b! for random binary trees and node averages of theb
values computed for 23 simulated, 23 manually traced simulated, and 25 manually traced clinical ductal trees.

Theoretic Synthetic Synthetic, traced Clinical, traced~All ! ~ML/MLO only ! ~CC only!

b1 4.00 3.8960.28 3.8360.28 3.0960.22 3.1360.40 3.0660.27
b2 4.00 3.4860.48 3.4960.48 3.2460.42 3.0760.68 3.3360.53
b3 4.00 2.9660.36 3.0060.36 3.1260.35 3.0060.58 3.1960.45
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APPENDIX: TREE AND NODE AVERAGING
OF R-MATRIX ELEMENTS

The stochastic algorithm for generating topological trees
used in this paper can be viewed as randomly selecting a
binary tree from the family of all binary trees with a prede-
termined Strahler number~here equal to 4!. The probability
that the algorithm will generate or select a given tree is sim-
ply the product of the R-matrix elements associated with all
of the nodes of order greater than one in the tree.

Given a set of trees, which are presumed to be samples
from a random process that can be modeled in this manner, it
is reasonable to attempt to estimate the appropriate values of
the corresponding R matrix. Here, one must use caution. Fol-
lowing Penaud,32 from a set of trees one can estimate the
R-matrix values by counting all relevant nodes in all trees, so
that

Pk,i5
(Tbk,i

T

(Tak
T

, ~A1!

whereT is an index over then trees in the set andak
T andbk,i

T

are the counts of the numbers of nodes with appropriate or-
der and biorder, respectively. This ‘‘node average’’ is referred
to by Penaud as the ‘‘matrice de ramification d’une famille.’’
Alternatively, one can compute ramification matrices for
each tree, then average over the set of trees, obtaining the
‘‘tree average,’’

Qk,i5
1

n (
T

bk,i
T

ak
T

, ~A2!

which Penaud refers to as the ‘‘matrice de ramification d’un
arbre aléatoire d’une famille.’’

The node average and tree average are not necessarily
equal, as illustrated by Penaud with a simple example of the
set of six trees with a total of four internal nodes and Strahler
number three. Viennotet al.,26 in introducing the algorithm
that we have used, determined experimentally that the rami-
fication matrix calculated from a given tree produced by this
stochastic process is ‘‘close to the given matrix R, especially
for the first rows~corresponding to the small orders!... .’’

While a full analysis of this effect is beyond this paper, a
brief analysis of ther 4,4 element is illustrative. The element
r 4,4 represents the probability that a given branch of the
‘‘trunk’’ of a tree ~i.e., the tree segment of the order 4! ter-
minates the trunk by having two nodes of lower order as
descendants. If a given R matrix is used to stochastically
generate random trees, and then a set ofn trees so generated
is used to estimate the ramification matrix,

^Pk,i&n5(
m1

¯(
mn

~qm121p!¯~qmn21p!
n

m11¯1mn
,

~A3!

wherep5r 4,4, q512p, andmi is the number of nodes of
order 4 in theith tree, i.e.,mi5a4

T with T5 i indexing theith
tree. This can be written as

^Pk,i&n5npnh~q!, ~A4!

where

h~x!5(
m1

¯(
mn

1

m11¯1mn
xm11¯1mn2n ~A5!

can be seen to satisfy the differential equation

d

dx
@xnh~x!#5

xn21

~12x!n
, ~A6!

and the condition thath(0)51/n. Thus

xnh~x!5
1

n21

xn21

~12x!n21
2

1

n22

xn22

~12x!n22
1¯

1~21!n
x

12x
1~21!n ln~12x!, ~A7!

where the constant of integration must be zero in order for
h(0) to be finite. Note that forn51, corresponding to tree
averages, this formula must be interpreted as

xh~x!52 ln~12x!, ~A8!

with no other terms in the sum, as otherwise the term with
coefficient 1/(n21) would render the equation nonsensical.

The nature of this effect is illustrated in Fig. 9. The ab-
scissa shows the value ofr 4,4 used in the stochastic model.
The ordinate shows the value^P4,4&n , which would be ex-
pected from averaging all nodes inn trees randomly gener-
ated by this model. Forn51, ^P4,4&15^Q4,4&. Thus ‘‘tree
averages’’~i.e., taking the average of the ramification matri-

FIG. 9. An illustration of tree averaging and node averaging of the R-matrix
elements~see the Appendix!. The abscissa shows the value ofr 4,4 used in
the stochastic model for generating random trees. The ordinate shows the
value of the node average,^P4,4&n , which would be expected from averag-
ing all nodes inn trees randomly generated by this model. Forn51, the
node average and the tree average are the same when computed over a
single tree,̂ P4,4&15^Q4,4&. The bias in the estimate of the parameters of the
stochastic model for generating the random trees, (^P4,4&n2r 4,4), quickly
decreases as the number of trees increases.
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ces calculated for each tree and then averaging over the set
of trees! introduce a bias in the estimate of the parameters of
the stochastic model. The other elements of the fourth row,
r 4,1, r 4,2 and r 4,3, would be also be biased, as any estimate
of the row must sum to unity. The bias quickly decreases as
the number of trees increases. This also explains the obser-
vation of Viennotet al. that the matrix elements calculated
from individual trees agree with those of the R matrix used
to generate those trees for low-order elements, as each tree
essentially contains multiple subtrees of a lower Strahler
number.26
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