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Abstract. The amount of breast compression applied during a mammographic
exam affects the appearance of mammograms by introducing variations in the
shape, position, and contrast of breast anatomical structures, which can conceal
existing breast abnormalities or generate false alarms. Due to the complex tissue
organization and elastic properties of the breast and the projective nature of mam-
mography, rigid registration approaches are not useful in correcting these varia-
tions. We describe a non-rigid approach focused on registration of mammogram
regions of interest, taking into account the changes in image contrast. This reg-
istration algorithm has been applied to synthetic mammograms generated using
a deformable 3D anthropomorphic phantom and a model of breast deformation
during mammographic compression.
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1 Introduction

Image registration has been an active topic of research for over a decade (see [1] for
a recent survey). The most common medical application is in brain imaging [2, 3]. Al-
though less studied, mammogram registration is not only a challenging problem but
also an important issue for computer-aided diagnosis. One of the main approaches to
tumor detection consists of locally comparing mammograms and identifying abnormal
differences [4–8]. This approach can be applied either to successive mammograms of
the same breast or mammograms of both the left and right breasts. In the first case, ab-
normal differences are a sign of possible lesion growth, whereas in the second case they
are a sign of suspicious asymmetry. Unfortunately, such comparisons lack specificity
due to the large number of normal mammogram differences which are locally similar
to abnormalities and cause false-positives.

The main problem in the design of a robust comparison technique is to reduce false-
positives by recognizing normal mammogram differences. Normal differences can be
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due to several factors: acquisition differences, breast positioning and compression vari-
ations, and anatomical or histological variations. Differences resulting from acquisition
conditions are often very prominent in successive mammograms. They can be corrected
by mammogram grey-scale normalization [9]. Differences due to breast positioning
can be easily corrected by alignment procedures which involve rotation and translation
computed using breast contours [8]. But, the correction of differences due to the last
three factors (compression and histological and anatomical variations) is still an open
problem. The effect of these factors on a mammogram are not well-known. Model-
ing mammographic compression effects is an important recent topic of research [10,
11, 9, 12]. Non-rigid image registration techniques have been proposed to correct im-
age differences that remain after mammogram normalization and alignment [4, 5, 7].
However, none of these works has systematically evaluated the ability of techniques to
correct each type of difference. Such evaluations are difficult to implement because they
require very specific mammogram databases that are not available in the public domain.

Our motivation is to automatically correct mammogram differences due to breast
compression variations. Our main contribution is two fold. First, based upon recent
works of F. Richard and L. Cohen [4, 5], we propose a new image registration technique
which enables such corrections. Second, we show preliminary results of an evaluation
based upon synthetic mammograms simulated with a deformable breast phantom [12,
13]. Here we present a report of our work in progress.

In [4, 5], F. Richard and L. Cohen proposed an image-matching approach that fo-
cuses on regions of interest. This approach allows a combination of constraints which
are intensity and contour based. Such a combination is well-suited for mammogram
registration. Breast contours are the most widely used constraint for registration, as
they provide robust corrections of breast shape differences. However, these constraints
are not sufficient to register accurately changes in internal breast anatomy. Such reg-
istrations can be obtained by completing models with some other constraints based on
image intensity. In [4, 5], intensity-based constraints are defined using the mean square
distance (MSD) between image grey levels (see section 2.1). This similarity measure is
generally used in registration of images from a single modality and is well-suited for
cases where grey levels are approximately the same from one image to another. Large
variations of breast compression can, however, significantly change image contrast. In
order to overcome this limitation, we have modified the registration approach allowing
linear change of image contrast, similarly to the registration of multimodality images
[14, 15]. This modified approach, however, differs by enabling non-rigid deformations,
while still combining intensity-based with contour-based constraints. In Section 2, we
describe this new registration approach. In Section 3, we present the model which is
used to simulate mammograms of a breast with different amounts of compression. In
Section 4, we show some registration experiments using simulated mammograms.

2 Registration Technique

2.1 Framework

Let Ω be a connected and open set of �2 and I0 and I1 be two images defined on
Ω using interpolation. Let us denote by Ω the set which is the closure of Ω (with
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respect to the Euclidean norm of �2), i.e., the set which contains the set Ω and its
boundary. Matching images I0 and I1 consists of finding a geometric deformation φ
such that the deformed image I0 ◦ φ is “similar” to the target image I1. Usually [16–
18], images are registered on the whole domain Ω and geometric deformations are
defined as functions mapping Ω onto itself. As in [4, 5], we focus rather on mapping
image regions of interest. For that, we assume that images I0 and I1 have single regions
of interest which are respectively located on the connected and open subsets Ω0 and Ω1

of Ω. We denote by ∂Ω0 and ∂Ω1 the boundaries of Ω0 and Ω1, respectively. In the
registration model defined next, boundaries ∂Ω1 in I1 are assumed to be segmented and
known whereas boundaries ∂Ω0 are unknown and segmented during the registration
process. We define geometric deformations φ on the known region of interest Ω1 of I1.
These deformations are elements of a space W which is composed of smooth functions
mapping the domain Ω1 into Ω. We will denote by u a displacement fields associated
with deformations φ. Displacements u also belong to W . They are equal to φ − Id,
where Id is the identity map of W (i.e. ∀ x ∈ Ω, Id(x) = x).

In registration tasks involving a single modality, the image similarity criterion is
usually the MSD. For all images I0 and I1 in L2(Ω) and any open subset U of Ω, this
distance is defined as:

D2
U (I0, I1) = |I0 − I1|2U =

∫
U

(I0(x) − I1(x))2 dx. (1)

This distance is low if on each point of U , grey levels values of both images I0 and I1

are close. This distance is not invariant with contrast changes. Hence, a MSD criterion
is not suitable for the similarity quantification of images having different contrasts. One
of the ways to define a criterion DU,C which is invariant to a group C of contrast changes
is the following:

D2
U,C(I0, I1) = inf

g∈C
|g · I0 − I1|2U . (2)

In this definition, g · I0 is the action of a contrast change g of C on I0. In this paper, we
will simply use a measure which is invariant to linear contrast changes. Hence, in what
follows, the set C will be equal to �2 and the action of an element g = (g1, g2) of C on
an image I will be defined as

g · I = g1 I + g2. (3)

In this equation, g1 is a grey-level dilatation factor and g2 is a translation factor. Let φ
be in W and g in C, we will denote by Iφ,g the geometric deformation of the image I
under the contrast change g:

∀ x ∈ Ω1, Iφ,g(x) = g · I ◦ φ(x) = g1 I(φ(x)) + g2. (4)

When g = (1, 0), Iφ,g will be also denoted Iφ.

2.2 Mathematical Model

The registration problem is stated in terms of an inverse problem as follows:
Problem 1 (first formulation) Find an element of W which minimizes an energy J̃ of
the following form:
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J̃(u) =
1
2

AΩ1(u, u) +
γ1

2
D2

Ω1,C(I0
φ, I1) + γ2

∫
Ω−φ(Ω1)

S((I0(x))2)dx, (5)

with free boundary conditions on ∂Ω1. In this energy definition, parameters γ1 and γ2

both belong to �+.
The energy in Equation (5) is composed of three terms. The first term is a smooth-

ing term which ensures that the problem is well-posed and that solutions are non-
degenerate. As in [5, 4], the design is based on a strain energy of the linearized elas-
ticity. The second term is the image similarity measure defined in Equation (2). It is an
intensity-based registration constraint. The third term is a registration constraint which
ensures that energy minima map Ω1 onto Ω0. It is defined on a region Ω − φ(Ω1)
which is an expected background of I0. The function S(y2) is low when y is likely to
be a background grey-level value and high when it is not. Due to the third term, the
registration model also enables the segmentation of an otherwise unknown region of
interest in I0. After minimization, boundaries of this region of interest are described by
φ(∂Ω1).

It can be shown using Green’s formulae that Problem 1 is equivalent to the following
problem [4, 5]:

Problem 1 (equivalent formulation) Find an element of W × C which minimizes an
energy J which is of the following form:

J(u, g) =
1
2

AΩ1(u, u) +
γ1

2
|I0

φ,g − I1|2Ω1
− γ2

∫
Ω1

S((I0
φ(x))2) det(∇φ) dx, (6)

with free boundary conditions on ∂Ω1.

In this equation, the real value det(∇φ) is the Jacobian of φ. In this formulation, con-
trast changes g are explicitly mentioned as unknown variables.

2.3 Numerical Solution

The gradient ∇Ju,g of the energy J (Equation (6)) with respect to the variable u in W
was computed in [5, 4]. It is given by

∇Ju,g = u − L−1 f(φ, g), (7)

where L is the operator of the linearized elasticity [5, 4] and f is given by

f(φ, g) = −γ1 (I0
φ,g − I1) ∇I0

φ

+2 γ2 det(∇φ) S′((I0
φ)2) ∇I0

φ − γ2 div{S((I0
φ)2) cof(∇φ)T }, (8)

where cof(M) is the cofactor matrix of a matrix M (cof(M) = det(M)M−T ).
Now, let u be fixed in W , the function Gu which is defined on �2 and associates g to

J(u, g) is convex. Thus, the minimum of Gu is the unique solution of Euler equations
∂g1Gu(g) = 0 and ∂g2Gu(g) = 0, where ∂g1Gu(g) and ∂g2Gu(g) are respective partial
derivatives of Gu:
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∂g1Gu(g) = γ1

(
g1

∫
Ω1

(I0
φ(x))2dx + g2

∫
Ω1

I0
φ(x)dx −

∫
Ω1

I1(x)I0
φ(x)dx

)
,

∂g2Gu(g) = γ1

(
g1

∫
Ω1

I0
φ(x)dx + g2|Ω1| −

∫
Ω1

I1(x)dx
)
,

The solution ĝu of the Euler equations is given by:

ĝ1,u =

∫
Ω1

I1(x) I0
φ(x)dx − ∫

Ω1
I1(x)dx

∫
Ω1

I0
φ(x)dx∫

Ω1
(I0

φ(x))2dx − (
∫

Ω1
I0
φ(x)dx)2

, (9)

ĝ2,u =
1

|Ω1| (
∫

Ω1

I1(x)dx − ĝ1

∫
Ω1

I0
φ(x)dx). (10)

Using these remarks, we can derive a gradient descent algorithm for the numerical
resolution of Problem 1.

Algorithm 1 (gradient descent)

∀ t > 0,
du

dt
(t) = −u(t) + δ(t) and u(0) = M0, (11)

where at each time t, δ(t) is the solution of the following partial differential equation:

L δ = f(φ(t), ĝ(t)), (12)

with f defined as in Equation (8) and ĝ(t) given by Equations (9) and (10) for u = u(t).

For the implementation of this algorithm, we use the same approach as in [4, 5]: we
discretize Equation (12) using the Galerkin method and adopt a multigrid, coarse-to-
fine optimization strategy. Also, the initial segmentation of the region of interest in I0

is computed with the same approach. An initial displacement, M0, is derived using a
coarse matching of regions of interest boundaries.

3 Mammogram Model

Evaluation of the image registration problem was performed using synthetic mammo-
grams based upon an anthropomorphic breast model and a simulation of the mammo-
graphic imaging process developed by P. Bakic et al. [12]. The 3D anthropomorphic
breast model has been designed with a realistic distribution of large and medium scale
tissue structures. Parameters controlling the size and placement of the simulated struc-
tures (adipose compartments and ducts) provide a method of consistently modeling
images of the same simulated breast with different compression, projection angle and
acquisition parameters. The mammographic imaging process is simulated using a com-
pression model and a model of the x-ray image acquisition process. This mammography
simulation has been evaluated in terms of mammographic texture [13] and ductal mor-
phology [19], and has been used to estimate the mean glandular dose in mammography
[20]. The compression model estimates breast deformation using published values of
tissue elasticity parameters and clinically relevant force values. Synthetic mammograms
are simulated using a monoenergetic parallel x-ray beam applied to the synthetically
compressed breast phantom.
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3.1 3D Anthropomorphic Breast Model

The breast model contains two ellipsoidal regions of large scale tissue elements: pre-
dominantly adipose tissue (AT) and predominantly fibroglandular tissue (FGT). Anal-
ysis of subgross histologic breast images and the corresponding mammograms showed
that the background texture, or parenchymal pattern, found in mammograms is pre-
dominantly due to the projection of the connective tissue surrounding adipose compart-
ments. These compartments are included in the model to simulate the breast adipose
tissue, and these form the medium scale breast model elements. In addition, the model
includes a representation of the breast ductal network. The adipose compartments are
approximated by thin shells in the AT region and small blobs in the FGT region. The
interiors of the shells and blobs have the elastic and x-ray attenuation properties of adi-
pose tissue; while the shell layer and the portion of the FGT region surrounding blobs
simulate the properties of the connective tissue. As a first approximation, the adipose
compartments are represented by spheres. The size of the spheres can vary to allow for
normal breast anatomic variations. depending upon the amount of adipose tissue in the
breast. Adipose compartments are more easily identified in a histology image than in
a mammogram, since the latter image contains the superimposed projections of many
tissue layers. Generation of the simulated adipose compartments is described in more
detail in [12] and generation of the binary tree models of the breast ductal networks is
given in [19].

3.2 Simulation of Mammographic Compression

Mammographic compression is simulated based upon tissue elasticity properties and a
simplified breast deformation model. Deformation is simulated separately for slices of
the breast model positioned normal to the compression plates. Each slice is approxi-
mated by a beam composed of two different tissues. The deformed slices are stacked to
produce a model of the compressed breast.

Tissue elasticity parameters from the literature vary significantly, partly because
they have been measured experimentally using small samples taken from a particular
tissue type. The breast, however, consists of a complex admixture of different tissues
types, which affects the elastic behavior of the whole organ. We used parameters cal-
culated from the speed of sound in tissue [21] and tissue density. The Mammogra-
phy Quality Standards Act [22] recommends the minimum and maximum compression
force to be used in mammography. There are also reports in literature of statistical anal-
yses of the force and compressed breast thickness measured during exams [23]. The
values of the force used in the mammographic simulation were selected based upon
these two constraints.

In this paper we have generated medio-lateral oblique (MLO) mammographic views
calculated with various amounts of compression. The breast compression simulation
is performed in the following steps. First, a slice, with thickness equal to the desired
image resolution (200 micron/pixel in this experiment) is approximated by a rectangle
with total area and nipple-chest wall dimension equal as in the original slice. The FGT
region within the slice is approximated by a rectangle which again has the same area
and nipple-chest dimension as in the original slice. These approximations are designed
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so that the distance between the centers of gravity of the whole slice and the FGT
portion is also the same as in the original slice. Next, the rectangular approximation
is deformed using Hooke’s law and elastic moduli values corresponding to the FGT
and the surrounding AT regions. Finally, the deformed rectangular approximation is
used to compute the compressed phantom slice shape. Attention is taken to realistically
simulate the flattened shape of the compressed breast. As such, the breast thickness is
equal to the distance between the compression plates everywhere except in a narrow
region close to the anterior edge of the breast. Separate processing of individual model
slices is performed, followed by restacking the deformed slices together to form the 3-D
compressed breast model. Computation details can be found in [12].

4 Results and Discussion

We have applied the modeling approach described in Section 3 to synthesize mammo-
graphic images of the same simulated breast under varying amounts of compression.
Examples are shown on Figures 1(a) and (d). Varying breast compression has several
effects on the appearance of the mammograms. The size of the breast domain in the
mammogram increases as the breast becomes more compressed and the shape changes
slightly. As the compression is varied, the FGT region, the central bright region com-
posed of predominantly fibro-glandular tissue, also undergoes significant geometric de-
formations. As the compression decreases, the center of this region translates in the
direction of the chest wall. The FGT region also changes its shape in a way that is in-
dicative of a non-rigid deformation. Regions where fatty tissues are predominant also
vary. In particular, in the top (simulated axilla) of images, the fatty tissue region which is
between the FGT and the background becomes narrower as the compression decreases.

Compression variations affect the mammogram contrast. Increasing the amount of
compression results in reducing the thickness and spreading the breast FGT region,
which, if acquisition parameters remain constant, reduces the image latitude. Such a
change can for instance be observed in Figure 2 by comparing histograms of mam-
mograms obtained with different amount of compression. Note that the mammogram
obtained with a compression of 8cm appears darker (lower pixel intensities) than the
others (see Figure 1). This is because that mammogram was simulated with different
acquisition parameters, which corresponds to a clinical situation of manually changing
the x-ray technique for breasts of different thickness.

The algorithm described in Section 2 was applied to pairs of synthetic images, with
the goal of correcting shape and intensity differences between structures in the unreg-
istered mammograms. Parameter values were selected in accordance with our previous
works [4, 5]. Computation times were about twenty seconds on a PC Intel Pentium IV
2.2 GH. A registration example is shown on Figure 1. In this example, the source im-
age I0 (image (a)) is the mammogram obtained with a breast compression of 8cm. It
is deformed onto the target image I1, which is the mammogram obtained with a breast
compression of 5cm. Observing images (a), (b) and (d) and images (e) and (f), several
significant corrections of geometric differences between mammogram coarse structures
are noticeable. First of all, very few differences due to breast size variations remain af-
ter registration. These large differences are corrected as the result of a strong dilation
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. A mammogram registration example: (a) and (d) are simulated mammograms of the breast
with compressions of 8cm and 5cm, respectively. (a) is the source image I0 and (d) is the target
image I1. (b) is the geometric deformation I0

φ of I0 that is computed using Algorithm 1. (c) is the
contrast corrected deformation I0

φ,g of I0. [Small squares in (a), (b), and (d) indicate positions
of several corresponding homologous salient points.] Absolute differences between unregistered
mammograms (I0 and I1) and between registered and contrast corrected mammograms (I0

φ,g

and I1) are shown respectively in (e) and (f) [black=high differences, white=low differences]. (g)
shows the tessellated breast domain Ω1 of I1 and (h) the deformed domain (φ(Ω1)).

of the source image. Initial differences due to variations in the shape of the FGT region
are also significantly reduced. Left FGT boundaries in the source mammogram are par-
ticularly deformed. Their shape, which is approximately a straight line, is transformed
into a curved line. In addition, in the upper portions of Figures 1(a) and (b), we can
observe a large dilation of the source image which corrects shape differences of fatty
tissue areas.
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Fig. 2. Comparison of grey-level histograms of simulated mammograms.

The algorithm not only corrects coarse structure shapes. As can be seen in Fig-
ure 1(f), it also corrects some differences inside these structures. Such corrections can
also be illustrated using salient points. In Figures 1(c) and (d), we selected manually
four pairs of homologous salient points having the same positions and computed back
their positions in Figure 1(a). The observed displacements of these points (marked with
small squares) outline repositioning of homologous points of inner structures during
the registration. The algorithm also provides for relevant correction of image contrast
variations, as illustrated by Figure 1(c). This correction can also be seen in the com-
parison of mammogram histograms on Figure 2. As a result of the contrast change,
histogram of the mammogram with a breast thickness of 8cm matches the histogram of
the mammogram of thickness 5cm.

5 Conclusions

We have described a non-rigid mammogram registration algorithm, modified to provide
corrections for image contrast variations. Use of the proposed algorithm was demon-
strated on synthetic mammograms generated by applying different amounts of mam-
mographic compression to the same 3D software breast phantom. Further studies are
needed, aimed at more precise statistical evaluation of the algorithm.
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