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ABSTRACT

Several types of breast carcinomas tend to spread along the 

surface of the ductal lumen. Spontaneous nipple discharge 

can be an early symptom of such cancer development that 

does not otherwise result in visible mammographic changes. 

An imaging procedure that can visualize such symptoms is 

galactography. We focus on characterizing the topology of 

the ductal network in galactograms based on fractal 

properties. Statistically significant differences of fractal 

properties were detected among healthy subjects and 

patients with reported galactographic findings. We 

performed receiver operating characteristic (ROC) curve 

analysis in order to assess the accuracy of using the 

regularization dimension values for separating among 

ductal trees. The area under the ROC curve observed was 

0.86.

1. INTRODUCTION 

Nipple discharge, usually associated with benign changes, 

can indicate underlying malignant lesions in up to 15% of 

cases [1].  This type of spontaneous discharge is frequently 

caused by papilloma or ductal ectasia, symptoms that do not 

usually show recognizable changes in mammograms. An 

imaging procedure that can visualize such symptoms is 

galactography, during which x-ray mammography is 

performed after injecting a contrast agent into the lactiferous 

ducts [1, 2].  

Several forms of cancerous lesions tend to exhibit a 

superficial spread along the surface of the ductal lumen or 

lobules. Studies have demonstrated that examining the 

morphology of the ductal network can provide valuable 

insight to the development of breast cancer and assist in 

diagnosing abnormal breast tissue [3]. Studies on mice have 

also supported the hypothesis that a particular relation exists 

between the branching of the ducts and cancerous pathology 

[4].  

In order to evaluate the morphology of the ducts and its 

association to breast cancer symptoms, Bakic et al. [5]

proposed a three-dimensional simulated model of the  

ductal network and a quantitative approach to classify  

galactograms based on ductal branching properties [6]. 

Focusing on characterizing tree-like structures in medical 

images, Megalooikonomou et al. [7] proposed a 

representation and classification scheme for tree-like 

structures such as the ductal network visualized by 

galactography. The latter approach employs the Prüfer

encoding to obtain a symbolic representation of trees and a 

tf-idf mining technique for classification.  In this paper we 

extend previous work [6, 7] by further examining fractal 

properties of the ductal topology in galactograms. In 

addition to proposing a quantitative classification scheme 

such as in previous reported approaches [6, 7], we interpret 

how fractal properties actually relate to the differentiation of 

ductal topology among healthy subjects and patients with 

reported galactographic findings of ductal ectasia, cysts or 

papilloma. 

Fractal analysis can be used to describe properties that 

are not interpretable by the traditional Euclidean geometry 

[8]. In the field of mammography, fractal analysis has been 

employed for characterizing the parenchymal pattern [9], 

distinguish architectural distortion [10] and detect 

microcalcifications [11]. Most of these approaches utilize 

fractal analysis to characterize texture properties. We are 

interested in characterizing the actual topology of the ductal 

network. Some initial attempts to study self-similar 

properties of the breast parenchyma have been performed by 

fractal analysis of the lengths and cross-sectional areas of 

the ducts [12]. To the best of our knowledge, this is the first 

report on a fractal analysis of the breast ductal network 

topology, as visualized by galactography.    

2. METHODS

2.1 Data and Preprocessing

In our study the ductal trees were manually segmented from 

the x-ray galactograms [6] (Fig. 1.a-b). We considered 22 

galactograms from a total of 14 patients. From these images 

10 corresponded to subjects with no reported galactographic 

findings (NF) and 12 to subjects with reported findings 

(RF). Follow up data was available for 8 out of the 12 

patients and confirmed absence of malignancy over a period 

of 5 years (on average) [6]. 
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Fig. 1. (a) A real x-ray galactogram, (b) the ductal tree magnified, 

(c) the manually extracted ductal tree in a canonical form, and (d) 

the corresponding depth-first string encoding.

To avoid the problem of tree isomorphism we 

normalize the trees by applying a procedure for obtaining a 

canonical form of the tree [13]. The labeling of the trees was 

based on consecutive increasing integers assigned on a 

breadth-first search manner (Fig. 1.c). In order to study the 

fractal properties of the actual tree topology we encode the 

extracted ductal tree-like structures into a representation that 

reflects topological properties. We select the depth-first 

string encoding, which provides a one-to-one 

correspondence between the tree and the obtained string 

representation [13]. The depth-first string encoding

constructs this unique string representation for each tree by 

visiting each node following an in-order depth-first 

traversal. During this process each node is represented in the 

string by its label (Fig.1.d). These strings can be treated as 

signatures representing the original trees (Fig. 2).  

 (a)      (b) 

Fig. 2.  The depth-first string encoding signatures of the ductal 

trees for (a) the NF class and (b) the RF class. 

2.2 Fractal Analysis 

In order to examine the fractal properties of the ductal 

branching we calculate the regularization dimension [14] of 

the 1D signatures corresponding to the initial ductal trees. 

The regularization dimension detects self-similar properties 

of the signature by looking into the scaling behavior of the 

lengths of less and less regularized versions of the 1D graph.  

More specifically, consider the signal )(tsS as a 

function of time; in our case the time dimension is 

equivalent with the successive node labeling during the 

depth-first string encoding procedure. Also, consider a 

kernel function )(txX , such that 1X . We define 

a
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To calculate the actual regularization dimension we 

used the FracLab toolbox for Matlab developed at INRIA 

[15] (also available on-line at http://www.irccyn.ec-

nantes.fr/hebergement/FracLab/). Figure 3.a illustrates an 

example of these successive dilations of the kernel and their 

convolution with the original 1D tree encoding signature. 
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Fig. 3. An example of calculating the regularization dimension for 

the ductal tree 1D representations; (a) successive convolutions of 

the dilated Gaussian kernel with the original depth-first string 

encoding signature and (b) the corresponding log-log plot from 

which the regularization dimension is estimated as the slope.  
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We selected a Gaussian kernel and 64 progressive dilations 

of the kernel for the regularization process. To fit the log-

log plot in order to calculate the actual regularization 

dimension (Eq.1) we selected a least square regression 

approach. Figure 3.b illustrates an example of a fitted log-

log graph from which the regularization dimension is 

estimated. The selection of the kernel function should not 

affect the range of the regularization dimension difference

between the classes.

Receiver operating characteristic (ROC) curve analysis 

[16] is further employed, in order to evaluate the accuracy 

of using the regularization dimension values of the two 

classes for separating NF from RF ductal trees. In order to 

interpret how the estimated fractal properties are related to 

the topology of the ductal network we take into 

consideration the nature of the depth-first string encoding.

3.  RESULTS 

We calculated the regularization dimension for all the ductal 

trees extracted from the available x-ray galactograms. Our 

initial focus was to investigate whether a statistically 

significant difference of this fractal dimension exists among 

the two classes. Table 1 illustrates the actual calculated 

regularization dimension for each subject and both classes.

We investigate the possibility of overlap between the 

two classes due to the fact that no malignancy existed for 

any of the subjects, regardless of the presence of 

galactographic findings. By performing a Lilliefors test for 

goodness of fit to a normal distribution we can confirm that 

the NF class follows a normal distribution. Nevertheless, 

this does not hold for the RF class when applying the same 

test. As the box-plot of illustrates in Figure 4, the 

distribution of the RF class is skewed, indicating the 

presence of outliers in the lower values of the distribution. 

Looking into the actual regularization dimension values in 

Table 1 we identified and removed View 17 and View 19 as 

outliers for the RF class. After removing these outliers the 

distribution of the RF class conforms to a normal 

distribution as illustrated in Figure 4. This is also confirmed 

by applying a Lilliefors test. 

Regularization Dimension 

NF RF 

View 1 1.79 View 11 1.76

View 2 1.33 View 12 1.67

View 3 1.66 View 13 1.81

View 4 1.28 View 14 1.76

View 5 1.62 View 15 1.69

View 6 1.67 View 16 1.74

View 7 1.46 View 17 1.39

View 8 1.65 View 18 1.66

View 9 1.44 View 19 1.49

View 10 1.63 View 20 1.58

  View 21 1.84

  View 22 1.92

Table 1. The fractional regularization dimension for every subject 

in each of the two classes.  

Fig. 4. Box-plot for the regularization dimension values for the NF 

class and the RF class before and after the removal of the outliers. 

In order to assess the statistical significance of the 

fractal dimension divergence among the two classes, we 

applied the unpaired two-sampled t-test. The mean 

regularization dimension values were 1.55 0.17 for the 

NF class and 1.74 0.01 for the RF class, with  

p-value=0.01 and confidence intervals CI= [-0.32 -0.06]. 

This confirms the initial indication from Figure 2 that both 

classes seem to express self-similarity to some degree, with 

the RF class having a slightly more complex and noisy 1D 

representation. 

We performed a receiver operating characteristic 

(ROC) curve analysis [16] in order to assess the accuracy  

of using the regularization dimension values for separating 

NF from RF ductal trees.  For this analysis we used the 

ROC toolbox for MATLAB developed by G.C. Cawley 

(publicly available at http://theoval.cmp.uea.ac.uk/~gcc 

/matlab/default.html). The software also computes the 

convex hull of the ROC curve. The ROC curves obtained 

before and after removing outliers from the RF class are 

illustrated in Figure 5. The corresponding area under the 

ROC curve was equal to A1=0.77 before removing the 

outliers. The performance improved up to A2=0.86 when the 

outliers were removed from the RF class. 

In order to provide an interpretation of the statistically 

significant difference of the regularization dimension

between the two classes, we need to take into consideration 

the nature of the depth-first string encoding representation. 

As the encoding algorithm traverses the ductal tree, each 

node is represented in the string by its label. The labeling of 

the trees is based on consecutive increasing integers 

assigned on a breadth-first search manner. For this reason it 

is expected that the 1D depth-first string encoding

signatures will resemble a positive signal with a trend for 

increasing values (Fig. 2). 

In general, a fractal dimension indicates the degree of 

self-similarity of a structure. In that sense, both classes 

exhibit self-similarity since their regularization dimension is 

between the traditional Euclidean geometry dimension 

values of 1 and 2. As the scale of the convolution with the 

regularization Gaussian kernel changes, the 1D ductal tree 

representations exhibit self-similar variations. Also the 

signatures of the RF class seem to have a higher degree of 

self-similarity than the NF trees (i.e. higher regularization 

dimension).
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Fig. 5. The ROC curves for the regularization dimension.

These findings can be interpreted in the two following ways: 

1. The local branching of the smaller ducts in the ductal 

network reflects in both structure and topology the 

branching of the core ducts. 

2. The topology of the ducts in subjects with reported 

galactographic findings tends to be more complex 

indicating possible distortion of the normal parenchyma.  

These are preliminary results. Larger populations of women 

need to be studied, including verified malignant cases, in 

order to derive more specific conclusions on the association 

between the ductal branching topology and the pathology of 

breast cancer. To perform this type of large-scale analysis, 

we intend to investigate methods for automating the process 

of tracing and extracting the ductal trees from contrast 

enhanced mammograms. This would be a critical step for 

introducing this type of analysis into clinical practice. 

4.  CONCLUSION 

In this paper we presented a study of the fractal properties of 
the breast ductal network based on real ductal trees 
extracted from x-ray galactograms. We focused on 
characterizing the actual topology of the ductal network 
using the regularization dimension. We examined possible 
associations of the detected self-similar properties and 
symptoms of breast pathology. We also performed a 
receiver operating characteristic (ROC) curve analysis in 
order to assess the accuracy of fractal properties for 
discriminating among healthy subjects and patients with 
reported galactographic findings. The best ROC 
performance was A2=0.86 after removing two outliers from 
our dataset.  
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