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ABSTRACT 

 
Studies have demonstrated a relationship between mammographic texture and breast cancer risk. To date, texture 
analysis has been limited by tissue superimposition in mammography. Digital Breast Tomosynthesis (DBT) is a novel 
x-ray imaging modality in which 3D images of the breast are reconstructed from a limited number of source projections. 
Tomosynthesis alleviates the effect of tissue superimposition and offers the ability to perform tomographic texture 
analysis; having the potential to ultimately yield more accurate measures of risk. In this study, we analyzed texture in 
DBT and digital mammography (DM).  Our goal was to compare tomographic versus mammographic texture 
characterization and evaluate the robustness of texture descriptors in reflecting characteristic parenchymal properties. 
We analyzed DBT and DM images from 40 women with recently detected abnormalities and/or previously diagnosed 
breast cancer. Texture features, previously shown to correlate with risk, were computed from the retroareolar region. 
We computed the texture correlation between (i) the DBT and DM, and (ii) between contralateral and ipsilateral breasts. 
The effect of the gray-level quantization on the observed correlations was investigated. Low correlation was detected 
between DBT and DM features. The correlation between contralateral and ipsilateral breasts was significant for both 
modalities, and overall stronger for DBT. We observed that the selection of the gray-level quantization algorithm affects 
the detected correlations. The strong correlation between contralateral and ipsilateral breasts supports the hypothesis 
that parenchymal properties appear to be inherent in an individual woman; the texture of the unaffected breast could 
potentially be used as a marker of risk. 
 
Keywords: Feature extraction, Quantitative image analysis; Mammography, Digital breast tomosynthesis; Risk 
assessment. 
 

 
1. INTRODUCTION 

Parenchymal patterns are the mammographic visual effect of breast density; parenchymal patterns in x-ray breast 
images are formed by the distribution of fatty, glandular, and stromal breast tissues 1, 2. While the relationship between 
mammographic breast density and breast cancer risk has been clearly demonstrated 3, studies have also shown that a 
potential relationship exists between mammographic parenchymal texture and the risk of developing breast cancer 4-6. 
Texture features extracted particularly from the retroareolar breast region appear to have the best performance in 
distinguishing between women at different breast cancer risk levels 7, 8. These studies suggest that computer-extracted 
texture features, could provide fully-automated, objective, and reproducible methods to identify parenchymal patterns 
that are associated with increased levels of risk. 

Mammograms, however, are 2D images that visualize a compressed projection of the 3D breast volume (Fig. 1.a). 
Therefore, texture features computed from mammograms reflect the properties of superimposed breast tissues, including 
the skin and the surrounding subcutaneous fat layers. Knowing that the risk for developing breast cancer is mainly 
associated with properties of the fibroglandular tissue (i.e. breast density), layers such as the skin or subcutaneous fat 
could be considered as anatomical noise in terms of image-based risk characterization. Considering these limitations of 
mammography, tomographic breast imaging could provide better means to perform parenchymal texture analysis, and 
ultimately yield more accurate measures for breast cancer risk estimation.  
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Fig. 1 Imaging geometry and lesion conspicuity with (a) DM and (b) DBT 

 

Digital breast tomosynthesis (DBT) is a novel 3D x-ray imaging modality in which tomographic images of the breast 
are reconstructed from multiple low-dose x-ray source projection images acquired at different angles of the x-ray tube 9 
(Fig. 1.b). By combining information from different projections, tomosynthesis filters out non-adjacent anatomical 
breast structures, alleviating the effect of tissue superimposition. Clinical trials have shown that tomosynthesis provides 
superior tissue visualization and improved lesion conspicuity in comparison to projection mammography, resulting in 
higher sensitivity and specificity 10, 11.  Having the advantage of tomographic imaging, DBT offers the potential to 
alleviate the effect of tissue superimposition in parenchymal analysis, which could result in more accurate texture 
measures for breast cancer risk estimation.  

In this study, we analyzed texture in DBT and digital mammography (DM); we computed texture features that have 
been shown in previous studies with mammograms to correlate with breast cancer risk 4-8. Our goal was to compare 
tomographic versus mammographic texture characterization and evaluate the robustness of the texture descriptors in 
reflecting characteristic parenchymal properties. This study extends our previous report on texture analysis in 
tomosynthesis source projection images 12. Parenchymal analysis was performed in the retroareolar breast region using 
computer-extracted texture features.  We computed the correlation between mammographic and tomographic texture 
features. The degree of this correlation indicates the extent in which tissue superimposition introduces differences in 
image texture between the two modalities. We also computed the correlation of the texture features between the 
contralateral and ipsilateral breast of each woman. The degree of similarity in parenchymal texture between the affected 
and unaffected breasts reflects the degree to which characteristic parenchymal properties are inherent in an individual 
woman. This is an essential assumption in order to consider parenchymal texture as a marker of risk: The underlying 
hypothesis is that inherent biological factors associated with the risk of developing breast cancer are expressed in a 
woman’s parenchymal tissue and subsequently manifested in her mammographic texture 13.  
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Our long-term hypothesis is that DBT parenchymal analysis could provide more accurate texture measures for 
image-based breast cancer risk estimation; our goal is to develop DBT texture biomarkers that can be used to provide 
Computer-Assisted Risk Estimation (CARe) of breast cancer in clinical practice.  
 
 

2. METHODS 

2.1. Dataset 

The images included in our analysis have been retrospectively collected from a clinical multimodality breast imaging 
study that has been completed in our department (NIH R01 CA85484-01A2). We analyzed bilateral DBT and DM 
images from 40 women with recently detected abnormalities and/or previously diagnosed breast cancer (mean age 51.4 
years, average Gail risk 11%). DBT and DM acquisition was performed on the same day with a GE Senographe 2000D 
FFDM (General Electric Medical Systems, Milwaukee, WI) system, modified to allow positioning of the x-ray tube at 9 
locations by varying the angle from -25o to +25o with increments of 6.25o. The breast was compressed in an MLO 
position and the source images were acquired with spatial resolution of 100 µm/pixel. Filtered-backprojection was used 
to reconstruct DBT tomographic planes in 1mm increments with 0.22mm in-plane resolution. Retroareolar (2.5 cm)3 
ROIs were manually segmented from the DBT reconstructed images; corresponding (2.5 cm)2 ROIs were segmented 
from the Premium View™ DM images.  Three ROIs with technical image artifacts were excluded from the analysis; one 
segmented from a breast contralateral to cancer and two segmented from breasts ipsilateral to cancer.  
 

 
Fig. 2 An example of (a) DBT ROI and the average DBT texture feature TF  and (b) the corresponding DM ROI with the 
 single-valued DM texture feature FM . 

2.2. Texture feature extraction  

Texture features of skewness, coarseness, contrast, and energy were estimated.  These features have been shown in 
previous studies with mammograms to correlate with the risk of developing breast cancer 4-6, 8. For each texture 
descriptor, we computed a feature fi, i=1,…,T from each tomographic plane (T=26 slices in each ROI, 1mm/slice), 
resulting to a feature vector FT = [f1,…,fT] for each DBT ROI (Fig. 2.a). The mean of the feature vector, TF  was used as 
the representative feature for the ROI. Single-valued texture features FM were computed from the corresponding 2D DM 
ROI (Fig. 2.b).  

Skewness reflects the properties of the gray-level histogram and has been used to assess parenchymal density 5, 6. When 
the image texture is predominantly composed of fat (i.e. the grey-level histogram is skewed to higher values) the 
skewness tends to be positive, whereas when the texture is primarily formed by dense tissue (i.e. the gray-level 
histogram is skewed to lower values) the skewness values tend to be negative.  Skewness is the third statistical moment, 
computed as: 
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and ni represents the number of times that gray level value i takes place in the image region, gmax is the maximum gray-
level value and N is the total number of image pixels. 

T=26 

FT = [f1,…,fT]   ~  TF
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Coarseness is a texture feature that reflects the local variation in image intensity; small coarseness value for an ROI 
indicates fine texture, where the gray levels of neighboring pixels are different; high coarseness value indicates coarse 
texture, where neighboring pixels have similar gray level values. Coarseness computation is based on the Neighborhood 
Gray Tone Difference Matrix (NGTDM) 5, 14 of the gray-level values within the image region.  
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In the above formulas, gmax  is the maximum gray-level value, pi is the probability that gray level i occurs, {ni} is the set 

of pixels having gray level value equal to i,  and iL  is given by  
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where j(x,y) is the pixel located at (x,y) with gray level value i, (k,l)≠(0,0) and S=(2d +1)2  with d specifying the 
neighborhood size around the pixel located at  (x,y).  

Contrast and Energy, as proposed originally by Haralick 15, require the computation of a gray-level co-occurrence 
matrix, which is based on the frequency of the spatial co-occurrence of gray-level intensities in the image. Contrast 
quantifies overall variation in image intensity, while energy is a measure of image homogeneity.   
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where g is the total number of different gray levels and C is the normalized co-occurrence matrix 15. 
 

2.3. Gray-level quantization 

In our dataset, the DBT gray-level values ranged on average between Nmin=1388 and Nmax=9033 for each ROI; the 
corresponding DM gray-level values ranged between Nmin=2074 and Nmax=2679. Due to the large range of gray-level 
values in DBT, gray-level quantization becomes essential for calculating contrast and energy. The large range of 
gray-level values results in large sparse co-occurrence matrices and un-reliable co-occurrence texture statistics 15, 16. In 
addition, the computational cost for calculating the co-occurrence matrix for contrast and energy becomes prohibitive 15, 

16.   

Two quantization algorithms were implemented, denoted by QC and QR. In both algorithms, the range of the original 
gray-level values Ng  in each ROI was linearly scaled down to a smaller range of NG  gray-level values (i.e. NG< Ng). The 
way that NG was defined for each ROI was different in each of the two quantization algorithms:  

(i) In QC all the ROIs where quantized to the same number of gray-levels. A range of different values for NG was tested 
during the experiments, and was equal to: 

 DBT
GN = {16, 32, 64, 128, 256, 512, 1024, 2048}   for DBT  and, DM

GN  = {16, 32, 64, 128}   for DM.  

(ii) In QR all ROIs were quantized to the same degree; each ROI was quantized relative to its original range of 
gray-level values Ng.  A range of different values for NG was tested during the experiments, and was equal to: 

DBT
GN = { Ng/4,  Ng/8, Ng/16, Ng/32, Ng/64, Ng/128}, and DM

GN  = { Ng, Ng/2, Ng/4,  Ng/8, Ng/16, Ng/32, Ng/64, Ng/128}. 

  and    ,,
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2.4. Data analysis 

The goal of our analysis was to compare tomographic and mammographic texture characterization and to evaluate the 
robustness of the different texture descriptors in reflecting characteristic parenchymal properties. To evaluate the extent 
in which tissue superimposition introduces differences in image texture between DBT and DM, we computed the 
correlation between TF and FM texture features. To evaluate the degree in which parenchymal texture is inherent in an 
individual woman, texture correlation was also computed between the features of the contralateral and ipsilateral breast 
of each woman. The Pearson correlation coefficient (r) was used, where f1, f2 represent the features for which a 
correlation is tested. 
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Appropriate p-values were estimated to reflect the probability of having a correlation as large as the observed value by 
random chance, when the true correlation is zero. The p-value was computed by transforming the r correlation 
coefficient into a t-statistic having n-2 degrees of freedom, where n was the number of features in each of the two 
groups under comparison. The confidence bounds of the p-value were approximated using an asymptotic normal 
distribution of 0.5×log((1+r)/(1-r)), with an approximate variance equal to 1/(n-3). These bounds are accurate by 
approximation when the sample has a multivariate normal distribution. Statistical significance was set to α=0.05. 
 
 
 
 

3. RESULTS 
 

3.1. Texture correlation between DBT and DM 

Overall, low correlation was observed between DBT and DM texture features. Table 1 shows the Pearson correlation 
coefficients between the texture features computed from each imaging modality. For contrast and energy, the average 
correlation is reported over the correlations detected when varying the number of quantization gray-levels NG; the 
corresponding standard deviation is shown in the parenthesis. The observed low standard deviations indicate that, for 
each quantization algorithm (i.e. QC and QR), the detected correlations for contrast and energy were robust when varying 
the number of gray levels NG. However, as Table 1 shows, the strength of the contrast correlation between DBT and 
DM was affected by the selection of the quantization algorithm; the QR algorithm appeared to yield stronger contrast 
correlation between DBT and DM. Figure 3 shows the scatter-plots of the DBT versus the DM texture features with 
fitted linear regression lines.  For contrast and energy, representative results are shown for selected values of NG in order 
to illustrate the effect of the quantization algorithm on the detected texture correlation between the two modalities.  
 

Table 1. Pearson correlation coefficient (r) between DBT and DM texture features (‘*’ for p-value ≤ 0.05) 

 Correlation (r) 
Skewness -0.22   * 

Coarseness              0.28   * 
Contrast  (QC:  NG = {16,…,128})    0.10 (std=0.003)   

Contrast  (QR:  NG = { Ng/4,…, Ng/128}) 0.41 (std=0.06)    * 
Energy   (QC:  NG = {16,…,128}) 0.22 (std=0.02)    * 

Energy   (QR:  NG = { Ng/4,…, Ng/128}) 0.22 (std=0.06)    * 
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Fig. 3 Scatter-plots and fitted linear regression lines for texture features computed from DBT and DM: (a) skewness, (b) coarseness,   
        (c) contrast for QC and NG=128, (d) contrast for QR and NG=Ng/8, (e) energy for QC and NG=128,  (f) energy for QR and NG=Ng/8. 

(a) (b) 

(c) (d) 

(e) (f) 
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3.2. Texture correlation between contralateral and ipsilateral breasts 

Strong texture correlation was detected between the contralateral and ipsilateral breast of each woman in both imaging 
modalities. Overall, the DBT demonstrated stronger texture between-breast correlation. Table 2 shows the Pearson 
correlation coefficients between the texture features computed from contralateral and ipsilateral breasts, for DBT and 
DM. For contrast and energy, the average correlation is reported over the correlations detected when varying the 
number of quantization gray-levels NG; the standard deviation in the parenthesis indicates the variation of the correlation 
coefficient over the different values of NG. Again, the observed low standard deviations indicate that the detected 
correlations for contrast and energy were robust, for the same quantization algorithm, when varying the number of gray 
levels NG. However, as Table 2 shows, the strength of the detected correlations was affected by the selection of the 
quantization algorithm. The QR quantization algorithm appeared to yield stronger correlations than QC for both contrast 
and energy. Figure 4 shows the scatter-plots with fitted regression lines for the skewness and coarseness texture features 
computed from contralateral versus ipsilateral breasts, for DBT and DM.  Figures 5 and 6 show representative scatter 
plots for contrast and energy, for selected values of NG; illustrating the effect of the quantization algorithm on the 
between-breast texture correlation.  As shown in Figures 4-6, for almost all texture descriptors, DBT analysis revealed 
stronger parenchymal texture correlation, in comparison to DM, between contralateral and ipsilateral breast.    

 

Table 2. Pearson correlation coefficient (r) between texture features from contralateral and ipsilateral breasts (‘*’ for p-value ≤ 0.05) 

 Correlation (r) 
 DBT DM 

Skewness 0.62   * 0.56   * 
Coarseness 0.44   *           0.59   * 

Contrast  (QC:  NG = {16,…,128}) 0.63 (std=0.00)   * 0.56 (std=0.00)   * 
Contrast  (QR:  NG = { Ng/4,…, Ng/128}) 0.80 (std=0.00)   * 0.70 (std=0.15)   * 

Energy  (QC:  NG = {16,…,128})  0.29 (std=0.03)   0.29 (std=0.02)   
Energy  (QR:  NG = { Ng/4,…, Ng/128}) 0.83 (std=0.13)   *   0.60 (std=0.06)   * 
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Fig. 4 Scatter-plots and fitted linear regression lines for (a) skewness and (b) coarseness computed from contralateral and ipsilateral 
breasts, in DBT and DM. 
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Fig. 5 Scatter-plots and fitted linear regression lines for contrast texture features computed from contralateral and ipsilateral breasts 
for  (a) DM with QC and NG=128, (b) DBT with QC and NG=128, (c) DM with QR and NG=Ng/8, (d) DBT with QR and NG=Ng/8. 
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Fig. 6 Scatter-plots and fitted linear regression lines for energy texture features computed from contralateral and ipsilateral breasts for  
(a) DM with QC and NG=128, (b) DBT with QC and NG=128, (c) DM with QR and NG=Ng/8, (d) DBT  with QR and NG=Ng/8. 
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4.    DISCUSSION 

To date, parenchymal texture has been analyzed from conventional film mammograms digitized for performing 
computerized analysis 4-8; making it difficult to assess both the effect of tissue superimposition and the effect of the 
digitization process on the computed texture features. Here, we performed parenchymal texture analysis in DBT and 
DM. We computed texture features that have been shown, in previous studies with mammograms, to correlate with 
breast cancer risk 4-8. Our goal was to compare tomographic versus mammographic texture characterization and evaluate 
the robustness of the texture descriptors in reflecting characteristic parenchymal properties. 

Low correlation was observed between DBT and DM texture features, indicating that parenchymal texture differs 
between the two modalities. This low correlation could potentially be attributed to the effect of tissue superimposition in 
DM and the reconstruction algorithm in DBT; parenchymal texture is affected by both of these factors. We are 
particularly interested in assessing the effect of tissue superimposition. By filtering out the adjacent anatomical 
structures within the breast volume, DBT alleviates the effect of tissue superimposition, offering the advantage to 
perform tomographic texture analysis. Therefore, texture features in DBT do not reflect the properties of superimposed 
tissues as in DM; they reflect properties of selected spatially localized regions within the breast volume.  The detected 
low correlation between DBT and DM shows that tomographic texture analysis in DBT provides different features, and 
therefore different information, compared to features extracted from projection mammography.  

The correlation between contralateral and ipsilateral breasts was significant for both modalities; indicating that 
characteristic parenchymal properties are inherent in an individual woman. This is an essential assumption for 
performing image-based cancer risk estimation: the increasingly supported hypothesis is that inherent biological factors 
associated with the risk of developing breast cancer are expressed in a woman’s parenchymal tissue and subsequently 
manifested in her mammographic parenchymal patterns 13, 17. In addition, the strong between-breast correlation indicates 
that parenchymal texture of the unaffected breast could be used as a surrogate of risk. 

Overall, the texture correlation between contralateral and ipsilateral breasts was stronger for DBT. The detected stronger 
between-breast correlation in DBT could be attributed to the ability to perform spatially localized texture analysis 
within the breast volume; while excluding tissue layers such as the skin and the surrounding subcutaneous fatty layers 
that introduce anatomical noise in texture characterization. If certain regions within the breast, such as the retroareolar 
breast region, are indeed inherent in individual women, and appear to be indicative the risk to develop breast cancer 4-8, 
then the ability to selectively characterize their particular texture by excluding irrelevant layers of tissue, could result in 
obtaining more discriminative texture features. The observed stronger between-breast texture correlation in DBT could 
potentially indicate this effect.  Our hypothesis is that, due to the technical improvements introduced by DBT, there is a 
potential to capture more accurately the texture properties of characteristic breast regions, and ultimately derive more 
accurate measures of risk.   

As part of our analyses, we also investigated the effect of gray-level quantization on co-occurrence texture features. 
While previous studies have used co-occurrence texture features for breast cancer risk estimation 4-8, the effect of gray-
level quantization, required to compute co-occurrence statistics, has not been adequately clarified. Other studies have 
shown that the performance of image classification can be affected by the degree of gray-level quantization 16, 18.  In our 
analyses, the observed correlations for co-occurrence texture descriptors were robust when varying the number of gray-
levels for image quantization; however the strength of the correlations was affected by the selection of the particular 
quantization algorithm. Further analysis is underway to identify the optimal gray-level quantization approach in 
association with the performance of the texture features in breast cancer risk estimation. Our ultimate goal is to 
determine the optimal texture feature extraction methodology to yield the most accurate texture measures for breast 
cancer risk estimation.  

5. CONCLUSION 

To the best of our knowledge, this is the first study to compare tomographic texture in DBT versus projection texture in 
DM. Texture features, previously shown to associate with risk, were computed from the retroareolar breast region. We 
computed the correlation between (i) the DBT and DM texture features, and (ii) between the contralateral and ipsilateral 
breast of each woman in both imaging modalities. The effect of the gray-level quantization on the observed correlations 
was also investigated. Our analysis showed low correlation between DBT and DM features. The correlation between 
contralateral and ipsilateral breasts was significant for both modalities; it was overall stronger for DBT. We observed 
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that the selection of the gray-level quantization algorithm affects the detected correlations. The ability to perform 3D 
texture analysis in DBT provides the basis for developing improved breast cancer risk assessment methods using 3D 
parenchymal analysis. Further analysis is underway for investigating the correlation between DBT features and breast 
cancer risk. Our long-term goal is to develop DBT biomarkers for providing Computer-Assisted Risk Estimation 
(CARe) of breast cancer in clinical practice. 
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