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Abstract. Mammographic texture features have been shown to correlate with 
the risk of developing breast cancer. Digital breast tomosynthesis (DBT) is an 
emerging 3D x-ray breast imaging modality with superior tissue visualization 
compared to mammography, having the potential to provide more accurate es-
timation of parenchymal texture features. In this paper, we investigate the effect 
of DBT acquisition parameters on computer-extracted texture features. DBT 
images were simulated using an anthropomorphic breast tissue software model 
allowing for variations in DBT acquisition geometry. Our results show that 
DBT acquisition geometry appears to have an impact on the computed texture 
features; angular range appears to have a greater effect than the selected number 
of source projections. We attribute this effect to the differences in image quality 
resulting from the different reconstruction geometries. Our ultimate goal is to 
determine the DBT acquisition geometry that provides the optimal image qual-
ity to estimate parenchymal texture.  

Keywords. Digital breast tomosynthesis, acquisition geometry, parenchymal 
texture analysis, breast tissue software model.  

1   Introduction 

Growing evidence suggests that mammographic parenchymal patterns are indicative 
of the risk of developing breast cancer [1]. While the relationship between mammo-
graphic breast density and breast cancer risk has been clearly demonstrated [1], stud-
ies have also shown a potential association between mammographic parenchymal 
texture and breast cancer risk [2]. Computerized analysis of digitized mammograms 
has shown the potential to distinguish the parenchymal patterns of BRCA1/2 gene 
mutation carriers using parenchymal texture features from the retroareolar breast  
region [2]. These studies suggest that computer-extracted texture features, could pro-
vide alternative, fully-automated, and reproducible methods to characterize paren-
chymal patterns for breast cancer risk estimation. 



492 D. Kontos et al. 

Digital breast tomosynthesis (DBT) is an emerging x-ray imaging modality in 
which tomographic images of the breast are reconstructed from multiple low-dose x-
ray source projections acquired at different angles of the x-ray tube [3]. Having the 
advantage of tomographic imaging, DBT alleviates the effect of tissue superimposi-
tion and offers superior tissue visualization compared to conventional mammography. 
Early clinical trials have shown that DBT could result in higher sensitivity and speci-
ficity compared to mammography [3]. Our preliminary studies also suggest that DBT 
parenchymal texture analysis could outperform mammography in breast cancer risk 
estimation [4, 5].   

As DBT is currently a device under investigation, several manufactures are evalu-
ating different DBT prototypes systems, considering a range of different acquisition 
geometries and reconstruction algorithms, to achieve optimal image quality for clini-
cal applications. Previously, Maidment et al. have shown, analytically and through 
simulations, that both the use of more source projection images and the use of a larger 
angular range for the x-ray tube rotation improve DBT image quality [6]. Here, we 
investigate the extent in which DBT acquisition geometry affects the estimation of 
parenchymal texture features. Our ultimate goal is to determine the DBT reconstruc-
tion geometry that provides the optimum image quality for estimating parenchymal 
texture features, and therefore provide the most accurate measures for breast cancer 
risk estimation.  

2   Methods 

DBT simulation was performed using an anthropomorphic breast tissue software 
model, previously developed in our lab for generating synthetic mammograms [7]. 
The model allows for variations in breast volume, breast composition, compression 
force, and acquisition geometry. Recently, we augmented the model to include a  
region growing procedure in order to produce more realistic synthetic x-ray breast 
images [8], and also consider finite element simulation of the breast deformation to 
account for clinical breast compression [9]. For DBT simulation, a simple ray-tracing 

model is used to simulate a variety of 
acquisition geometries  [9]. The x-ray 
source is assumed to be a point source 
emitting monoenergetic primary ra-
diation (Fig. 1). 

The DBT acquisition geometry pa-
rameters can be varied to allow simu-
lation of different setups. In this 
study, the DBT geometry was chosen 
to match our clinical setting (Seno-
graphe DS, GE, Milwaukee, WI). The 
detector dimensions were equal to 
230.4 mm x 192 mm, with 0.1 mm2 
detector elements. The x-ray beam 
energy was set at 20 keV. The linear 
x-ray attenuation coefficients were set 
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Fig. 1. Simulation of DBT geometry 
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to μ1=0.456 cm-1 for adipose tissue and μ2= 0.802 cm-1 for glandular, connective, and 
skin tissues. 

For our analysis, a 700ml breast volume was simulated with 30% tissue glandular-
ity (i.e. breast percent density). This volume corresponds to an average middle-range 
(i.e. Cup C) breast. Breast thickness was reduced by 20%, using finite element simu-
lation of breast deformation to account for the relatively lower compression force 
commonly used in DBT. To evaluate the effect of DBT geometry on texture, twelve 
different DBT geometries were used to generate projection images, differing by the 
angular range of the x-ray tube rotation and number of simulated source projection 
images. The total angular range of the x-ray tube rotation was defined as 20°, 30° or 
40°, discretized in 7, 9, 11, or 15 equiangular steps. Filtered-backprojection was used 
to reconstruct twelve synthetic DBT volumes, with 80 tomographic planes at 1mm 
increments with 0.22mm in-plane resolution (Fig. 2.a).  

Retroareolar (2.5 cm)3 regions of interest (ROIs) were manually segmented from 
all the synthetic DBT images (Fig. 2.b). Texture features of skewness, coarseness, 
contrast, and energy were estimated. These features have been shown in previous 
studies with mammograms to correlate with the risk of developing breast cancer [2].  
For each texture descriptor, a feature fi, i=1…T was computed from each tomographic 
plane of the 3D DBT ROIs (T=26 slices, 1mm/slice). 

T=26

(a) (b)   

Fig. 2. Slices of the simulated DBT images. (a) Left to right: central slice reconstructed from 
20° angular range and 9 projections, 30°/9, 40°/9, and 40°/15. (b) Example of a retroareolar 
ROI. 

Skewness reflects the properties of the gray-level histogram and has been used to 
assess parenchymal density [2]. When the image texture is predominantly composed 
of fat (i.e. the grey-level histogram is skewed to higher values) the skewness tends to 
be positive, whereas when the texture is primarily formed by dense tissue (i.e. the 
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gray-level histogram is skewed to lower values) the skewness values tend to be nega-
tive.  Skewness is the third statistical moment, computed as: 

                         , where                                          ,                       ,                             , 

and ni represents the number of times that gray level value i takes place in the image 
region, gmax is the maximum gray-level value and N is the total number of image  
pixels. 

Coarseness is a texture feature that reflects the local variation in image intensity; 
small coarseness value for an ROI indicates fine texture, where the gray levels of 
neighboring pixels are different; high coarseness value indicates coarse texture, where 
neighboring pixels have similar gray level values. Coarseness computation is based 
on the Neighborhood Gray Tone Difference Matrix (NGTDM) [2] of the gray-level 
values.  

                                                         , where  

is the NGTDM. In the above formulas, gmax  is the maximum gray-level value, pi is the 
probability that gray level i occurs, {ni} is the set of pixels having gray level value 
equal to i,  and       is given by ,  

 
 

where j(x,y) is the pixel located at (x,y) with gray level value i, (k,l)≠(0,0) and S=(2d 
+1)2  with d specifying the neighborhood size around the pixel located at  (x,y).  

Contrast and Energy, as defined by Haralick [2, 10], requires the computation of a 
gray-level co-occurrence matrix, based on the frequency of the spatial co-occurrence 
of gray-level intensities. Contrast quantifies the variation in image intensity, and en-
ergy is a measure of image homogeneity.   

                                                           , and  

where g is the total number of different gray levels and C is the co-occurrence  
matrix[10]. 

One-way Analysis of Variance (ANOVA) was performed to estimate differences 
in the means of the texture feature distributions computed for different combinations 
of angular range and number of source projections. The average Pearson correlation 
coefficient (r) was also estimated between the texture features computed for the dif-
ferent DBT geometry acquisition settings.  

3   Results 

For all texture descriptors, the range of the computed features was affected by the 
DBT acquisition geometry. As shown for representative geometry settings (Fig. 3-4), 
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when keeping the angular range fixed and increasing the number of projections, 
skewness demonstrated a large increase (p<0.001); coarseness and contrast a large 
decrease (p<0.001); and energy a small increase (p=0.01). When keeping the number 
of projections fixed and increasing the angular range, coarseness appeared to decrease 
(p<0.001); contrast to increase (p<0.001); and skewness and energy did not demon-
strate significant variation (p>0.01). For all texture descriptors, angular range  
appeared to have a greater effect on the correlation between the computed texture 
features, than the selected number of source projections. The correlation r was consis-
tently stronger between features computed with the same angular range and different 
number of source projection images, rather than same number of source projections 
for different angular range (Fig. 3-4). 
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Fig. 3. Box-plots of the texture features f for skewness (up) and coarseness (down) having 
fixed angular range while varying the number of source projections (left) and for different an-
gular ranges while acquiring the same number of source projections (right). The p-value of the 
ANOVA is shown, as well as the average Pearson correlation coefficient (r) with the associ-
ated p-value (pr). 
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Fig. 4. Box-plots of the texture features f for contrast (up) and energy (down) having fixed an-
gular range while varying the number of source projections (left) and for different angular 
ranges while acquiring the same number of source projections (right). The p-value of the 
ANOVA is shown, as well as the average Pearson correlation coefficient (r) with the associated 
p-value (pr). 

4   Discussion 

We attribute the observed differences in the texture feature distributions to the ef-
fect of differences in image quality resulting from the different reconstruction ge-
ometries. As shown previously by Maidment et al. [6], both the use of increasing 
number of source projections for a fixed angular range, and the use of a larger angu-
lar range for the x-ray tube rotation, can improve DBT image quality. This effect 
can also be observed in our simulated DBT images (Fig. 5). By increasing the num-
ber of source projections, the reconstruction artifacts become less apparent; by in-
creasing the angular range, the out of focus structures become more blurred, while 
the in-focus structures become more sharply defined.  Although more clearly visible 
in real clinical data [6], these effects are also apparent in our simulated DBT images 
(Fig. 5).   
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Fig. 5. Central tomographic slice from the synthetic DBT ROIs reconstructed from different 
simulated acquisition geometries: each row represents a fixed angular range (20o, 30o, and 40o) 
with the number of source projection images increasing from left to right (7, 9, 11, and 15) 

As the reconstruction artifacts decrease with increasing numbers of projections, the 
image quality improves, potentially resulting in images with less skewed gray-level 
distributions (i.e. skewness values closer to zero), finer texture (i.e. lower coarseness 
values), and reduced gray-level variation due to the absence of artifacts (i.e. lower 
contrast). As the in-focus structures becomes better defined with increasing angular 
range, the image texture becomes finer (i.e. lower coarseness values) and the object 
structure becomes sharper (i.e. higher contrast). Note, however, that increasing the 
number of source projections, while keeping the angular range fixed, does not alter 
the out-of-plane blurring; it is only the variation of the angular range that directly af-
fects the blurring of the out-of-focus structures [6]. Our results demonstrate this ef-
fect; texture features computed for the same angular range, with increasing number of 
projections, are consistently more highly correlated, compared to features computed 
with increasing angular range.   

To the best of our knowledge, this is the first study to investigate the effect of DBT 
acquisition geometry on parenchymal texture. Our results show that DBT acquisition 
geometry can potentially have an effect on the estimated parenchymal texture fea-
tures. Further analysis is underway to fully quantify this association using a broader 
range of DBT acquisition parameters and real clinical datasets. Our ultimate goal is to 
determine the DBT reconstruction geometry that provides the optimal image quality 
for estimating parenchymal texture features. The improved performance and rela-
tively low cost of DBT will likely fuel the rapid and broad dissemination of DBT as a 
breast cancer screening modality; this will spur the development of DBT Computer-
Aided Diagnosis (CAD) and Computer-Assisted Risk Estimation (CARe) systems in 
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clinical practice. Understanding the effect of DBT acquisition parameters on image 
texture features would overall benefit the optimization and design of such systems. 
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