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Rationale and Objectives. Studies have demonstrated a relationship between mammographic parenchymal texture and breast

cancer risk. Although promising, texture analysis in mammograms is limited by tissue superposition. Digital breast tomosyn-

thesis (DBT) is a novel tomographic x-ray breast imaging modality that alleviates the effect of tissue superposition, offering

superior parenchymal texture visualization compared to mammography. The aim of this study was to investigate the potential

advantages of DBT parenchymal texture analysis for breast cancer risk estimation.

Materials and Methods. DBT and digital mammographic (DM) images of 39 women were analyzed. Texture features, shown in

previous studies with mammograms to correlate with cancer risk, were computed from the retroareolar breast region. The relative

performances of the DBT and DM texture features were compared in correlating with two measures of breast cancer risk: (1) the

Gail and Claus risk estimates and (2) mammographic breast density. Linear regression was performed to model the association

between texture features and increasing levels of risk.

Results. No significant correlation was detected between parenchymal texture and the Gail and Claus risk estimates. Significant

correlations were observed between texture features and breast density. Overall, the DBT texture features demonstrated stronger

correlations with breast percent density than DM features (P # .05). When dividing the study population into groups of in-

creasing breast percent density, the DBT texture features appeared to be more discriminative, having regression lines with overall

lower P values, steeper slopes, and higher R2 estimates.

Conclusion. Although preliminary, the results of this study suggest that DBT parenchymal texture analysis could provide more

accurate characterization of breast density patterns, which could ultimately improve breast cancer risk estimation.
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The ability to estimate a woman’s risk of developing breast

cancer risk is becoming increasingly important in clinical

practice. Breast cancer risk assessment is used as a criterion

to form guidelines for offering customized screening rec-

ommendations (1), to tailor individual breast cancer treat-

ments (2), and to form preventive strategies (3), especially for

women associated with higher risk. Currently, breast cancer

risk assessment is limited both by the existing epidemiologic

risk estimation models and by the breast imaging methods

that have been considered to date.

The current gold standards for breast cancer risk estima-

tion, the Gail and Claus models (4,5), are multivariate

statistical models based primarily on nonmodifiable demo-

graphic, clinical, and hereditary risk factors. With the
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exception of childbirth as a modifiable risk factor, the Gail

model estimates the risk for breast cancer on the basis of

factors such as age at menarche, first-degree relatives with

breast cancer, and number of prior biopsies (4). The Claus

model relies on the assumption that susceptibility to breast

cancer is regulated primarily by a rare autosomal dominant

allele and therefore estimates the risk for breast cancer only on

the basis of familial history of breast cancer, including ages at

onset of relatives affected by breast cancer (5). Evaluation of

the Gail model has shown that despite its good calibration for

population-based risk assessment, it has modest discrimina-

tory accuracy at the individual level (6). Studies evaluating

the accuracy of models that predict genetic susceptibility to

breast cancer, including the Claus model, have shown that

there is a potential to overestimate the expected number of

women at high risk for genetic mutations (7). Considering

also that individual risk can be reduced by interventions such

as chemoprevention (8), the Gail and Claus models lack the

desired flexibility to estimate adjustments to risk levels.

Breast parenchymal patterns, on the other hand, appear to

be indicative of changes in modifiable risk factors for breast

cancer, such as hormonal levels, diet, and body mass index

(9–12). Starting from the pioneering work of Wolfe (13) in

1976, numerous studies have demonstrated a relationship

between mammographic parenchymal patterns and the risk

for developing breast cancer (14). Parenchymal patterns in

x-ray breast images are formed by the distribution of fatty,

glandular, and stromal breast tissues (15); the underlying

assumption is that the composition of breast tissue appears to

be related, through currently unknown biologic mechanisms,

to factors that are associated with the development of breast

cancer (16,17). Currently, growing evidence suggests that

mammographic breast density is a strong independent risk

factor for breast cancer, being indicative of a woman’s rela-

tive risk for developing breast cancer (18–21). Preliminary

studies have shown the potential to increase the accuracy of

the Gail model by including breast density descriptors (22–

24); nevertheless, these improvements have been minimal,

mostly because of the subjective nature of breast density

assessment.

Although the relationship between mammographic breast

density and breast cancer risk has been clearly demonstrated,

studies have also shown that a potential relationship exists

between mammographic parenchymal texture and the risk for

breast cancer (25,26). Computerized analysis of digitized

mammograms has shown the potential to distinguish the

parenchymal patterns of BRCA1 and BRCA2 gene mutation

carriers using parenchymal texture features, particularly from

the retroareolar breast region (27–31). These studies suggest

that computer-extracted texture features could provide alter-

native, fully automated, objective, and reproducible methods

to identify parenchymal patterns that are associated with

increased levels of risk.
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Mammograms, however, are projection images in which

the breast tissue layers are superimposed. For this reason,

mammographic texture features reflect mixed properties of

superficial skin and subcutaneous tissue overlapping deeper

fibroglandular (ie, dense) and fatty (ie, nondense) tissues.

Knowing that the risk for breast cancer is associated mainly

with properties of the fibroglandular tissue (ie, breast den-

sity), superficial layers of skin or subcutaneous fat could be

considered anatomic noise in breast cancer risk estimation

and therefore reduce the predictive value of the computed

texture features. To overcome this limitation of mammogra-

phy, tomographic breast imaging could offer the ability to

selectively analyze the fibroglandular tissue texture and

ultimately provide more accurate measures to estimate risk

(32).

Digital breast tomosynthesis (DBT) is an emerging x-ray

imaging modality in which tomographic images of the breast

are reconstructed in three dimensions from multiple low-dose

two-dimensional (2D) x-ray source projection images that are

acquired by varying the angle of the x-ray tube (33,34) (Fig

1a). By combining information from different projections,

DBT filters out the adjacent anatomic structures, alleviating

the effect of tissue superposition (Fig 1b). Clinical trials have

shown that DBT provides superior tissue visualization and

improved lesion conspicuity in comparison to projection

mammography, resulting in higher sensitivity and specificity

(35,36). Compared to mammography (Fig 2a), DBT also

offers superior texture visualization, by separating the su-

perficial skin and subcutaneous fat layers (Fig 2b) from the

deeper fibroglandular parenchymal tissues (Fig 2c). There-

fore, DBT could offer the ability to selectively analyze the

fibroglandular tissue texture, with the potential to provide

more accurate features to characterize parenchymal texture

patterns and ultimately provide more accurate means for

breast cancer risk estimation.

In this work, we present an exploratory study investigat-

ing the potential advantages of DBT parenchymal texture

analysis for breast cancer risk estimation. The parenchymal

patterns of 39 women were analyzed both in DBT images and

their corresponding digital mammographic (DM) images.

We compared the relative performance of the DBT versus the

DM texture features in correlating with two established

measures of breast cancer risk: (1) the Gail and Claus model

risk estimates and (2) mammographic breast density.

Although preliminary, our results suggest that DBT paren-

chymal texture analysis could potentially provide more

discriminative features for breast cancer risk estimation in

comparison to DM texture features. To the best of our

knowledge, our study is the first to investigate the potential

advantages of DBT parenchymal analysis for breast cancer

risk assessment, with the intention of offering instrumental

evidence for the design of larger clinical studies in the future.

The improved performance and low cost of DBT will likely
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Figure 1. Illustrative example of (a) digital breast tomosynthesis acquisition geometry
with (b) the reconstructed tomographic breast image. 3D, three-dimensional.

Figure 2. Differences in parenchymal texture in (a) a digital mammogram (DM) and

(b,c) the digital breast tomosynthesis (DBT) tomographic slices for the same breast,

where (b) the superficial skin layer is separated from (c) the deeper fibroglandular tissue
layers.
fuel the rapid and broad dissemination of DBT as a breast

cancer screening modality. Our long-term goal is to develop

DBT biomarkers that can be used to improve breast cancer

risk estimation in clinical practice by providing Computer-

Assisted Risk Estimation (CARe) for breast cancer.

MATERIALS AND METHODS

Patient Recruitment

The images included in our analysis were retrospectively

collected, under institutional review board protocol approval
and Health Insurance Portability and Accountability Act

regulations, from a multimodality breast imaging clinical trial

in the Radiology Department at the University of Pennsyl-

vania.* The goal of this clinical trial was to develop an un-

derstanding of the relative performance of new-generation

breast imaging modalities. Eligible participants included

women at high risk (>25% Gail and Claus lifetime risk),

women with recently detected abnormalities, and previous

* Evaluation of Multimodality Breast Imaging, National Institutes of Health P01

CA85484, principal investigator M. Schnall.
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patients with breast cancer undergoing follow-up. All women

were volunteers who provided written informed consent.

From March 2002 to August 2007, a total of 886 women

enrolled in the trial. Within the same day, the women were

imaged with digital mammography, whole-breast ultrasound,

magnetic resonance imaging, positron emission tomography,

and optical imaging. The individual imaging results were

reviewed in a consensus meeting of expert radiologists to

determine the relative performance of the breast imaging

modalities; the associated clinical information for each

woman, such as pathology, likelihood of malignancy, and

Breast Imaging Reporting and Data System (37) lesion

characterization, was also recorded as part of the study. From

August 2004 to August 2005, a prototype DBT system was

operating under research investigation, and DBT was offered

as an option to the women participating in the clinical trial.

During this period, a total of 52 women agreed to also undergo

DBT imaging.

Breast Imaging

DBT and DM imaging was performed in the Breast Imaging

Section of the Radiology Department at the University of

Pennsylvania. The images were acquired with a commercial

GE Senographe 2000D full-field digital mammographic sys-

tem (GE Healthcare, Chalfont St. Giles, UK), modified under

institutional review board approval to perform DBT; the x-ray

gantry was adapted to allow independent rotation of the x-ray

tube to acquire nine source projection images by varying the

x-ray tube angle from �25� to +25� in increments of 6.25�

(38,39). The breast was immobilized and compressed in the

mediolateral oblique position with light compression force

(50–70 N) for DBT and typical compression force (80–180 N)

for DM imaging. Both DBT source projection images and DM

images were acquired with spatial resolution of 0.1 mm/pixel

and 12-bit gray level. A custom filtered back projection im-

plementation was used to reconstruct the three-dimensional

(3D) DBT images at 0.22-mm in-plane resolution and 16-bit

gray level, with 1-mm tomographic slice spacing (40). The DM

images were postprocessed using the GE Premium View al-

gorithm (GE Healthcare). All images were stored in Digital

Imaging and Communications in Medicine format in our lab-

oratory’s Medical Imaging Resource Center database (41).

Study Population and Risk Evaluation

Bilateral DBT and DM images from a total of 39 women

were retrospectively collected and analyzed for our study;

women with bilateral breast cancer were not included in our

study population. In addition, women with unilateral imag-

ing, incomplete data, or significant technical image artifacts

were excluded. Of the 39 women included in our study

population, 30 were diagnosed with breast cancer. For the

women diagnosed with cancer, only the contralateral breast
286
was analyzed. Our earlier studies demonstrated a strong

correlation of parenchymal texture between a woman’s

breasts, indicating that texture patterns appear to be inherent

in a woman’s parenchyma (42); in our present study, paren-

chymal properties of the unaffected breast were considered as

a surrogate of breast cancer risk. To obtain an assessment of

each woman’s breast cancer risk profile, two different esti-

mates were obtained: (1) the Gail and Claus model risk

estimates and (2) the mammographic breast density. Both of

these measures are currently used in clinical practice to

counsel women who seek risk assessment evaluation to

receive customized breast screening (1–3,19).

The Gail and Claus risk estimates were calculated for each

woman using data acquired as part of their participation in the

multimodality breast imaging trial (4,5). The number of first-

degree relatives with breast cancer, the number of benign

biopsies, age at menarche and age at first live birth, and the

woman’s race were used as inputs to the National Cancer

Institute’s (43) breast cancer risk assessment tool to calculate

the Gail lifetime breast cancer risk estimate. In addition, a list

of each woman’s first-degree and second-degree relatives

with histories of breast or ovarian cancer, as well as the ages

of onset, was used to calculate the corresponding Claus

lifetime breast cancer risk estimate (5).

Mammographic breast density was estimated using Cu-

mulus version 4.0 (University of Toronto, Toronto, Canada),

a widely validated program for breast percent density (PD)

estimation (19,44,45). Cumulus provides the user with the

ability to exclude image background and the pectoral muscle

region; gray-level intensity thresholds are defined manually to

segment the glandular tissue area within the breast. Breast PD

is then computed on a continuous scale as the percentage of

the total breast region occupied by glandular tissue (45)

(Fig 3). In our study, breast PD estimation was performed by

a breast imaging specialist with experience using Cumulus

(P.R.B.) (39,46,47). To calculate intraobserver variability and

reproducibility, the images were processed twice, with an

interim time period of 2 months between the two readings

(47); the average of the two breast PD estimates for each

woman was used as a breast cancer risk surrogate in our

experiments.

Image Analysis

A region of interest (ROI) was manually segmented from

the central breast region behind the nipple (ie, the retroareolar

region) in each image. The physical dimensions of the ROIs

were selected to be 2.5 cm3 for the DBT images and 2.5 cm2

for the DM images, on the basis of previous suggestions in

the literature (30). Corresponding to these physical dimen-

sions, retroareolar 116 � 116 � 26 pixel ROIs at 0.22 mm/

pixel in-plane resolution and 1-mm tomographic slice spac-

ing were segmented from all the reconstructed DBT images;

matching 256 � 256 pixel ROIs at 0.1 mm/pixel resolution
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were segmented in the corresponding spatial location from

the DM images of the same breast. Examples of such ROIs

are shown in Figure 4.

To characterize the parenchymal pattern, texture features

of skewness, coarseness, contrast, energy, homogeneity, and

fractal dimension (FD) were estimated from all the DBT and

DM ROIs. These texture features were originally defined for

2D image analysis and have been previously used for breast

cancer risk assessment in studies with digitized mammograms

(27–31,48).

Skewness reflects the asymmetry of the gray-level pixel

value distribution and has been used to assess parenchymal

density (29,45). When the image texture is predominantly

composed of fat, the gray-level histogram is skewed to higher

values and the skewness tends to be positive, whereas when

Figure 3. Illustration of the Cumulus (version 4.0) software
thresholding technique used for mammographic breast percent

density (PD) estimation: the image background and the pectoral

muscle are excluded (red), and the dense tissue is segmented by

gray-level thresholding (green). PD is then estimated as the per-
centage of dense tissue within the delineated breast region.
the texture is primarily formed by dense tissue, the gray-level

histogram is skewed to lower values and the skewness values

are negative. Coarseness reflects the local granularity (ie,

roughness) in image texture and is based on the computation

of the neighborhood gray-tone difference matrix (NGTDM)

(29,49). A small coarseness value for an ROI indicates fine

texture with higher variation in gray-level values in neigh-

boring pixels, whereas a high coarseness value indicates

coarse texture, with neighboring pixels having similar gray-

level values. Contrast quantifies the overall variation in

image intensity, providing a measure of the intensity contrast

between neighboring pixels over the entire image. Energy is

a measure of texture uniformity of the gray-level spatial

distribution. Homogeneity increases with less contrast in the

image and is used to reflect the heterogeneity of the texture

pattern. FD indicates the measure of self-similarity in the

texture pattern and the overall texture roughness at different

scales. Figure 5 shows representative examples of mammo-

graphic texture patterns.

Although texture analysis methods have been widely im-

plemented for the analysis of 2D medical images (50), the

available techniques for 3D texture analysis are currently

limited. Few reports have been published in the literature that

introduce 3D texture analysis methods for medical images

(51–54). Recently, Chen et al (54) demonstrated an extension

of the conventional 2D co-occurrence texture analysis

methods for 3D contrast-enhanced magnetic resonance im-

ages. In our study, two approaches were implemented for

texture analysis in the 3D reconstructed DBT images: (1)

tomographic and (2) volumetric texture analysis.

Tomographic (2D) Texture Analysis
For each texture descriptor, a feature fi (i = 1,., T) was

computed from each tomographic slice of the 3D DBT ROI

(T = 26 slices in each ROI, 1 mm/slice), resulting in a feature

vector F = (f1,., fT) for each ROI. The mean of the feature

vector, FT , was used as the representative feature for the ROI.

Skewness is the third statistical moment and was

computed as

skewness ¼ w3

w
3=2
2

;wk ¼
Xgmax

i¼0

niði� iÞk=N;N ¼
Xgmax

i¼0

ni;

i ¼
Xgmax

i¼0

ðini=NÞ; ð1Þ

where ni represents the number of times that gray-level value

i occurs in the image region, gmax is the maximum gray-level

value, and N is the total number of image pixels.

Coarseness computation is based on the NGTDM (29,49)

of the gray-level values within the image region; this matrix

is derived by estimating the difference between the gray-level
287
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Figure 4. An illustrative example of (a) a three-dimensional region of interest segmented from a reconstructed digital breast tomo-

synthesis (DBT) image and (b) the corresponding two-dimensional region of interest from the digital mammogram (DM) of the same

breast.
value of each pixel and the average gray-level value of the

pixels around a neighborhood window:

coarseness ¼
 Xgmax

i¼0

pivðiÞ
!�1

and

vðiÞ ¼
�Pji� Lij for i˛{ni} if nis0

0 otherwise

�
; ð2Þ

where v(i) is the NGTDM. In the above formulas, gmax is the

maximum gray-level value, pi is the probability that gray

level i occurs, and {ni} is the set of pixels having gray-level

values equal to i, and Li is given by

Li ¼
1

S� 1

Xt

k¼�t

Xt

l¼�t

jðxþ k; yþ lÞ; (3)

where j(x,y) is the pixel located at (x,y) with gray-level value

i, (k,l) s (0,0), and S = (2t + 1)2, with t = 1 specifying the

neighborhood size around the pixel located at (x,y).

Contrast, energy, and homogeneity, as proposed origi-

nally by Haralick et al (55), require the computation of sec-

ond-order statistics derived from the gray-level co-

occurrence matrix; the spatial dependence of gray levels is

estimated by calculating the frequency of the spatial

co-occurrence of gray levels in the image (55):

contrast ¼
Xgmax

i¼0

Xgmax

j¼0

ji� jj2Cði; jÞ; (4a)
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energy ¼
Xgmax

i¼0

Xgmax

j¼0

Cði; jÞ2; (4b)

and

homogeneity ¼
Xgmax

i¼0

Xgmax

j¼0

Cði; jÞ
1þ ji� jj; (4c)

where gmax is the maximum gray-level value, and C is the

normalized co-occurrence matrix (55). To optimize the

computation of the gray-level co-occurrence statistics, gray-

level quantization was implemented (42). The co-occurrence

frequencies were calculated symmetrically in the four direc-

tions around each pixel using a displacement vector, d =

(dx,dy), along x and y dimensions, where dx = dy = 1 pixel

offset. The texture features calculated in each of these four

directions were averaged to create a single measure that was

used in our experiments.

FD was estimated on the basis of the power spectrum of

the Fourier transform of the image (48,56). The 2D discrete

Fourier transform was performed using the fast-Fourier

transform (FFT) algorithm as

Fðu; vÞ ¼
XM�1

m¼0

XN�1

n¼0

Iðm; nÞe�jð2p=MÞume�jð2p=NÞvn;

u ¼ 0; 1;.M � 1; v ¼ 0; 1;.N � 1; ð5Þ

where I is the 2D image region of size (M,N), and u and v are

the spatial frequencies in the x and y directions. The power

spectral density, P, was estimated from F(u,v) as
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Pðu; vÞ ¼ jFðu; vÞj2: (6)

To compute the FD, P was averaged over radial slices

spanning the FFT frequency domain. The frequency space

was uniformly divided in 24 directions, with each direction

uniformly sampled at 30 points along the radial component.

To calculate the FD, the least-squares fit of log(Pf) versus

log(f) was estimated, where f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

denotes the radial

frequency (56). The FD is related to the slope, b, of this

log-log plot by

FD ¼ 3DT þ 2� b

2
¼ 8� b

2
; (7)

where DT is the topologic dimension, equal to 2 for a

2D image.

Figure 5. Examples of various mammographic texture patterns: (a) skewness, (b)
coarseness, (c) fractal dimension, and (d) contrast.
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Volumetric (3D) Texture Analysis
The conventional 2D texture descriptors were extended to

three dimensions by considering a 3D neighborhood of

voxels (ie, volume elements) rather than a 2D neighborhood

of pixels when computing gray-level texture statistics.

Skewness was again computed as the third moment of the

gray-level histogram, as in Equation 1; however, the gray-

level histogram of the ROI was estimated using the gray-level

values from the entire 3D ROI volume rather than separately

for each tomographic plane. This is a valid 3D adaptation of

the skewness definition, because skewness does not depend

on the spatial co-occurrence of gray levels.

For coarseness, the local differences in gray-level values,

required for the computation of the NGTDM, were esti-

mated within a 3D neighborhood of voxels. More specifi-

cally, the definition of Li in Equation 3 was modified as

follows, to account for a 3D rather than a 2D neighborhood

of voxels:

Li ¼
1

S� 1

Xt

k¼�t

Xt

l¼�t

Xt

q¼�t

jðxþ k; yþ l; zþ qÞ; (8)

where j(x,y,z) is the voxel located at (x,y,z) with gray-level

value i, (k,l,z) s (0,0,0), and S = (2t + 1)3, with t = 1 speci-

fying the 3D voxel window around (x,y,z).

For contrast, energy, and homogeneity, the gray-level co-

occurrence statistics, required for the computation of the co-

occurrence matrix in Equations 4a to 4c, were estimated on

the basis of the spatial co-occurrence frequencies of voxel

gray-level values within the entire 3D ROI volume, similar to

the approach of Chen et al (54). A 3D displacement vector,

d = (dx,dy,dz), was defined around each voxel along the x, y,

and z dimensions, where dx = dy = dz = 1 is the voxel offset,

resulting in 26 neighboring voxel pairs in 13 independent

symmetric directions. Texture features were calculated in

each of these 13 directions, and they were averaged to create

a single measure that was used in our experiments.

FD was estimated on the basis of the power spectrum of

the 3D Fourier transform of the image. The 3D discrete

Fourier transform was performed for the entire 3D ROI using

the FFT algorithm:

Fðu; v;wÞ ¼
XM�1

m¼0

XN�1

n¼0

�
XK�1

k¼0

Iðm; n; kÞe�jð2p=MÞume�jð2p=NÞvne�jð2p=KÞwk;

(9)

where I is the 3D image region of size (M,N,K), and u, v, and

w are the spatial frequencies in the x, y, and z directions,

respectively. The power spectral density was estimated as
290
Pðu; v;wÞ ¼ jFðu; v;wÞj2: (10)

To compute the FD, P was averaged over radial sectors

spanning the 3D FFT frequency domain. The frequency

space was evenly divided in 24 azimuth and 12 zenith

directions, and each direction was uniformly sampled at 30

points along the radial component. To calculate the FD, the

least-squares fit of log(Pf) versus log(f) was estimated, where

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2 þ w2
p

denotes the radial frequency in spherical

coordinates (56). The FD is related to the slope, b, of this log-

log plot as defined in Equation 7, and for DT = 3 in three

dimensions:

FD ¼ 11� b

2
: (11)

Texture Association with Gail and Claus Risk

To assess the relationship between parenchymal texture

descriptors and the Gail and Claus model breast cancer risk

estimates, Pearson’s correlation coefficient, r (57), was

computed between the continuous Gail and Claus lifetime

risk estimates and the features of each individual parenchy-

mal texture descriptor, along with associated P values and

95% confidence intervals. The P value was estimated to re-

flect the probability of having a correlation as large as the

observed value by random chance when the true correlation is

zero. The P value was computed by transforming the r value

into a t statistic with n � 2 degrees of freedom, where n was

the number of women in our study population (n = 39). The

confidence bounds of the P value were approximated using

an asymptotic normal distribution of 0.5 � log[(1 + r)/(1 �
r)], with an approximate variance equal to 1/(n � 3) (58).

These bounds are accurate by approximation when the sam-

ple has a multivariate normal distribution. The correlation

coefficients and the corresponding P values were used to

compare the performance of DBT to that of digital mam-

mography.

Texture Association with Breast Density

To examine the association between parenchymal texture

patterns and breast density, two approaches were followed.

First, for each texture descriptor, Pearson’s correlation co-

efficient and the associated P value were computed between

the parenchymal texture features and the corresponding

continuous breast PD estimates.

Second, to further examine differences in texture patterns

between groups of women at different risk levels, we com-

pared the distributions of parenchymal texture features across

categories of increasing breast PD; the risk for breast cancer
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is known to increase with increasing breast density (19). We

divided our study population according to the recommenda-

tions published by Boyd et al (19); the women were separated

into groups of increasing breast PD as follows: group 1: 0%

< PD < 10%; group 2: 10% # PD < 25%; group 3: 25% # PD

< 50%; group 4: 50% # PD < 75%; and group 5: 75% # PD

< 100%. Linear regression models were estimated to predict

parenchymal texture features using the increasing breast PD

categories; estimates of R2 values were used to assess good-

ness of fit. Statistical significance was determined using two-

sided, .05-level tests. In addition to examining the association

between individual texture features and increasing categories

of breast density, the features were also combined into one

representative parenchymal feature using principal-compo-

nent analysis (PCA) (59). Linear regression was also per-

formed to model the association between increasing

categories of breast PD and the PCA feature.

RESULTS

Descriptive Statistics

Age, breast PD, and the Gail risk estimates for the women

in our study population followed an approximately normal

distribution (Lilliefors test, at a = .05 significance level, Page

= .49, PGail = .16, PPD = .06). The women’s ages ranged from

31 to 80 years, and their mean � standard deviation age was

51.4� 12 years. Their Gail lifetime breast cancer risk ranged

from 1.8% to 30.3%, with a mean of 10.5� 5.8%. The breast

PD estimates ranged from 5.9% to 82.8%, with a mean of

38.9 � 19.8%. The within-subject Pearson’s correlation

coefficient for the two readings of breast PD estimation was

0.89, and the Jaccard coefficient (60) of the spatial correla-

tion between the dense regions segmented at the different

readings was 0.78 � 0.15. Because of the increased preva-

lence of women with no family histories of breast cancer in

our population (ie, Claus lifetime risk of 0.0%), the corre-

sponding Claus risk estimates did not follow a normal

distribution (Lilliefors test, at a = .01 significance level,

P < .001). Claus lifetime risk ranged from 0% to 41.4%, with

a mean of 5.8%.

Correlation Between DBT and DM Texture
Features

Table 1 shows the computed Pearson’s correlation coef-

ficients between the DBT features, computed with both the

tomographic (ie, 2D) and the volumetric (ie, 3D) approaches,

and the DM texture features. Overall, significant correlations

were observed between the 2D DBT and the DM texture

features; FD demonstrated a particularly strong correlation

(r = 0.73, P < .001). These correlations were, on average,

lower between the 3D DBT features and the DM texture

features. Overall, very strong correlations were observed
between the 2D and the 3D DBT features; however, in this

case, FD demonstrated a particularly low correlation

(r = 0.01, P = .91).

Texture Correlation with Gail and Claus Risk
Estimates

Table 2 shows the computed Pearson’s correlation coef-

ficient and associated P values between the parenchymal

texture features and the corresponding Gail and Claus life-

time breast cancer risk estimates. Overall, low correlations

were detected; with the exception of DBT skewness and

Claus risk, no other correlation was statistically significant

(P < .05). For our study population, neither DBT nor DM

imaging appeared to be superior in correlating parenchymal

texture patterns with the breast cancer risk estimates of the

Gail and Claus models.

Texture Correlation with Breast Density

Table 3 shows the Pearson’s correlation coefficients and

associated P values computed between the parenchymal

texture features and the corresponding continuous breast PD

estimates. With the exception of skewness, statistically sig-

nificant correlations were detected for all the texture de-

scriptors in either or both imaging modalities (P # .05);

however, with the exception of coarseness, only the 3D tex-

ture features appeared to yield significant correlations for

DBT. Overall, the 3D DBT parenchymal texture features

appeared to have stronger correlation with breast PD than the

DM features. Comparing Table 3 to Table 2, it appears that

parenchymal texture features correlated significantly higher

with breast PD than with the Gail and Claus risk estimates.

Significant correlations were detected between the 3D DBT

texture features and breast PD, for coarseness (P = .003),

contrast (P = .05), energy (P = .03), and FD (P = .004). For

DM features, significant correlations were detected for ho-

mogeneity (P = .01) and FD (P = .001). Figure 6 shows

Table 1
Pearson’s Correlation Coefficients (P Values) Between DBT
and DM Parenchymal Texture Features

Variable

2D DBT vs

DM

3D DBT vs

DM

2D DBT vs

3D DBT

Skewness �0.07 (.65) �0.08 (.59) 0.99 (<.001)

Coarseness 0.37 (.02) 0.25 (.12) 0.97 (<.001)

Contrast 0.46 (.003) 0.41 (.008) 0.98 (<.001)

Energy 0.16 (.31) 0.37 (.02) 0.79 (<.001)

Homogeneity 0.50 (<.001) 0.51 (<.001) 0.98 (<.001)

Fractal

dimension

0.73 (<.001) 0.27 (.09) 0.01 (.91)

DBT, digital breast tomosynthesis; DM, digital mammographic;

3D, three-dimensional; 2D, two-dimensional.
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Table 2
Pearson’s Correlation Coefficients (P Values) Between DM and DBT Parenchymal Texture Features and the Gail and Claus Lifetime
Breast Cancer Risk Estimates

Gail Risk Claus Risk

Variable DM 2D DBT 3D DBT DM 2D DBT 3D DBT

Skewness 0.01 (.97) 0.04 (.81) 0.05 (.74) �0.07 (.69) 0.32 (.05)* 0.33 (.04)*

Coarseness 0.06 (.72) 0.03 (.83) 0.03 (.86) �0.08 (.61) 0.14 (.39) 0.15 (.35)

Contrast 0.00 (.99) �0.03 (.86) �0.04 (.80) �0.11 (.50) �0.09 (.57) �0.10 (.55)

Energy �0.24 (.14) �0.03 (.85) �0.11 (.50) �0.24 (.13) �0.20 (.13) �0.16 (.34)

Homogeneity 0.01 (.95) 0.02 (.92) 0.02 (.88) 0.20 (.22) 0.09 (.60) 0.10 (.53)

Fractal dimension 0.02 (.92) 0.19 (.24) �0.01 (.95) �0.02 (.88) �0.01 (.94) 0.03 (.85)

DBT, digital breast tomosynthesis; DM, digital mammography; 3D, three-dimensional; 2D, two-dimensional.

* P # .05.
representative scatterplots of DM and 3D DBT parenchymal

features compared to the breast PD estimates; the corre-

sponding scatterplots of the same texture features compared

to the Gail risk estimates are also shown for comparison on

the right. Although the Gail risk scatterplots demonstrate no

clear pattern of association between the texture features and

the corresponding Gail risk estimates for either modality,

a clearer pattern of association is visible between the paren-

chymal texture features and breast PD, and the directionality

of the association can also be seen, particularly for DBT.

Figure 7 shows representative box plots of the DM and

3D DBT texture feature distributions within the groups of

increasing breast PD. Fitted regression lines are shown that

model the association between increasing breast PD and

parenchymal texture features; to avoid overfitting, consid-

ering our small sample size, only linear models were fitted.

Figure 8 shows the corresponding box plots for the PCA

feature, computed from all the DM and the 3D DBT features.

Table 4 shows the corresponding regression beta b coeffi-

cients and R2 estimates for the fitted models. In general, the

association between breast PD and texture features was

stronger for DBT than for DM imaging, as evidenced by

Table 3
Pearson’s Correlation Coefficients (P Values) Between DM and
DBT Parenchymal Texture Features and Breast PD

Breast PD

Variable DM 2D DBT 3D DBT

Skewness �0.18 (.26) 0.18 (.26) 0.18 (.26)

Coarseness �0.15 (.34) 0.40 (.01) 0.46 (.003)

Contrast �0.25 (.13) �0.23 (.15) �0.31 (.05)

Energy �0.29 (.07) �0.20 (.21) �0.36 (.03)

Homogeneity 0.39 (.01) 0.16 (.32) 0.26 (.11)

Fractal dimension 0.50 (.001) 0.23 (.16) 0.45 (.004)

DBT, digital breast tomosynthesis; DM, digital mammographic;
PD, percent density; 3D, three-dimensional; 2D, two-dimensional.
292
fitted regression lines with steeper slopes and more signifi-

cant P values. The strongest association with increasing

breast PD was observed for the DBT PCA feature (R2 = 0.21,

P = .003).

DISCUSSION

To date, breast density has been used as the main image-

based surrogate of risk (19). However, certain limitations

exist for using breast density as the prime imaging biomarker

for breast cancer risk estimation. The current state-of-the art

methods to estimate breast density are not fully automated

and therefore not accurately reproducible; breast density

estimation is highly subjective based on the observers’

perceptions and subjectivity (21,61). Some studies have in-

vestigated the development of fully automated methods to

quantify breast density (62), but these methods have not yet

been validated with large clinical studies. In addition, breast

density is currently evaluated as a global image measure that

cannot be used to characterize spatially localized parenchy-

mal patterns. Previous studies with mammograms have

shown that certain regions within the breast, such as the ret-

roareolar region, might be highly discriminative for breast

cancer risk estimation (27–31,48). Parenchymal texture

analysis, on the other hand, could provide fully automated,

objective, and reproducible features to characterize breast

density patterns and therefore complement and augment the

current methods for breast cancer risk estimation.

In our study, parenchymal texture features were analyzed

in DM and DBT clinical images using both 2D and 3D

texture descriptors. Overall, moderate correlations were

observed between the DM and the DBT texture features,

indicating that parenchymal texture differs between the

two imaging modalities. With the exception of FD, how-

ever, strong correlations were detected between the 2D DBT

texture features and their 3D counterparts, suggesting that

the observed differences in texture between DM and DBT
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Figure 6. Scatterplots of the texture features versus breast percent density (PD) (left) and the Gail lifetime risk estimates (right) for

digital mammography (DM) and digital breast tomosynthesis (DBT).
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Figure 7. Box plots with fitted regression lines and associated P values for digital mammographic (DM) and digital breast tomosynthesis

(DBT) coarseness, contrast, and fractal dimension texture features versus the five groups of increasing breast percent density (PD):

PD < 10%, 10% # PD < 25%, 25% # PD < 50%, 50% # PD < 75%, and 75% # PD < 100%.
are more likely to be attributed in the most part to the effect

of tissue superimposition rather than the selection of the

particular feature extraction technique. In our particular
294
study, however, the DBT images were anisotropic in reso-

lution, which could potentially affect the computation of the

3D texture features. Currently, this issue is under
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Figure 8. Box plots with fitted regression lines and associated P values for digital mammographic (DM) and digital breast tomosynthesis

(DBT) principal-component analysis (PCA) features versus the five groups of increasing breast percent density (PD): PD < 10%, 10% # PD <

25%, 25% # PD < 50%, 50% # PD < 75%, and 75% # PD < 100%.
Table 4
Beta b Coefficients, R2 Values, and P Values for the Fitted Regression Models of Each DM and DBT Texture Descriptor

DM 3D DBT

Variable b R2 P b R2 P

Skewness �0.08 0.01 .50 0.06 0.03 .33

Coarseness �0.2 � 10�4 0.01 .55 0.7�10�5 0.17 .008

Contrast �0.91 0.05 .15 �588 0.10 .05

Energy �0.006 0.06 .14 �0.005 0.07 .09

Homogeneity 0.005 0.10 .04 0.009 0.08 .09

Fractal dimension 0.04 0.18 .006 0.04 0.16 .01

PCA 0.19 0.01 .46 0.84 0.21 .003

DBT, digital breast tomosynthesis; DM, digital mammography; PCA, principal-component analysis; 3D, three-dimensional.
investigation in the medical imaging literature, and no de-

finitive work has been published. Mahmoud-Ghoneim et al

(52) applied 2D and 3D descriptors, similarly to our ap-

proach, to analyze the texture of gliomas in anisotropic 3D

brain magnetic resonance images, without particularly ac-

counting for the potential effect of texture anisotropy. Chen

et al (54) applied 3D texture descriptors to analyze the

texture of breast lesions in contrast-enhanced 3D breast

magnetic resonance images but accounted for anisotropy by

performing a bilinear interpolation to yield isotropic tomo-

graphic voxel resolution. Kovalev and Petrou (63) per-

formed an extensive study on texture anisotropy in 3D

images, using both simulated and real clinical data, con-

cluding that no definitive solutions can be proposed but

rather suggestive approaches dependent on the particular

modality of the available images and the type of pathology.

Considering that our study was the first to perform paren-

chymal texture analysis in DBT images for breast cancer

risk estimation, we intend to fully investigate this effect in
our future studies when larger clinical data sets are avail-

able. Potential future studies could also include phantom

data analysis to assess the effect of various DBT acquisition

geometries on different feature extraction techniques (64).

The observed overall low correlation between parenchy-

mal texture features and the Gail and Claus model lifetime

breast cancer risk estimates could potentially be attributed to

the small size of our data set and the particular patient se-

lection criteria of the clinical multimodality imaging study;

our study population could potentially be considered a high-

risk population, because most of the women were diagnosed

with unilateral breast cancer. However, it is important to note

that the Gail lifetime risk estimates for the women in our

population followed a normal distribution, with an average of

10.5%, which is slightly lower than the 12.6% average life-

time risk among the general US population (43). In a previous

study with digitized mammograms, Huo et al (27) used

multiple linear regression to examine the correlation between

a set of parenchymal texture features, along with age, versus
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the Gail and Claus model risk estimates. Their study showed

a moderate and statistically significant correlation between

their linear regression risk estimate and the Gail and Claus

risk model predictions. However, their linear regression

model also considered age as a risk factor, which is known to

also be a variable included in the Gail and Claus risk as-

sessment models. Hence, the reported correlation could po-

tentially be attributed mostly to the inclusion of age as a risk

factor rather than to the individual parenchymal texture

features alone.

On the other hand, the observed low correlations between

the individual parenchymal texture features and the Gail and

Claus risk estimates persisted over all the texture descriptors

in our study, regardless of the imaging modality; this could

indicate that parenchymal texture is potentially an indepen-

dent risk factor, unrelated to the conventional variables of the

Gail and Claus risk estimation models (ie, age, parity, age at

menarche, number of relatives with cancer, number of prior

biopsies, etc). In support of this hypothesis, Palomares et al

(65) also reported that the Gail model variables do not fully

account for the relationship between mammographic breast

density, a correlate of parenchymal texture, and the calcu-

lated breast cancer risk estimates; in particular, breast density

also appears to have no significant correlation to age at

menarche, nulliparity, and late age at first birth. If this hy-

pothesis is further validated by larger clinical studies, pa-

renchymal texture features could be considered additional

variables in the current epidemiologic risk prediction models

to further improve their discriminatory accuracy. Such a dis-

cussion has already been raised in the scientific community

(66–68), and studies have investigated the potential to im-

prove the Gail model by also including image-based breast

density descriptors (22–24,69).

Our analyses demonstrated significant correlations be-

tween parenchymal texture features and breast density, which

is an established independent risk factor for breast cancer

(19). Although our results should be viewed as suggestive,

because of the small size of our data set, the association be-

tween parenchymal texture and breast density was overall

more evident for the DBT than the DM texture features. In

particular, significant correlations (ie, P # .05) with contin-

uous breast PD estimates were detected for 3D DBT

coarseness, contrast, energy, and FD; for 2D DBT coarse-

ness; and for 2D DM homogeneity and FD. When our study

population was divided into subgroups of increasing breast

PD, 3D DBT texture analysis demonstrated a potential to

provide more discriminative texture features than DM, as

shown by the corresponding box plots of the texture feature

distributions and the fitted regression lines with overall lower

P values, steeper slopes, and higher R2 estimates. The supe-

riority of DBT texture analysis in this case was particularly

evident for the PCA, in which the 3D DBT feature demon-

strated the highest statistical significance (P = .003) and the
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best linear regression fit (R2 = 0.21), compared to DM fea-

tures (P = .46, R2 = 0.01).

The improved performance of DBT features, compared to

DM features, could potentially be attributed to the effect of

tissue superimposition. DBT parenchymal analysis can ex-

clude tissue layers that are potentially irrelevant to risk as-

sessment, such as the superficial skin layers and the

surrounding subcutaneous fatty regions, which could be

considered anatomic structure noise for image-based breast

cancer risk assessment. In DBT, texture analysis can be

performed within spatially localized areas of the breast vol-

ume, such as the retroareolar fibroglandular breast region,

which has been shown to be particularly characteristic for

breast cancer risk assessment (27,29–31). Although prelim-

inary, our results also suggest that 3D texture analysis in DBT

could potentially result in more discriminative features than

2D texture analysis for breast cancer risk estimation. The

study of Chen et al (54) also demonstrated the superiority of

3D texture descriptors, compared to their 2D counterparts, in

classifying breast tissue texture in 3D contrast-enhanced

breast magnetic resonance images.

Our findings in DBT are in agreement with those of pre-

vious studies in mammograms and further support the hy-

pothesis that parenchymal texture analysis can be used as

an alternative, or even complementary, method to quantify

breast density patterns for breast cancer risk estimation. We

observed that coarseness has a positive correlation with

breast density, indicating that women at higher risk could

potentially have coarser patterns of parenchymal texture;

Huo et al (28) and Li et al (29) also reported that BRCA1 and

BRCA2 gene mutation carriers, a population known to be at

very high risk, appear to have coarser mammographic texture

patterns with increasing breast density. We also observed that

contrast and energy appear to have negative correlations with

breast density, indicating that women at higher risk could

potentially have parenchymal texture patterns with lower

local variation of gray levels, resulting in lower contrast

values; these results also agree with the previous reports of

Huo et al (28) and Li et al (29), who showed that high-risk

women had mammographic texture patterns with lower

contrast. Finally, FD demonstrated a strong association with

breast PD, having the lowest and most significant P values;

Li et al (31) also showed in their studies that FD can provide

highly discriminative measures for characterizing the mam-

mographic patterns of high-risk women.

Our study, nevertheless, had certain limitations. The small

sample size did not provide sufficient statistical power to

connote general applicability of our results and to fully de-

termine the superiority of 3D versus 2D texture analysis

methods. This limitation is reflected by the moderately sta-

tistically significant P values (ie, p # .05) and the observed

overall low R2 values in the fitted regression models. How-

ever, because this was the first study to explore the potential
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advantages of DBT parenchymal analysis for breast cancer

risk estimation, our intention was to evaluate proof of con-

cept and demonstrate the instrumental evidence required to

initiate the design of larger clinical studies in the future. Such

larger studies will render the sufficient statistical power re-

quired to fully evaluate the potential advantages of DBT in

breast cancer risk estimation and determine the optimal tex-

ture analysis techniques. Future approaches may also include

investigating other areas of the breast than the retroareolar

region and evaluating the effect of interobserver variability in

ROI selection and breast density estimation (47). In addition,

larger data sets will also offer the ability to further investigate

the potential of combining multiple texture descriptors into

a more comprehensive breast cancer risk estimation measure.

Our results indeed demonstrate that combining multiple

texture features using PCA could potentially yield more ac-

curate risk estimation measures, as evidenced by the higher

R2 value in the corresponding linear regression fits.

Although preliminary, our results suggest that DBT pa-

renchymal texture analysis could potentially provide more

discriminative features for breast cancer risk estimation, in

comparison to DM imaging. This potential advantage, com-

bined with the ongoing advancements in improving the image

quality and reconstruction algorithms for DBT (40,70), could

offer the opportunity to develop novel imaging biomarkers

that can be used to improve breast cancer risk estimation. The

improved performance and low cost of breast DBT will likely

fuel the rapid and broad dissemination of DBT as a breast

cancer screening modality (35,71). Our ultimate goal is to

improve breast cancer risk estimation by developing auto-

mated CARe methods using DBT parenchymal analysis.

Establishing novel DBT imaging biomarkers for breast cancer

risk estimation could be of great clinical advantage for cus-

tomizing detection, tailoring individual treatment, and form-

ing preventive strategies, especially for women associated

with higher risk.
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