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Abstract—We propose a multistep approach for representing
and classifying tree-like structures in medical images. Tree-like
structures are frequently encountered in biomedical contexts;
examples are the bronchial system, the vascular topology, and the
breast ductal network. We use tree encoding techniques, such as
the depth-first string encoding and the Prüfer encoding, to obtain a
symbolic string representation of the tree’s branching topology; the
problem of classifying trees is then reduced to string classification.
We use the tf-idf text mining technique to assign a weight of signifi-
cance to each string term (i.e., tree node label). Similarity searches
and k-nearest neighbor classification of the trees is performed using
the tf-idf weight vectors and the cosine similarity metric. We applied
our approach to characterize the ductal tree-like parenchymal
structure in X-ray galactograms, in order to distinguish among
different radiological findings. Experimental results demonstrate
the effectiveness of the proposed approach with classification ac-
curacy reaching up to 86%, and also indicate that our method can
potentially aid in providing insight to the relationship between
branching patterns and function or pathology.

Index Terms—Branching pattern analysis, characterization,
classification, tree-like structures, X-ray galactography.

I. INTRODUCTION

S EVERAL structures in the human physiology follow a
tree shaped morphology; examples of such structures

are the dendritic extensions of neurons [1], the intrathoracic
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Fig. 1. Examples of tree-like structures in medical images: (a) a dendritic brain
neuron, (b) airway tree of the lungs, (c) vessel system, and (d) the breast ductal
network.

airway trees [2], the blood vessel system [3], and the breast
ductal network [4] (see Fig. 1). Medical imaging modalities
such as magnetic resonance imaging (MRI), computed tomog-
raphy (CT), and X-ray mammography have made available
large collections of 2-D and 3-D images, in which the spatial
arrangement of such tree-like structures is visualized. A chal-
lenging issue when analyzing the morphology of these tree-like
structures is to extract descriptive features that correspond to
topological patterns and discriminative characteristics; these
features capture properties such as the branching frequency, the
tortuosity, and the spatial distribution of branching [3], [5]. To
perform this type of analysis, a preprocessing step is usually
required: the tree is traced and extracted from the image, using
manual, semi-automated or fully automated procedures [6].
Computerized image analysis techniques can then be applied
to compute the desired features. In medical image analysis,
these features are usually associated with function or pathology
and can be used to assist medical diagnosis. Examples of such
analyses have been reported in the literature: regional changes
in vessel tortuosity have been studied to identify early tumor
development in the human brain [5] and lung structure and
function has been investigated using 3-D analysis of pulmonary
airway trees [2], [6]. Similarly, examining the morphology of
the ductal network can potentially provide valuable insight to
the risk and the development of breast cancer, and assist in
diagnosing abnormalities [7], [8], [15].

In this paper, we propose a multistep approach for charac-
terizing and classifying tree-like structures in medical images.
The proposed approach uses tree encoding schemes to obtain
a symbolic string representation of the tree-like structures; the
problem of classifying trees is then reduced to string classifica-
tion where node labels comprise the string terms. We use text
mining techniques to assign a significance weight to each string
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term (i.e., node label), in order to identify tree branching pat-
terns that are discriminative among groups of images. Our goal
is to develop effective descriptors of tree-like structures that can
be used for performing similarity searches and classification.
For the purpose of illustrating our technique, we apply it to the
analysis of breast ductal trees in clinical X-ray galactograms, in
order to distinguish among cases of women with reported galac-
tographic findings and normal cases. In general, our technique is
independent of the imaging modality and the clinical relevance
of the application; therefore, it can also be applied to other types
of tree-like structures in biomedical images. Our experimental
results demonstrate the effectiveness of the proposed method in
automatically characterizing and classifying tree-like structures
in medical images. These methods can potentially provide in-
sight to the relationship between branching topology and func-
tion or pathology.

II. BACKGROUND

In this section, basic concepts of trees, tree modeling, tree
branching descriptors, and imaging of tree structures are briefly
reviewed.

Tree-like structures are physical structures that may be mod-
eled using trees. In particular, we focus on structures modeled by
directed rooted trees, defined as directed acyclic graphs (DAGs)
in which there exists only one path between any two nodes [9].
Each node has one or no parents, while the node at the top of
the tree that has no parents is identified as the root of the tree. A
binary tree is defined as a tree in which each node has at most
two successors or child nodes. When the nodes of the tree are
assigned labels, then the tree is referred to as a labeled rooted
tree.

In this paper we consider tree-like structures encountered in
biomedical imaging applications and we demonstrate an appli-
cation to trees representing the breast ductal network in mam-
mographic images. In particular, we consider breast images ob-
tained by X-ray galactography.

Galactography is an imaging procedure that can visualize the
breast ductal network. During this procedure, X-ray mammog-
raphy is performed after injecting a contrast agent into the lact-
iferous ducts [14]–[16]. Galactography can be useful for visual-
izing early symptoms of papilloma or ductal ectasia, which may
cause spontaneous nipple discharge without showing recogniz-
able change in screen-film X-ray mammograms. In our earlier
studies [4], [17] galactographic images were used to manually
extract the breast ductal tree-like structures in order to perform
branching pattern analysis.

The breast duct anatomy has been analyzed to understand
normal breast development [8] and to distinguish between
groups of healthy and diseased women [10], [11], [15]. Taking
into consideration that breast cancer is one of the leading causes
of cancer-related mortality worldwide and that it originates
in ductal and lobular epithelium, analysis of the breast ductal
anatomy could potentially provide insight for understanding
cancer development and spread; animal studies have shown
evidence that the ductal branching can be affected by hormonal
factors that correlate with the risk of developing breast cancer
[22]. Moreover, studies have shown that the architecture of
the ductal network is a discriminative predictor for benign and

malignant lesions of the breast, even in absence of additional
information [15].

In order to evaluate ductal morphology with respect to breast
cancer symptoms, Bakic et al. proposed a 3-D simulated model
of the ductal network based on ramification matrices [4] and a
quantitative approach to classify galactograms based on ductal
branching properties [11]. The elements of a ramification ma-
trix represent the probabilities of branching at various levels of
a tree [11], [12]. More specifically, a ramification (R) matrix
represents a descriptor of branching structures at the topolog-
ical level. The branches (edges) between nodes are identified in
a tree and the R-matrix elements are computed as follows [13]:

1) all terminal branches are assigned a bifurcation label of
1;

2) a “parent” branch whose “children” have bifurcation la-
bels and are labeled by if or by
if ;

3) the labeling procedure continues until the root branch is
reached whose label is called the Strahler number of
the tree structure.

The matrix of a tree with Strahler number is a lower
triangular matrix, defined as

(1)

where is equal to the number of branches with label . For
, is the number of pairs of branches with labels and

, while for , is the number of pairs of branches both
labeled , descending from a node with bifurcation number

. Therefore, is the probability
that a branch with label will bifurcate into branches with the
appropriate labels.

A detailed description of the R-matrix approach for the clas-
sification of galactographic trees can be found in [11]. In this
paper, we compare our proposed methodology to the R-ma-
trix approach, and show that our method compares favorably
to R-matrices. While our method is evaluated specifically on bi-
nary trees, it could potentially be extended to -way trees by
replacing the use of pairs of children in the labeling with child
sets of size or by treating higher-order splits as a series of bi-
furcations. However, such an extension of our method is beyond
the scope of the present paper and will be more thoroughly in-
vestigated in our future studies.

More recently, Wang and Marron [24] have defined metrics
on trees that may be used in conjunction with statistical anal-
ysis techniques defined on Euclidean spaces, such as PCA, to
perform topological analysis of tree-like structures within med-
ical and other domains.

III. METHODS

Our methodology is based on combining tree encoding
schemes with text mining techniques. The methodological
steps included in our approach are as follows.

1) Preprocessing: Segmenting the tree-like structures from
the rest of the tissue.

2) Characterization: Encoding and representing trees in a
form conducive to storage, indexing and retrieval.
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Fig. 2. Segmentation of a ductal tree, showing (a) a galactogram with a con-
trast-enhanced ductal network, (b) part of the galactogram showing enlarged
the ductal network, and (c) the manually traced network of larger ducts from
the contrast-enhanced portion of the galactogram.

3) Similarity searches: Given a collection of tree structures
and a query tree, find the trees that are most similar to the
query.

4) Classification: Given classes of labeled tree structures,
build a model that correctly identifies the class of a new
(previously unseen) tree.

A. Preprocessing

Certain preprocessing steps are necessary before the tree-like
structures are available for analysis. First, the structure outline
needs to be traced and segmented from the rest of the tissue
or background in the image. Then, the tree-like structures are
reconstructed by identifying points of branching and resolving
potential ambiguities which could violate definition of a DAG
(such as anastomoses [8], occurring mostly as a result of 2-D
acquisition artifacts). In the application presented here, we per-
form tracing and reconstruction of the breast ductal tree man-
ually, using the nipple as the root [12] (see Fig. 2). Although
more advanced and fully-automated methods could potentially
be implemented, such an approach is out of the scope of this
paper; our main focus is the representation, classification and
similarity analysis of tree-like structures.

B. Characterization

Two trees are considered isomorphic if they differ only by
the order of their children, maintaining the same parent-child
relationships. This can be problematic for encoding. In order
to avoid such tree isomorphism problems after the tree struc-
ture has been extracted, we construct the breadth-first canonical
form (BFCF) of the tree [20]. The BFCF is constructed based
on the bifurcation labels of each node in the tree (see Section
II); starting from the leaves, the canonical tree is assembled
from the root down by recursively making the child with the
smaller bifurcation number the left child of the current node in
the canonical tree. Following canonicalization, the next step is
to label the nodes (or branches) of the tree. In the application
presented here, we preferred to use consecutive increasing inte-
gers assigned in a breadth-first manner. This labeling approach
creates a potentially more appropriate representation scheme for
our particular application, compared to depth-first approaches,
by dealing better with cases where branches at the lower levels
may not be visible due to image acquisition problems or the use

Fig. 3. (a) A clinical X-ray galactogram visualizing the breast ductal network
for a case with no reported radiological findings, (b) the corresponding manu-
ally traced ductal tree, (c) the same tree with bifurcation labels, and (d) the tree
normalized to a canonical form.

or lack of contrast agents. Using breadth-first labeling, a missed
branch will only cause changes in the encoding at or below the
level at which the branch is missed, whereas a depth-first ap-
proach could potentially change the labeling at all levels of the
tree. Fig. 3(a)–(d) shows the canonicalization and labeling pro-
cedures applied to a hand-traced ductal tree.

Starting with a labeled tree, string encoding schemes can
be applied; here we compare the performance of two different
encodings: the depth-first string encoding and the Prüfer en-
coding. By using either one of the proposed encoding schemes,
the problem of classifying the trees is reduced to string clas-
sification where node labels comprise the string terms. These
characterization strings capture properties of the branching
patterns and the topological structure of the corresponding tree.

The depth-first string encoding (DFSE) is an encoding
scheme which constructs a nonunique string representation
for a tree by visiting each node following a preorder
depth-first traversal. During this process each node is
represented in the string by its label. These encoding strings
can be treated as signatures representing the original
trees. As an example, the depth-first string encoding
obtained for the hand traced labeled tree in Fig. 3(d) is

. It has been shown that DFSE provides a one-to-one
correspondence between a rooted labeled tree and the obtained
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Fig. 4. (a) A simple tree represented with a string based on the Prüfer encoding
scheme. (b) moving a leaf changes the Prüfer encoding but not DFSE, con-
trasting the uniqueness properties of the encodings.

string representation if a symbol is used to represent a
backtrack up the tree after visiting a leaf [20].

A more sophisticated tree encoding scheme that reflects
branching frequencies of the tree nodes is the Prüfer encoding.
The Prüfer encoding scheme constructs a unique string repre-
sentation for each tree-like structure [21]. The algorithm visits
each node of the tree following a preorder traversal. During this
process the encoding (characterization) string is constructed,
using, for each nonroot node, the label of its parent to represent
it. Another approach that may be used to construct the Prüfer
encoding is to iteratively remove the leaf with the smallest
labeling and append it to the string representation until one
node remains. In the case of a breadth-first labeled canonical
tree, these approaches produce the same string in reverse order,
as the leaf with the smallest labeling is always the left child
of its parent node. The process of constructing the DFSE and
Prüfer encodings is shown in Fig. 4(a), while the uniqueness
properties of the encodings are demonstrated in Fig. 4(b).

Prüfer, in his proof of Cayley’s theorem regarding
the number of labeled trees on vertices, showed that
there exists a 1–1 correspondence between )-length
sequences of integers from the set and labeled
trees on vertices [21]. Further, if an integer occurs
exactly times in a sequence corresponding to a tree

, then the vertex in with label has degree .
The greater the maximum degree of a tree, the more a
node’s label will occur in the code. As an example, the
Prüfer encoding of a ductal tree illustrated in Fig. 3(d) is

. Employing Prüfer encoding results in obtaining unique
characterization strings for each tree [21].

Both the DFSE and the Prüfer encoding schemes capture im-
portant information with respect to the spatial arrangement of
the structure as well as the branching patterns of the nodes and
are used to represent the initial trees in further analysis.

C. Vector Normalization and Weighting

In order to analyze patterns in the tree-like structures after
representing them using strings, we utilize text mining tech-
niques. We employ the tf-idf text mining technique [23] to
assign a weight of significance to each string term (i.e., tree
node label), indicating tree nodes that form discriminative
branching patterns. The string representations constructed by
applying the depth-first string encoding or the Prüfer encoding
can be viewed as document vectors consisting of labeled terms.
Using tf-idf weighting, each term in the document vector (that
is, each node label in the tree’s encoded string) can be assigned
a weight determined by its relative frequency within the doc-
ument against its frequency among all documents. The new
representation becomes a vector with the corresponding weight
at each term’s feature position , where

is the number of terms in document . The tf-idf weighting
has the advantage over R-matrices of emphasizing uncommon
branching patterns, which are more likely to be discriminative
indicators of pathology.

More specifically, the main idea of tf-idf weighting is that
1) more frequent terms in a “document” are more im-

portant, i.e., more indicative of the topic (such as the
branching pattern of a tree-like structure)

2) we may want to normalize term frequency (tf) across the
entire corpus

3) terms that appear in many different “documents” are less
indicative of overall topic.

The weights derived by this approach are given by the fol-
lowing equation:

(2)

where is the frequency of term in document ; is
; is the document frequency of term

number of documents containing term ; and is the inverse
document frequency of term and is the
total number of documents.

D. Similarity Searches and Classification

We perform similarity searches and classification by em-
ploying the cosine similarity distance metric on the string
representations. As shown in the previous step, each term
in a document is given a real-valued weight, , thus each
tree’s string representation can be expressed as a -dimensional
vector: , where is the number of
different terms or size of the “vocabulary” or dimension. There
are many ways to tell whether pairs of these vectors are similar;
here we use the cosine value of the vectors, which is called the
cosine similarity measure and is computed as follows:

(3)

where is the query document and is document .
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IV. RESULTS

We considered 54 X-ray galactograms performed at Thomas
Jefferson University Hospital and the Hospital of the University
of Pennsylvania in the period between June 1994 and August
2001, from which the ductal trees were manually delineated and
extracted. There were an average of 67 nodes per tree, of which
approximately 30 were internal nodes and approximately 37
were terminal nodes. An example of a galactogram along with
the corresponding hand-traced tree is shown in Fig. 3(a)–(c).
These images were acquired from a total of 31 women with ages
ranging from 28 to 75 years at exam date (mean age 47.1 years).
From these images, 39 corresponded to women with no reported
galactographic findings (NF) and 15 to women with reported
findings (RF). Ages of women with no reported findings ranged
from 28 to 74 (mean age 43.2), while ages of women with re-
ported findings ranged from 43 to 75 (mean age 54.0). Of the
15 cases with reported findings, malignancy was found in two.
The dataset analyzed in this paper includes 25 images from 15
patients from our previous R-matrix analysis of clinical galac-
tograms [11].

We obtained the canonical trees, then assigned unique posi-
tive integer labels ascending in breadth-first order. The labeling
started from the root of each tree, assigning the integer “1,”
and continued in an increasing manner until all nodes were la-
beled. We applied the DFSE and the Prüfer encoding to obtain
the string representations corresponding to the original ductal
trees. Fig. 3(e) and (f) shows examples of such characterization
strings. We further employed tf-idf weighting to assign a weight
of significance to each node label within these strings. In each of
these two cases, we considered both classes of ductal trees (NF
and RF) as one group (i.e., forest) of trees and applied the tf-idf
weighting to this combined dataset of encoding strings. When
applying the tf-idf weighting the unequal lengths of the encoding
strings were handled by padding the end of the characterization
strings with a very small value of to avoid numer-
ical errors when calculating the cosine similarity distance. By
performing the tf-idf weighting, we obtained two datasets (one
from the depth first string encoding and one from the Prüfer
encoding) of tf-idf weights indicating the significance of each
encoding string term (i.e., node label) in each characterization
vector. Using the obtained tf-idf weight vectors we performed
similarity searches and classification experiments based on the
cosine similarity distance.

A. Similarity Searches

For similarity searches, we calculated the pairwise cosine dis-
tance matrix for all the tf-idf vectors. We considered each tree
and its corresponding tf-idf vector as the query subject and re-
trieved the most similar trees based on the cosine distance ma-
trix. Considering the small size of our datasets, the parameter
ranged from 1 to 5. We report the percentage of relevant trees
among the retrieved trees (i.e., precision) averaged over all the
similarity queries performed. As relevant trees we consider the
trees belonging to the same class (NF or RF) as the query tree.
To compensate for the unbalanced class sizes of our dataset,
we randomly under-sampled the NF class to the size of the RF
class (15) and averaged the results over 100 sampling iterations.

TABLE I
OBTAINED PRECISION FOR SIMILARITY SEARCH EXPERIMENTS BASED

ON THE COSINE SIMILARITY DISTANCE METRIC WHEN USING THE

DEPTH-FIRST STRING ENCODING AND THE PRÜFER ENCODING

Table I illustrates the similarity search results obtained when
using the depth first string encoding and the Prüfer encoding.
Precision was calculated as the proportion of neighboring im-
ages belonging to the same class as the query, averaged over the
entire dataset. As shown from these results, the Prüfer encoding
performs better than DFSE by an average of approximately 9%
over all the different values of .

B. Classification

For classification, we performed leave-one-out -nearest
neighbor experiments. Again, we randomly under-sampled the
NF class to balance the size of our classes; random sampling
has been shown to result in more accurate measurements of

classification accuracies than traditional deterministic
sampling techniques in the literature [26]. For each test tree we
retrieved the closest neighbor trees (i.e., tf-idf vectors), based
on the cosine similarity distance; we assigned the test tree the
class that appeared most frequently among its neighbors. Ties
were broken using the th nearest neighbor. Considering
the size of our dataset, the parameter ranged from 1 to 5.
Table II illustrates the classification accuracy obtained when
using the depth first string encoding and the Prüfer encoding.
As shown in Table II, again Prüfer encoding outperformed
DFSE on average by approximately 15%.

These results are comparable to those obtained on galac-
tograms by human experts [25], with our results showing lower
sensitivity (RF accuracy: 86% versus 94%) but much higher
specificity (NF accuracy: 85% versus 55%). Our results outper-
form previous experimental results reported in the literature, in
which R-matrix elements computed from the breast ductal trees
were used to distinguish among the two classes (NF versus RF)
in a subset of the same dataset of galactographic images [11].
Our results also outperform the R-Matrix approach applied to
the entire dataset used in this paper, having classification ac-
curacies of 66% and 38% for NF and RF classes, respectively.
However, we were able to raise the accuracy of the R-matrix



492 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 28, NO. 4, APRIL 2009

TABLE II
OBTAINED ACCURACY FOR THE CLASSIFICATION EXPERIMENTS BASED

ON THE COSINE SIMILARITY DISTANCE METRIC WHEN USING THE

DEPTH-FIRST STRING ENCODING AND THE PRÜFER ENCODING

Fig. 5. Receiver operating characteristic curves plotting classification TPR
against FPR for Prüfer, DFSE, and R features.

approach to 81% (88% NF, 71% RF) by applying our kNN
classifier using the R-matrix coefficients as features.

We also computed receiver operating characteristic (ROC)
curves, which plot a test’s true positive rate against false positive
rate. ROC analysis does not suffer due to unbalanced class sizes
[27]. The curves for the Prüfer and DFSE datasets are shown in
Fig. 5. We create these curves by classifying each tree as NF if
its nearest NF neighbor is within a thresholded cosine distance;
if the distance is larger than the threshold, the tree is labeled as
RF. This process is repeated for 100 equally spaced threshold
levels over the interval of cosine distance values present in the
data. By performing leave-one-out experiments, we compute the
true positive rate (TPR) and the false positive rate (FPR), plotted
on the y and x axes, respectively, in Fig. 5.

The area underneath the ROC curve was 0.83 when using
the Prüfer encoding to represent the trees, 0.74 when using the

Fig. 6. Examples of misclassified (a) NF and (b) RF images and canonical trees.

depth-first string encoding, and 0.82 when using R-matrix co-
efficients with the k-nearest neighbor classifier presented in this
paper.

Finally, we visually examined 8 cases that the classifier con-
sistently misclassified. Due to our random sampling procedure
on a binary classification problem, we consider an image con-
sistently misclassified if its predicted class was incorrect in at
least half of the runs in which it appeared. We observed that NF
trees misclassified as RF tended to have deeper left canonical
subtrees, similar to the overall canonical structure of correctly
classified RF trees, while RF trees misclassified as NF tended
to have deeper right canonical subtrees, similar to the overall
canonical structure of correctly classified NF trees. Representa-
tive examples of misclassified trees are shown in Fig. 6. Note
that, as the canonical tree is built with Strahler numbers, which
represent branching probabilities at various levels of the tree,
this may indicate that true (i.e., correctly classified) NF trees are
more likely to branch than RF trees. We also noted that the mis-
classified trees tended to be difficult to visualize and trace, sug-
gesting that misclassifications may be due to error in the manual
tracing of the ducts (Fig. 6).

V. CONCLUSION

We present a methodology for characterizing and classifying
tree-like structures in medical images. Our approach combines
symbolic graph representation with text mining techniques.
We use string encoding algorithms, such as the depth-first
string encoding and the Prüfer encoding to construct a unique
characterization string for each tree-like structure. We further
perform tf-idf weighting, to assign a significance weight to each
string term (i.e., node label). Our methodology was applied
to breast ductal trees manually extracted from clinical X-ray
galactograms. The images were divided into two groups; those
with no reported galactographic findings (NF) and those with
reported findings (RF). We performed similarity searches and
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classification experiments based on the cosine similarity dis-
tance metric. The experimental results illustrate the potential
of the proposed tree characterization and classification frame-
work to be employed for the analysis of tree-like structures
in medical images. Our best results outperformed previous
results obtained by a state-of-the-art method applied to the
same dataset. Moreover, our approach has the advantage of
constructing characterization strings that uniquely represent
the tree structures and can be considered as signatures for the
corresponding original trees; these signatures can also be used
for indexing medical image databases where images visualizing
tree-like structures need to be stored and managed. Although
here we performed the string encoding process manually, one
possible direction for future work is the use of kernel learning
techniques, such as those described in [28], to automatically
determine compact encodings. Extending canonicalization
to multi-way trees is another possible area of future work.
Finally, another possibility is to develop features that represent
other branching properties, such as branch length, angle, and
tortuosity. The proposed methodology has the potential to
assist in investigating associations between branching patterns
of tree-like structures in medical images and corresponding
function or pathology.
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