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ABSTRACT 
 
Mammographic breast density is a known breast cancer risk factor. Studies have shown the potential to automate breast 
density estimation by using computerized texture-based segmentation of the dense tissue in mammograms. Digital 
breast tomosynthesis (DBT) is a tomographic x-ray breast imaging modality that could allow volumetric breast density 
estimation. We evaluated the feasibility of distinguishing between dense and fatty breast regions in DBT using 
computer-extracted texture features. Our long-term hypothesis is that DBT texture analysis can be used to develop 3D 
dense tissue segmentation algorithms for estimating volumetric breast density. DBT images from 40 women were 
analyzed. The dense tissue area was delineated within each central source projection (CSP) image using a thresholding 
technique (Cumulus, Univ. Toronto). Two (2.5cm)2 ROIs were manually selected: one within the dense tissue region 
and another within the fatty region. Corresponding (2.5cm)3 ROIs were placed within the reconstructed DBT images. 
Texture features, previously used for mammographic dense tissue segmentation, were computed. Receiver operating 
characteristic (ROC) curve analysis was performed to evaluate feature classification performance. Different texture 
features appeared to perform best in the 3D reconstructed DBT compared to the 2D CSP images. Fractal dimension was 
superior in DBT (AUC=0.90), while contrast was best in CSP images (AUC=0.92). We attribute these differences to the 
effects of tissue superimposition in CSP and the volumetric visualization of the breast tissue in DBT. Our results 
suggest that novel approaches, different than those conventionally used in projection mammography, need to be 
investigated in order to develop DBT dense tissue segmentation algorithms for estimating volumetric breast density. 
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1. INTRODUCTION 

There is growing evidence to suggest that mammographic breast percent density, estimated as the percentage of dense 
(i.e. fibroglandular) tissue in the breast, is an independent risk factor for breast cancer 1. To date, no fully-automated and 
reproducible methods have been validated for accurately quantifying breast density. The most commonly used method 
relies on a semi-automated image processing algorithm in which the dense tissue region is manually segmented in 
mammograms using image gray-level thresholding. Mammographic breast density is then estimated as the percent of 
dense tissue area within the entire breast region 1. Although widely used for breast cancer risk estimation, these 
approaches are highly subjective and difficult to standardize, potentially limiting their applicability as breast cancer risk 
assessment tools for the general population.  On the other hand, recent studies 2-4 have shown the potential to automate 
the segmentation of dense tissue in mammograms using computer-extracted texture features. These studies suggest that 
computerized texture features could be used to develop fully-automated, objective, and reproducible methods to 
quantify breast density for breast cancer risk estimation.  

Conventional mammography, however, has limitations for performing texture and density analysis. Mammograms are 
projection x-ray images in which the breast tissue layers are superimposed. As a result, mammographic texture features 
reflect properties of an admixture of tissues, including dense, fatty, and superficial skin tissue layers. In addition, being 
a projection imaging technique, mammography does not allow estimation of the true volumetric breast density (i.e. the 
percent volume of dense tissue within the entire breast volume), but rather an estimate of density measured from the 
projection of overlapping dense tissues 5. Current research efforts are focusing on developing methods to estimate 
volumetric breast density from mammographic images by incorporating breast thickness information; alternative 3D 
imaging modalities such as breast ultrasound and MRI are also being considered 6.  
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Digital breast tomosynthesis (DBT) is a 3D x-ray breast imaging modality in which tomographic images of the breast 
are reconstructed from multiple low-dose 2D x-ray source projection images 7. DBT alleviates the effect of tissue 
superimposition, offering superior parenchymal texture visualization compared to mammography. Our previous studies 
have shown preliminary evidence that DBT texture analysis could potentially result in more discriminative features to 
characterize breast density patterns in comparison to projection mammography 8. Our long-term hypothesis is that DBT 
texture analysis could be used to develop fully-automated 3D dense tissue segmentation algorithms to compute 
volumetric breast density for breast cancer risk estimation.  

As a first step towards this goal, we evaluated the feasibility of distinguishing between dense and fatty breast tissue 
regions in DBT images by using computer-extracted texture features. Both source projections and fully-reconstructed 
DBT images were analyzed. Various texture descriptors were estimated and their relative classification performance in 
distinguishing between the dense and fatty breast tissue regions was evaluated.  

2. METHODS 
2.1. Dataset 

Contralateral DBT images from 40 women with recently detected abnormalities and/or previously diagnosed breast 
cancer were analyzed. The images were retrospectively collected under IRB approval and HIPAA regulations from a 
multimodality breast imaging clinical trial that has been completed in our department†. DBT acquisition was performed 
with a GE Senographe 2000D FFDM system modified to allow positioning of the x-ray tube at 9 locations by varying 
the angle from -25o to +25o with increments of 6.25o. The breast was compressed in an MLO position and source 
projections were acquired with spatial resolution of 0.1mm/pixel. Filtered-backprojection was used to reconstruct DBT 
tomographic planes in 1mm increments with 0.22mm in-plane resolution. 

The dense tissue area was delineated within each central source projection (CSP) by an experienced medical physicist  
using Cumulus (Ver. 4.0, Univ. Toronto), the widely validated software for breast percent density estimation1. CSP 
images are equivalent to a low-dose mammogram visualizing the breast with the same positioning as the corresponding 
reconstructed DBT image. Two (2.5 cm)2 ROIs (256x256 pixels at 0.1mm/pixel resolution) were manually selected in 
the CSP images: one within the region of dense breast tissue and another within the adipose tissue region (Fig. 1). The 
placement of the ROIs was randomly chosen within the dense and fatty breast tissue region in each CSP image, in order 
to provide a random sample of the properties of the different tissue types. Corresponding (2.5cm)3 ROIs (116x116 
pixels at 0.22mm/pixel resolution) were placed within the fully-reconstructed 3D DBT image using an automated 
projective coordinate transformation into the x-y plane of the central reconstructed tomographic slice (Fig. 2).   
 

        
                                         (a)                                                 (b)                                                 (c) 
Fig. 1 Examples of (a) a digital breast tomosynthesis (DBT) central source projection (CSP), with (b) the corresponding dense tissue 
region segmented within the breast region, and (c) the selected dense and fatty tissue ROIs. 

                                                           
† Evaluation of Multimodality Breast Imaging, NIH P01 CA85484, PI: M. Schnall 
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 (a)                                                                                                    (b) 
Fig. 2 Examples of dense and fatty ROIs selected in (a) a central source projection (CSP) and (b) the corresponding digital breast 
tomosynthesis (DBT) ROIs centered within the breast volume by a projective coordinate transformation on to the central DBT plane. 

2.2. Texture feature extraction  
Texture features of skewness, coarseness, contrast, energy, homogeneity and fractal dimension were computed from 
both the 2D CSP and the 3D DBT ROIs using  our previously developed  texture analysis techniques 8. These features 
have been shown to have value in segmenting the dense tissue region in previous studies with mammograms 4. We have 
also recently shown that these texture features tend to correlate to breast density when computed from DBT images 8. 

Two approaches were implemented for texture analysis in the 3D reconstructed DBT images: (i) tomographic and (ii) 
volumetric texture analysis.  For each imaging modality, the individual texture features were also combined into one 
representative feature using principal component analysis (PCA) 9. 

2.2.1. Tomographic (2D) texture analysis 

For each texture descriptor, a feature fi, i=1,…,T was computed from each tomographic slice of the 3D DBT ROI (T=26 
slices in each ROI, 1mm/slice), resulting in a feature vector FT = [f1,…,fT] for each ROI. The mean of the feature vector, 

TF , was used as the representative feature for the ROI. 

Skewness is the third statistical moment and was computed as: 
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where ni represents the number of times that gray level value i occurs in the image region, gmax is the maximum gray-
level value, and N is the total number of image pixels. 

The computation of coarseness is based on the neighborhood grey-tone difference matrix (NGTDM) 10, 11 of the gray-
level values within the image region; this matrix is derived by calculating the difference between the gray-level value of 
each pixel and the average gray-level value of the pixels around a neighborhood window. 
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where v(i) is the NGTDM. In the above formulas, gmax  is the maximum gray-level value, pi is the probability that gray 

level i occurs, {ni} is the set of pixels having gray level value equal to i, and iL  is given by:  
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where j(x,y) is the pixel located at (x,y) with gray level value i, (k,l)≠(0,0) and S=(2t +1)2  with t=1 specifying the 
neighborhood size around the pixel located at  (x,y).  
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, , ,  and (Eq. 1)     

,  and (Eq. 2)     

(Eq. 3)     
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Contrast, energy, and homogeneity, as proposed originally by Haralick 12, require the computation of second-order 
statistics derived from the gray-level co-occurrence matrix; the spatial dependence of gray-levels is estimated by 
calculating the frequency of the spatial co-occurrence of gray-levels in the image 12.  
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where gmax is the maximum gray-level value and C is the normalized co-occurrence matrix 12. To optimize the 
computation of the gray-level co-occurrence statistics, gray-level quantization was implemented 13. The co-occurrence 
frequencies were calculated symmetrically in the four directions around each pixel using a displacement of one pixel 
offset along x and y dimensions. The texture features calculated in each of these four directions were averaged to create 
a single measure that was used in our experiments.  

Fractal dimension (FD) was estimated based on the power spectrum of the Fourier transform of the image 14, 15. The 2D 
Discrete Fourier Transform (DFT) was performed using the Fast Fourier Transform (FFT) algorithm  
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where I is the 2D image region of size (M, N), and u and v are the spatial frequencies in the x and y directions. The 
power spectral density P was estimated from F(u,v) as 

( ) ( ) 2,, vuFvuP =       
To compute the FD, P was averaged over radial slices spanning the FFT frequency domain. The frequency space was 
uniformly divided in 24 directions, with each direction uniformly sampled at 30 points along the radial component. To 
calculate the FD the least-squares-fit of the log(Pf) versus log(f) was estimated, where  22 vuf += denotes the radial 
frequency 14. The FD is related to the slope β of this log-log plot by: 
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where DT is the topological dimension. For a 2D image DT=2 and FD = (8 - β)/2. 

2.2.2. Volumetric (3D) texture analysis 

The conventional 2D texture descriptors were extended to 3D by considering a 3D neighborhood of voxels (i.e. volume 
elements), rather than a 2D neighborhood of pixels, when computing gray-level texture statistics.   

Skewness was again computed as the third moment of the gray-level histogram as in Eq 1; however, the gray-level 
histogram of the ROI was estimated using the gray-level values from the entire 3D ROI volume, rather than separately 
for each tomographic plane. This is valid since skewness does not depend on the spatial co-occurrence of gray-levels.  

For coarseness, the local differences in gray-level values, required for the computation of the NGTDM, were estimated 

within a 3D neighborhood of voxels. More specifically the definition of iL  in Eq. 3 was modified, to account for a 3D 
rather than a 2D neighborhood of voxels as follows: 
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Here j(x,y,z) is the voxel located at (x,y,z) with gray level value i, (k,l,z)≠(0,0,0), and S=(2t +1)3  with t =1 specifying the 
3D voxel window around (x,y,z). 

For contrast, energy, and homogeneity, the gray-level co-occurrence statistics, required for the computation of the co-
occurrence matrix in Eq. 4, were estimated based on the spatial co-occurrence frequencies of voxel gray-level values 
within the entire 3D ROI volume similar to the approach of Chen et al. 16. A 3D displacement of one voxel offset was 
defined along the x, y, and z dimensions resulting in 26 neighboring voxel-pairs in 13 independent symmetric directions. 
Texture features were calculated in each of these 13 directions and they were averaged to create a single measure that 
was used in our experiments.  

contrast         energy           , , homogeneity      (Eq. 4)     

(Eq. 5)     

(Eq. 6)     

(Eq. 7)     

(Eq. 8)     

Proc. of SPIE Vol. 7260  726024-4

Downloaded From: http://spiedigitallibrary.org/ on 07/15/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



Fractal dimension (FD) was estimated based on the power spectrum of the 3D Fourier transform of the image. The 3D 
DFT was performed for the entire 3D ROI using the FFT algorithm: 
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where I is the 3D image region of size (M, N, K), and  u, v and w are the spatial frequencies in the x, y, and z directions 
respectively. The power spectral density (PSD) was estimated as: 

( ) ( ) 2,,,, wvuFwvuP =      
To compute the FD, P  was averaged over radial sectors spanning the 3D FFT frequency domain. The frequency space 
was evenly divided in 24 azimuth and 12 zenith directions, and each direction was uniformly sampled at 30 points along 
the radial component.  To calculate the FD, the least-squares-fit of the log(Pf) versus log(f) was estimated, where  

222 wvuf ++= denotes the radial frequency in spherical coordinates 14. The FD is related to the slope β of this log-
log plot as defined in Eq. 7; for DT=3 in 3D, FD = (11- β)/2. 

3.1. Data analysis 

Two-tailed paired Student’s t-test was applied to estimate the difference in the means of the texture feature distributions 
between the dense and the fatty ROIs for each imaging modality. Associated p-values were estimated to assess 
statistical significance. Receiver operating characteristic (ROC) curve analysis was performed using the proper 
binormal model of the DBM MRMC software (Ver. 2.2 by the Univ. of Chicago and Univ. of Iowa)17-20 to evaluate the 
performance of the texture features in distinguishing between the dense and fatty ROIs. ROC area under the curve 
(AUC) was compared across the different imaging modalities and the different feature extraction techniques.  

3. RESULTS 

The Student’s t-test analysis shows that most of the estimated texture features are statistically significantly different 
between the dense and the fatty ROIs both in the CSP and the DBT images (Table 1). However, different texture 
features are more discriminative between breast tissue types for the two imaging modalities. Coarseness, contrast and 
homogeneity are more discriminative in the CSP ROIs (p<0.001), while energy and fractal dimension are more 
discriminative in the DBT ROIs (p<0.001). The volumetric texture features are generally more discriminative than the 
tomographic texture features for the DBT ROIs, as demonstrated both by the PCA and the individual texture features 
(Table 1). Representative box-plots are shown in Figure 3 for contrast, fractal dimension and the PCA texture feature. 

Table 1. P-values from applying two-tailed paired Student’s t-test to compare the means of the texture feature distributions between 
the dense and the fatty ROIs in central source projection (CSP) images, and in digital breast tomosynthesis (DBT) images using 
tomographic (DBT 2D) and volumetric (DBT 3D) texture analysis (* for p≤0.01, ** for p≤0.001). 

T-test p-values for dense vs. fatty ROI texture differences 
Texture Features CSP DBT 2D DBT 3D 

Skewness 0.50 0.02 0.02 

Coarseness      <0.001   ** 0.17 0.03 
Contrast      <0.001  ** 0.78 0.93 
Energy        0.001  **     <0.001  **      <0.001    **

 

Homogeneity      <0.001  ** 0.03 0.04 
Fractal Dimension 0.19       0.002   *      <0.001    ** 

PCA Feature      <0.001  **    0.008      <0.001    ** 

(Eq. 9)     

(Eq. 10)
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Fig. 3  Box-plots for the most discriminative features (a) contrast in central source projections (CSP) and (b) fractal dimension in 
digital breast tomosynthesis using volumetric texture analysis (DBT 3D), and (c) the principal component analysis (PCA) feature.  
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The ROC curve analysis also demonstrates that different features better distinguish between the dense and fatty breast 
tissue types in the projection CSP images compared to the reconstructed DBT images (Table 2). Contrast and 
homogeneity have the best classification accuracy in the CSP images (AUCZ=0.92 and AUCZ=0.90), while fractal 
dimension has the best performance in the DBT images (AUCZ=0.90).  Overall, the volumetric texture features perform 
better in comparison to their tomographic counterparts for the DBT images (PCA AUCZ=0.78 vs. AUCZ=0.74). Figure 
4 shows comparative ROC curves and the associated AUC estimates for contrast and fractal dimension.  Figure 5 shows 
the corresponding ROC curves for the PCA texture feature.  

Table 2. Receiver operating characteristic (ROC) area under the curve (AUC) for distinguishing between dense and fatty breast 
tissue regions in central source projections (CSP) and fully reconstructed digital breast tomosynthesis (DBT) images using 
tomographic (DBT 2D) and volumetric (DBT 3D) texture analysis.  

AUC (Az) 
Texture Features CSP DBT 2D DBT 3D 

Skewness 0.54 0.66 0.68 

Coarseness 0.79 0.74 0.79 
Contrast 0.92 0.61 0.58 
Energy 0.78 0.76 0.75 

Homogeneity 0.90 0.63 0.63 
Fractal Dimension 0.62 0.76 0.90 

PCA Feature 0.85 0.74 0.78 
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                                                        (a)                                                                                                        (b) 
Fig. 4  Receiver operating characteristic (ROC) curves with associated area under the curve (AUC) for the best performing features 
(a) contrast and (b) fractal dimension for the central source projection (CSP) ROIs and the fully reconstructed digital breast 
tomosynthesis (DBT) ROIs using tomographic (DBT 2D) and volumetric (DBT 3D) texture analysis .  
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Fig. 5  Receiver operating characteristic (ROC) curves with associated area under the curve (AUC) for the PCA texture feature for 
the central source projection (CSP) ROIs and the fully reconstructed digital breast tomosynthesis (DBT) ROIs using tomographic 
(DBT 2D) and volumetric (DBT 3D) texture analysis .  

4.    DISCUSSION 

We attribute the observed differences in feature classification performance to the corresponding differences in 
parenchymal tissue visualization between the CSP and the DBT images. Due to the projective nature of the CSP image 
acquisition, the corresponding gray-level pixel values in the CSP image reflect properties of x-ray attenuation 
throughout the entire thickness of the compressed breast volume.  Therefore, texture features such as contrast and 
homogeneity that depend on the pixel-wise additive effect of superimposed breast tissue types are enhanced. On the 
other hand, due to the tomographic separation of the breast tissue layers in DBT, the dominant contribution to the 
gray-level values in the DBT images is the x-ray attenuation at the specific voxel in the breast volume. Therefore, 
volumetric parenchymal properties such as self-similarity reflected by fractal dimension could be more accurately 
estimated by the corresponding DBT texture features.  Figure 6 shows an illustrative example of this effect in a CSP 
image in comparison to the central reconstructed slice of the corresponding DBT image. DBT texture analysis could be 
more advantageous in capturing volumetric parenchymal properties and potentially provide the basis to estimate 
volumetric breast density in the future. 

                       
(a) (b)  

Fig. 6 An example of corresponding dense tissue regions in (a) the CSP image where dense tissue layers are superimposed and (b) 
the central reconstructed plane of the digital breast tomosynthesis image (DBT) where the effect of tissue superposition is alleviated.   
 

CSP DBT
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5. CONCLUSION 

Parenchymal texture differs between dense and fatty breast tissue regions both in 2D CSP and fully-reconstructed 3D 
DBT images. However, different texture features appear to perform best in DBT, in comparison to CSP images. Our 
results suggest that novel approaches, potentially different than those conventionally used in projection mammography, 
need to be investigated in order to develop DBT dense tissue segmentation algorithms for estimating volumetric breast 
density. Further work is underway to determine the optimal texture feature extraction techniques in DBT, investigate the 
effect of the reconstruction algorithm, and compare to digital mammography. 
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