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ABSTRACT 
 
In this work, analytical models of the optical transfer function (OTF), noise power spectra (NPS), and detective quantum 
efficiency (DQE) are developed for two types of digital x-ray detectors.  The two detector types are (1) energy 
integrating (EI), for which the point spread function (PSF) is interpreted as a weighting function for counting x-rays, and 
(2) photon counting (PC), for which the PSF is treated as a probability.  The OTF is the Fourier transform of the PSF.  
The two detector types, having the same PSF, possess an equivalent OTF.  NPS is the discrete space Fourier transform 
(DSFT) of the autocovariance of signal intensity.  From first principles, it is shown that while covariance is equivalent 
for both detector types, variance is not.  As a consequence, provided the two detector types have equivalent PSFs, a 
difference in NPS exists such that NPSPC ≥ NPSEI and hence DQEPC ≤ DQEEI.  The necessary and sufficient condition for 
equality is that the PSF is either zero or unity everywhere.  A PSF modeled as the convolution of a Lorentzian with a rect 
function is analyzed in order to illustrate the differences in NPS and DQE.  The Lorentzian models the blurring of the x-
ray converter, while the rect function reflects the sampling of the detector.  The NPS difference between the two detector 
types is shown to increase with increasing PSF width.  In conclusion, this work develops analytical models of OTF, NPS, 
and DQE for energy integrating and photon counting digital x-ray detectors. 
 
Keywords: Energy integrating detector, photon counting detector, point spread function (PSF), optical transfer function 
(OTF), modulation transfer function (MTF), noise power spectra (NPS), detective quantum efficiency (DQE). 

1. INTRODUCTION 
 
At a broad level, digital x-ray detectors can be divided into two main types, energy integrating and photon counting.  An 
energy integrator detects the sum of the energies of the incident x-rays, while a photon counter detects the presence of 
individual x-ray quanta as discrete events independent of energy.  In this work, we posit the existence of a fundamental 
difference in imaging performance between these two detector types even in the case of a monoenergetic x-ray beam.  As 
a prerequisite to that analysis, it is helpful to review the physics of the two detector types. 
 
A typical energy integrating detector consists of a scintillator placed in electrical contact with a large area plate of 
amorphous silicon (a-Si).  The scintillator converts each incident x-ray to visible light to an intensity proportional to the 
x-ray energy.  Common scintillators include Gd2O2S:Tb, a turbid granular phosphor in which light spreads by optical 
scatter, and CsI:Tl, a structured phosphor in which needle-like crystals approximately 10 μm in diameter channel the 
light down to the a-Si plate by total internal reflection.  Although structured phosphors have the drawback of being more 
expensive to produce, they have the advantage of improved spatial resolution, as they minimize the lateral spread of 
visible light.1,2  Ultimately, the visible light is absorbed by photodiodes arranged in a rectangular array within the a-Si 
plate, and is re-emitted as electrons by the photoelectric effect.3,4,5  The current established by the flow of electrons in the 
photodiode of each pixel provides the input for an integrating circuit such as the one shown in Figure 1A, so that the 
readout voltage per pixel is proportional to the sum of the energies of the incident x-rays. 
 
In addition to phosphor-based detectors, amorphous selenium (a-Se) photoconductors operated in drift mode have shown 
promise as energy integrators.  This form of energy integrating detector is said to be a direct converter, as the incident x-
ray signal generates an image without intermediate conversion of x-rays to visible light.  In this detector, an absorbed x-
ray ionizes a Se atom located within the thickness of the a-Se semiconductor, and creates an electron-hole pair.  As a 
result of an electric field applied normal to the photoconductor surface, the electron and hole migrate in a nearly perfect 
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orthogonal path to the two different ends of the detector, and an image is formed.  A defining characteristic of drift mode 
is that the electric field is small enough so that the electron moving along the field lines does not have sufficient kinetic 
energy between collisions to ionize additional Se atoms and hence to create an avalanche formation of electrons and 
holes.  Photoconducting detectors operated in drift mode have superior spatial resolution to phosphor-based detectors.  In 
fact, to a first approximation, the modulation transfer function (MTF) of a-Se operated in drift mode is essentially unity 
for all spatial frequencies.6  Although photoconductors and phosphor-based detectors differ in terms of their spatial 
resolution, they are similar in that they both present the advantage of a large sensitive area and that they both possess the 
drawbacks of limited dynamic range and sensitivity to dark current and electronic read-out noise.7 
 

 
 
Fig. 1 Shown here are schematic diagrams of the electrical circuits for processing current in the photodiodes of (A) an energy 
integrating detector and (B) a photon counting detector. 
 
In order to surmount the drawbacks associated with energy integrating detectors, photon counting detectors have been 
developed.  A typical photon counting detector is an avalanche photodiode (APD) placed in electrical contact with an a-
Si pixel layer.  A common example of an APD is a silicon photomultiplier operated in one of two modes, proportional or 
Geiger.  In proportional mode, the applied electric field is large enough so that a primary electron generated from an x-
ray ionization has sufficient energy to ionize additional atoms and to generate an avalanche of electrons and holes.  The 
electrons and holes produced in the avalanche spread laterally, causing blurring in the resultant image.  By elevating the 
bias voltage above breakdown by approximately 10-20%, an APD is converted from proportional mode to Geiger mode.  
Whereas only an electron can ionize atoms in proportional mode in silicon photomultipliers, both electrons and holes can 
ionize atoms in Geiger mode.8  In either proportional or Geiger mode, the voltage gain of the avalanche associated with 
each pixel is compared against a user-determined threshold established by the potentiometer of a circuit such as the one 
shown in Figure 1B.  Voltage gains exceeding the threshold are counted as representative of one x-ray, and the pixel 
output is determined by simply summing these counts.  The principal advantage of Geiger mode over proportional mode 
is the production of large, well-defined voltage gains compared against the threshold.  This benefit is crucial in 
applications such as fluoroscopy in which there is low signal compared with the electronic noise level.  Additional 
benefits of Geiger mode are low dark count rate, large dynamic range, and low rate of after-pulsing.9  Geiger mode does 
have several drawbacks, however, such as a large recovery time, increased thermal electron generation, and smaller 
sensitivity area.10 
 
In addition to APDs, there has been considerable interest in gaseous detectors as alternative forms of photon counters.  In 
these detectors, each x-ray generates a cascade of ionizations of gas atoms, and voltage gains exceeding a threshold are 
counted as representative of one x-ray.  Since x-rays in the medical imaging energy range of 1 to 50 keV interact with 
the gas primarily by the photoelectric effect, which increases in prevalence with the atomic number Z of the gas, high Z 
inert gases such as Kr and Xe are commonly used in these detectors.  Increasing the absorption efficiency by using a high 
Z gas prevents x-rays from propagating large distances before initiating a primary ionization, thereby preventing each x-
ray from being attenuated before generating a cascade.  To increase absorption efficiency further, the gases are typically 
placed under high pressure.  Finally, to smooth avalanche amplification, which is exponential with the applied electric 
field, a quencher gas such as CO2 is often added to the mixture.11 
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One important area of distinction between energy integrating and photon counting detectors, regardless of the specific 
form of either detector type, is in the weighting of the information carried by individual x-rays in a polyenergetic beam.  
Energy integrating detectors give the output signal of high energy photons more weight than low energy photons, while 
photon counting detectors give the output signals equal contribution.  As a direct result of this distinction, Tapiovaara 
and Wagner have shown that a difference in detective quantum efficiency (DQE) arises between the two detector types 
when they are exposed to broad spectra, polyenergetic x-ray beams.  Using the notation of the authors, DQE is calculated 
for both detector types from the expression 
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where Ni(E) is the photon fluence spectra for energy E either in the absence of signal (i = 1) or presence of signal (i = 2), 
η(E) is the fraction of absorbed x-ray quanta, ψ(E) is the output response of the detector for each incident x-ray, and A is 
the detector area which is taken to be large compared to the width of the point spread function (PSF).  Eq. (1) assumes 
that the incident x-ray quanta of variable energy E are Poisson-distributed random variables with mean )(ENA i , and are 
detected by a binomial process whose resultant distribution is Poisson with mean )()( EENA i η .  The calculation of DQE 
is different for the two detector types in that the energy integrating detector has the output response ψ(E) = E, while the 
photon counting detector exhibits the output response ψ(E) = constant.  Using these two substitutions in Eq. (1), 
Tapiovaara and Wagner investigated the degradation in DQE as a function of the x-ray tube kilovoltage (kV), assuming 
the presence of an ideal antiscatter grid, a noiseless detector, and complete x-ray absorption.  Raising the kV served the 
purpose of increasing the width of the polyenergetic x-ray spectra.  The authors demonstrated that while both detector 
types have DQE degradation with increasing kV, the degradation is more considerable as a function of kV for the energy 
integrating detector than for the photon counting detector.  Furthermore, the authors showed that for any fixed kV, the 
DQE difference between the two detector types is more pronounced in imaging bone and iodine than in imaging soft 
tissue.12 
 
Although Tapiovaara and Wagner characterized the DQE difference between the two detector types in the case of 
polyenergetic x-rays, their work does not predict DQE differences in the case of monoenergetic x-rays.  For this reason, 
the purpose of this work is to propose analytical models of the optical transfer function (OTF), noise power spectra 
(NPS), and DQE for energy integrating and photon counting digital x-ray detectors reflecting intrinsic blurring and noise 
disparities between the two detector types even in the case of monoenergetic x-rays.  To that end, we begin by deriving 
analytical expressions for the signal intensity autocovariance of the two detector types from first principles, and show 
that these expressions are different for energy integrating and photon counting digital x-ray detectors.  The 
autocovariance analysis facilitates the development of a key theorem regarding the NPS difference between the two 
detector types.  An important corollary of this theorem is then derived as it relates to OTF and DQE.  To illustrate OTF, 
NPS, and DQE calculations for the two detector types, a PSF modeling the blurring of the x-ray converter as a 
Lorentzian is analyzed.  For the purpose of this work, we have limited our focus to a one-dimensional detector as a 
useful pedagogical tool for illustrating the differences between the two detector types, but we point out that the general 
methods for computing OTF, NPS, and DQE are readily extended to a two-dimensional detector. 

2. METHODS 
 
2.1 Energy Integrating Autocovariance 
  
Suppose that a one-dimensional (1D) energy integrating digital x-ray detector of total length L is centered on the origin 
and is partitioned into pixels of length l placed end-to-end.  We may define the center of each pixel as position Xn, where 
n is an integer used for unique labeling of the pixels.  Each x-ray landing on the detector at position x is counted by each 
pixel centered at Xn with a weight w(x – Xn) ranging from zero to unity.  For the purpose of this work, we will assume 
that the weighting function for counting x-rays is dependent only upon the displacement of each x-ray from the pixel 
center, so that it exhibits invariance under translations across pixels.  Under these assumptions, the total signal intensity 
In recorded by each pixel centered at Xn is found by summing the weights for counting each incident x-ray 
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where xm is the position at which the mth x-ray photon is incident on the detector and where N is the total number of x-
rays landing on the detector. 
 
In an ideal energy integrating detector, the weighting function w(x – Xn) should be exactly unity if the x-ray lands within 
the pixel length and zero if the x-ray lands elsewhere, so that there is no cross-talk between pixels.  In a blurring detector, 
however, an x-ray landing outside of the nth pixel may indeed cause that pixel to record a fractional count.  The spatial 
correlation of pixels can be expressed in terms of the signal intensity autocovariance function, given as 
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Defining the x-ray fluence as Φ = N/L and defining the intensity transfer characteristic Gn of the nth pixel as 
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it follows from Eqs. (2)-(4) that the signal intensity autocovariance is 
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where the linearity of the expectation operation permits the transition from Eq. (5) to Eq. (6).  On the left-hand side of  
Eq. (5), the subscript N is applied to emphasize that the number of x-rays landing on the detector is precisely known.  
This condition will be removed shortly.  In the double sum of Eq. (6), the N terms for which m = m′ and the N2 – N terms 
for which m ≠ m′ can be evaluated separately, giving 
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The second term of the expansion in Eq. (7) incorporates the fact that the quantities w(xm – Xn) and w(xm′ – Xn′) are 
independent provided m ≠ m′.  Noting that 
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one finds the signal intensity autocovariance to be 
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The second term in Eq. (9) is negligible in the limit of an infinitely long detector (L → ∞). 
 
In order to generalize Eq. (9) to incorporate the possibility that the number of x-rays landing on the entire detector is not 
uniform from one experiment to the next but instead exhibits temporal variation, one may assume that N is a Poisson-
distributed random variable.  To compute the signal intensity autocovariance in this case, begin by noting that 
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The nested brackets emphasize that one can first average for fixed values of N and then average over the varying 
numbers of incident x-ray quanta.  Expanding terms gives 
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one sees that the second term of the expansion in Eq. (11) vanishes.  The third and fourth terms combine as 
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The assumption that the variance in the number of x-rays is equal to the mean number of x-rays, as would be the case for 
Poisson statistics,13 can be introduced into Eq. (13) so that Eq. (11) can be simplified as 
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Combining Eq. (14) with Eq. (9) yields the final expression for the signal intensity autocovariance of an energy 
integrating detector 
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where LN /=Φ .  This derivation can be easily extended to two dimensions for a 2D detector to yield a similar result. 
 
2.2 Photon Counting Autocovariance 
 
Suppose now that the output of each pixel in detecting an x-ray landing on position x is binary (i.e., either zero or unity), 
as would be the case for a photon counter.  Consequently, instead of being detected by the nth pixel based upon a 
fractional weight ranging from zero to unity, each incident x-ray is either counted as unity with probability p(x – Xn) or 
counted as zero with probability 1 – p(x – Xn).  For the purpose of this work, we will assume that p(x – Xn) is 
mathematically equivalent to w(x – Xn), although its interpretation is different.  Denoting Cn as the total counts of the nth 
pixel, similar logic up to Eq. (9) holds so that the signal intensity autocovariance can be calculated as 
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where Gn is the intensity transfer characteristic given by Eq. (4) with the exchange of w(x – Xn) for p(x – Xn), and where 
the quantity Qn(xm) is defined to be unity if the mth x-ray is counted by the nth pixel and zero otherwise.  Unlike the 
energy integrating detector, one must separately consider the cases n ≠ n′ and n = n′ in order to simplify Eq. (16).  
Beginning with n ≠ n′, one observes that 
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where the four terms represent the four possible outcomes of the x-ray being counted by the two pixels.  Conveniently, 
the final three terms vanish.  The case n = n′ is different, however, 
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for there are only two possible outcomes of the x-ray being counted by a single pixel.  Again, only the first term is non-
zero.  Combining Eqs. (17)-(18) with Eq. (14) to incorporate the assumption that N is a Poisson-distributed random 
variable, one can write in summary that the signal intensity autocovariance of the photon counting detector is 
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One sees that covariance has the same form for both detector types, but variance does not. 
 
2.3 Comparative Analysis of the Two Detector Types 
  
With expressions for the signal intensity autocovariance of the two detector types established, local NPS or Wiener 
spectra W(ν) for pixel n′ can now be calculated as the discrete space Fourier transform (DSFT) of the signal intensity 
autocovariance14,15 
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where ν denotes spatial frequency.  Assuming that the two detector types have the same point spread function P(x – Xn), 
which is equivalent to both w(x – Xn) and p(x – Xn), a frequency-independent difference in their NPS may arise from the 
differing variance 
 

 [ ]∫− ′′ −−−Φ=−=−
2/

2/

2EIPC
EIPC )()()(

L

L
nnnnnn dxXxPXxPlKKlWW  ,                              (21) 

  
where Knn denotes the variance of either the photon counting detector or the energy integrating detector based on the 
superscripts.  A key theorem can now be written about the NPS difference established by Eq. (21).  Namely, the 
difference vanishes if and only if P(x – Xn′) = P2(x – Xn′).  This property is uniquely satisfied by a binary PSF that is 
either zero or unity everywhere along the detector.  Otherwise, a frequency-independent difference in NPS exists such 
that NPSPC > NPSEI.  This result assumes a piece-wise continuous PSF appropriately bounded between zero and unity. 
 
Unlike NPS, the optical transfer function T(ν) is equivalent for the two detector types provided that they possess the 
same PSF, and is calculated as the Fourier transform of the PSF.  This property arises immediately from linear response 
theory for digital x-ray detectors,16 since the expected output Dn at Xn in response to an input x-ray flux f is given for 
either detector type as 
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To verify that the expected output in response to a single x-ray landing at position x is P(x – Xn), as we have assumed 
repeatedly throughout this work for both detector types, one simply inserts the Dirac delta function δ(x′ – x) as the input 
flux f in Eq. (22).  Now, with the local DQE calculated for both detector types as 
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it follows that one important corollary of the comparative NPS theorem and the observation that the two detector types 
possess the same OTF is that DQE may differ between the two detector types in the case where NPSPC > NPSEI, so that 
DQEPC < DQEEI.  Unlike the NPS difference between the two detector types, the DQE difference is indeed spatial 
frequency dependent. 
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3. RESULTS 
 
Local OTF, NPS, and DQE calculations for the two detector types are now illustrated for a pixel in an infinitely long 
detector (L → ∞) whose PSF is given as the convolution of a Lorentzian with a rect function.  The Lorentzian models the 
blurring of the x-ray converter, while the rect function reflects the sampling of the detector. 
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The Lorentzian has been normalized by area, and its full width at half maximum (FWHM) has been denoted Γ.  A 
Lorentzian has been shown to be a valid approximation for the blurring function of evaporated CsI.17,18,19  While most 
photon counting detectors do not use a phosphor as the x-ray converter, the Lorentzian approximation is expected to be 
relatively independent of technology.  The rect function in Eq. (24) is defined to be unity over the length al centered on 
the origin and zero elsewhere, where a specifies the percentage of the pixel length that is sensitive to the detection of x-
rays.  With standard properties concerning convolutions, it is straightforward to show that the PSF of Eq. (24) is bounded 
between zero and unity, as required for application of the comparative NPS theorem. 
 
Assuming that the entire pixel is sensitive to the detection of x-rays, the PSF is plotted versus position in Figure 2A for 
four values of the FWHM of the blurring function of the x-ray converter.  Unless otherwise indicated, all subsequent 
figures also make the assumption that a = 1.  Figure 2A illustrates that increasing Γ increases the spread of the tails of the 
PSF and reduces the width of its plateau.  To calculate the OTF associated with the PSF of Eq. (24), one may apply the 
convolution theorem to obtain 
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where G is the intensity transfer characteristic.  The normalized modulus of the OTF gives the MTF, which is plotted 
versus spatial frequency in Figure 2B.  Increasing Γ decreases the MTF at all spatial frequencies and hence worsens 
spatial resolution. 
 

 
 
Fig. 2 (A) The PSF is plotted versus position in increments of pixel length (l) for four different FWHMs (Γ) of the Lorentzian x-ray 
converter blurring function, assuming that the entire pixel is sensitive to the detection of x-rays (a = 1).  Increasing Γ reduces the 
width of the plateau of the PSF and increases the spread of its tails.  (B) The MTF is plotted versus spatial frequency, illustrating that 
increasing Γ worsens resolution.  The two subfigures share a common legend. 
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A comparative analysis of the NPS of the two detector types can now be performed.  Since the PSF is symmetric about 
the center of the pixel, NPSEI is determined from the expression 
 

 ∑
∞

−∞=

=
n

n nlKlW )2cos()( EI
0,EI νπν      ,     ∫

∞

∞−

−Φ= νν νπ deTK inl
n

22EI
0, |)(|                                     (26) 

 
where the integral for calculating the energy integrating signal intensity autocovariance as given by Eq. (15) has been 
rewritten in Fourier space using Parseval’s theorem.20  Using Eq. (25) for T(ν), the autocovariance integral of Eq. (26) 
can be evaluated with the help of a computer algebra system (CAS). 
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To determine NPSPC, one simply adds to Eq. (26) the frequency-independent NPS difference 
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The NPS difference is determined from Eq. (21) based on the differing variances of the two detector types.  Whereas the 
variance of the energy integrator is the n = 0 component of Eq. (27), the variance of the photon counter is GΦ , where G 
is the intensity transfer characteristic as stated in Eq. (25). 
 
In Figure 3A, the variances of the two detector types are plotted versus Γ for three pixel sensitivity lengths.  Figure 3A 
shows that the variance of the photon counter is independent of the blurring of the x-ray converter, while the variance of 
the energy integrator is reduced with increased blurring, tending to zero in the limit of infinite blurring.  For either 
detector type, lowering the pixel sensitivity length reduces the variance.  In the limit of an optimally-resolving x-ray 
converter (Γ = 0), the variances of the two detector types match, making the NPS difference vanish.  In Figure 3B, plots 
of NPSEI and NPSPC versus spatial frequency are shown.  Figure 3B demonstrates that in a blurring detector, the photon 
counter is noisier than the energy integrator, where NPSPC is found by adding the white noise of Eq. (28) to NPSEI.  In 
the limit of a perfectly-resolving x-ray converter, the two detector types possess the same white NPS. 
 
To illustrate that the NPS difference between the two detector types increases with the blurring of the x-ray converter, 
the NPS difference is plotted versus Γ in Figure 3C.  In the limiting case of infinite blurring in the x-ray converter, the 
NPS difference plateaus to its maximum. 
 

 2
EIPC )(lim laWW Φ=−

∞→Γ
                      (29) 

 
Infinite blurring in the x-ray converter gives rise to a non-imaging system which simply detects the number of incident x-
ray quanta without distinguishing their position along the detector.  An additional property seen in Figure 3C is that 
decreasing the pixel sensitivity length reduces the NPS difference.  Using Eq. (23) and the preceding NPS results, DQE 
is plotted versus frequency in Figure 3D.  Figure 3D demonstrates that DQEPC is inferior to DQEEI at all frequencies, 
except in the limiting case of a perfectly-resolving x-ray converter for which the DQEs of both detector types match. 
 

 )(sinc)(DQElim 2

0
νν ala ⋅=

→Γ
                     (30) 

 
Figure 3D indicates that DQEEI increases with the blurring of the x-ray converter while DQEPC decreases with the 
blurring of the x-ray converter. 
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Fig. 3 (A) The variance of the two detector types is plotted versus Γ for three pixel sensitivity lengths.  (B) The relative NPS is plotted 
versus spatial frequency assuming that the entire pixel is sensitive to the detection of x-rays.  (C) The NPS difference between the two 
detector types is shown to increase with increasing PSF width.  (D) The DQE is plotted versus spatial frequency for the two detector 
types assuming that the entire pixel is sensitive to the detection of x-rays. 
 
The dependence of the DQE on the blurring of the x-ray converter is studied explicitly in Figure 4A in the special case of 
ν = 0.  Figure 4A shows that DQE(0) is the same for the two detector types in the limit of a perfectly-resolving x-ray 
converter and is equivalent to a, the percentage of the pixel length that is sensitive to the detection of x-rays.  However, 
once the FWHM of the Lorentzian increases from zero, the behavior of DQE(0) is quite different for the two detector 
types.  DQEEI(0) is unity for all blurring profiles of the x-ray converter if the entire pixel is sensitive to the detection of 
x-rays, and increases with the blurring of the x-ray converter to unity in the limit of a non-imaging detector if only a 
portion of the pixel is sensitive to x-rays.  By contrast, DQEPC(0) decreases with the blurring of the x-ray converter for 
all pixel sensitivity lengths and in the limit of a non-imaging detector attains a different horizontal asymptote 
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With a = 1.0, 0.9, and 0.8 as used in Figure 4A, the horizontal asymptotes from Eq. (31) are 1/2 = 0.5, 9/19 ≈ 0.474, and           
4/9 ≈ 0.444, respectively.  As a final point of analysis, Figure 4B illustrates that unlike the difference in NPS between the 
two detector types, the difference in DQE is indeed spatial frequency dependent.  Like the NPS difference, the DQE 
difference increases with the blurring of the x-ray converter. 
 

 
 
Fig. 4 (A) For both detector types, DQE(0) is plotted versus Γ for three pixel sensitivity lengths.  (B) The DQE difference between the 
two detector types is spatial frequency dependent and increases with the blurring of the x-ray converter.  This subplot implicitly 
assumes that the entire pixel is sensitive to the detection of x-rays. 

4.    DISCUSSION 
 
This work develops analytical models of OTF, NPS, and DQE for two types of digital x-ray detectors, energy integrating 
and photon counting.  From first principles, we have shown that while OTF is equivalent for two detector types 
possessing the same PSF, NPS and DQE are not.  In particular, we have demonstrated that as a result of differing 
variance between the two detector types, a frequency-independent difference in NPS exists such that NPSPC ≥ NPSEI and 
hence DQEPC ≤ DQEEI.  The necessary and sufficient condition for equality is that the PSF is either zero or unity 
everywhere along the detector.  The NPS and DQE inequalities derived in this work imply a benefit associated with 
energy integrating detectors over photon counting detectors which has not been previously explored in the literature. 
 
The OTF, NPS, and DQE calculations for the two detector types have been illustrated for a model detector whose PSF is 
the convolution of a Lorentzian with a rect function.  The Lorentzian reflects the blurring of the x-ray converter, while 
the rect function models the sampling of the detector.  For the purpose of this example, we assumed that the pixel 
sensitivity was symmetric about its center.  Using the Fourier shift theorem, it can be readily shown that MTF, NPS, and 
DQE for both detector types are unaffected by a translational shift in the sensitivity length, assuming that this shift is 
uniform across all pixels. 
 
In the model detector section of this work, it was observed that if the x-ray converter exhibits no blurring, the NPS 
difference between the two detector types vanishes.  We now give a physical argument for the validity of this result as a 
complement to the mathematical one used in the proof of the comparative NPS theorem.  To a good approximation, an x-
ray converter with optimal spatial resolution is found in an energy integrating photoconducting detector such as a-Se 
operated in drift mode.  This form of an energy integrating detector can be viewed as the limiting case of a photon 
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counting silicon photomultiplier with such a small applied electric field that the primary electron generated from an x-ray 
ionization does not have sufficient energy to create an avalanche of electrons and holes which spread laterally, and hence 
travels in a near perfect orthogonal path to the a-Si pixel layer in forming the image.  With no avalanche in either 
detector type, there is no physical difference in x-ray detection between the photon counter and the energy integrator 
when both are exposed to a monoenergetic x-ray beam.  Consequently, the two detector types are indeed expected to 
have identical physical properties such as NPS. 
 
A potential shortcoming of this work is that we have neglected to model a number of factors that could impact detector 
performance in real imaging systems.  For example, energy integrating detectors exhibit increased sensitivity to 
electronic read-out noise and dark current when compared against photon counting detectors, elevating NPSEI and 
degrading DQEEI.  In addition, in a phosphor-based detector, DQEEI may be reduced due to stochastic variation in the 
number of optical quanta and in the number of photoelectrons generated for each incident x-ray, as well as imperfect 
absorption efficiency by the scintillator and the a-Si pixel layer.21  The OTF, NPS, and DQE calculations can also be 
affected by differing x-ray interactions at each depth of the phosphor.  In the model detector section of this work, we 
have observed that if the entire pixel is sensitive to x-rays, DQEEI(0) is unity regardless of the blurring of the x-ray 
converter (Figure 4A).  However, based on classic observations by Swank and Lubberts, the presence of different x-ray 
interactions at each depth of a phosphor may lower DQEEI(0) from unity.22,23  We also have not modeled the effect of the 
x-ray focal spot size or x-ray parallax which degrades high-frequency information present in the incident x-ray signal.  
As a final note, we point out that this work has not modeled anti-coincidence logic, designed to suppress cross-talk in a 
photon counter if multiple pixels fire simultaneously due to a single x-ray input.  Since all of these factors have 
considerable variation over different imaging systems, we find it appropriate to omit an analysis of each one from this 
work.  In experimental practice, they should be modeled on a case-by-case basis for each detector under consideration. 
 
In the model detector section of this work, it was assumed that each pixel is homogeneously sensitive to the detection of 
x-rays over the length al.  Under this assumption, we have neglected to consider the lateral diffusion of photoelectrons to 
neighboring wells within the a-Si pixel layer.  If one were to incorporate this effect rigorously into the analysis, the rect 
function of the PSF convolution in Eq. (24) should be replaced with a trapezoid based on the research of Schumann and 
Lomheim.24  Schumann and Lomheim have shown that lateral diffusion of photoelectrons is considerable when dealing 
with long wavelengths (> 800 nm) of infrared light incident on the a-Si pixel layer.  However, they have demonstrated 
that lateral diffusion is negligible when shorter wavelengths of visible light land on the pixel layer, such as the 
wavelengths generated by CsI:Tl in typical imaging systems.  It is for this reason that we have omitted Schumann and 
Lomheim’s correction in the model detector section of this work.  The wavelength dependence of their correction arises 
from the fact that silicon is a poor absorber of long wavelengths and a strong absorber of short wavelengths; significant 
lateral diffusion can only occur in the presence of weak absorption.25 

5. CONCLUSION 
 
This work develops models of OTF, NPS, and DQE for two types of digital x-ray detectors, energy integrating and 
photon counting.  From first principles, we have shown that although two detector types possessing the same PSF have 
the same OTF, a frequency-independent NPS difference exists such that NPSPC ≥ NPSEI.  As a result of this property, it 
follows that DQEPC ≤ DQEEI.  We anticipate that the fundamental techniques for calculating OTF, NPS, and DQE for 
both detector types, as established by this work, can be extended into many future applications.  These applications range 
from a study of detector edge effects on the NPS difference to an analysis of the impact of projection angle and PSF 
asymmetry on that difference.  In addition, we project that the analytical OTF, NPS, and DQE expressions of this work 
can be readily adapted to Monte Carlo simulations modeling detectors whose PSFs cannot be written in closed form due 
to scatter and glare effects or due to complicated dependence on x-ray beam energy. 
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