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Purpose: One of the benefits of photon counting �PC� detectors over energy integrating �EI�
detectors is the absence of many additive noise sources, such as electronic noise and secondary
quantum noise. The purpose of this work is to demonstrate that thresholding voltage gains to detect
individual x rays actually generates an unexpected source of white noise in photon counters.
Methods: To distinguish the two detector types, their point spread function �PSF� is interpreted
differently. The PSF of the energy integrating detector is treated as a weighting function for count-
ing x rays, while the PSF of the photon counting detector is interpreted as a probability. Although
this model ignores some subtleties of real imaging systems, such as scatter and the energy-
dependent amplification of secondary quanta in indirect-converting detectors, it is useful for dem-
onstrating fundamental differences between the two detector types. From first principles, the optical
transfer function �OTF� is calculated as the continuous Fourier transform of the PSF, the noise
power spectra �NPS� is determined by the discrete space Fourier transform �DSFT� of the autoco-
variance of signal intensity, and the detective quantum efficiency �DQE� is found from combined
knowledge of the OTF and NPS. To illustrate the calculation of the transfer functions, the PSF is
modeled as the convolution of a Gaussian with the product of rect functions. The Gaussian reflects
the blurring of the x-ray converter, while the rect functions model the sampling of the detector.
Results: The transfer functions are first calculated assuming outside noise sources such as elec-
tronic noise and secondary quantum noise are negligible. It is demonstrated that while OTF is the
same for two detector types possessing an equivalent PSF, a frequency-independent �i.e., “white”�
difference in their NPS exists such that NPSPC�NPSEI and hence DQEPC�DQEEI. The necessary
and sufficient condition for equality is that the PSF is a binary function given as zero or unity
everywhere. In analyzing the model detector with Gaussian blurring, the difference in NPS and
DQE between the two detector types is found to increase with the blurring of the x-ray converter.
Ultimately, the expression for the additive white noise of the photon counter is compared against
the expression for electronic noise and secondary quantum noise in an energy integrator. Thus, a
method is provided to determine the average secondary quanta that the energy integrator must
produce for each x ray to have superior DQE to a photon counter with the same PSF.
Conclusions: This article develops analytical models of OTF, NPS, and DQE for energy integrating
and photon counting digital x-ray detectors. While many subtleties of real imaging systems have
not been modeled, this work is illustrative in demonstrating an additive source of white noise in
photon counting detectors which has not yet been described in the literature. One benefit of this
analysis is a framework for determining the average secondary quanta that an energy integrating
detector must produce for each x ray to have superior DQE to competing photon counting
technology. © 2010 American Association of Physicists in Medicine. �DOI: 10.1118/1.3505014�

Key words: energy integrating detector, photon counting detector, optical transfer function �OTF�,
noise power spectra �NPS�, detective quantum efficiency �DQE�

I. INTRODUCTION

At a broad level, digital x-ray detectors can be divided into
two main types: Energy integrating �EI� and photon counting
�PC�. An energy integrator detects the total energy deposition
of the incident x rays, while a photon counter detects the
presence of individual x-ray quanta as discrete events. In this
work, we propose the existence of a fundamental difference
in the noise properties of the two detector types. As a pre-
requisite to that analysis, it is helpful to review the physics of
the two detector types.

A typical energy integrating detector is an indirect con-
verter consisting of a scintillator placed in optical contact
with a large area plate of amorphous silicon �a-Si�. The
x rays excite electrons in the scintillator from the valence
band to the conduction band. In returning to the valence
band, some electrons transition through an intermediate state
created by activator impurities and optical photons are emit-
ted in proportion to the incident x-ray energy.1 Common
scintillators include gadolinium oxysulfide doped with ter-
bium �Gd2O2S:Tb�; a turbid granular phosphor in which vis-
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ible light spreads by optical scatter; and cesium iodide doped
with thallium �CsI:Tl�, a structured phosphor in which
needlelike crystals approximately 10 �m in diameter chan-
nel the light down to the a-Si plate by total internal reflec-
tion. Although structured phosphors have the drawback of
being more expensive to produce, they have the advantage of
improved spatial resolution, as they minimize the lateral
spread of visible light.1,2 Ultimately, the visible light pro-
duced by the scintillator is absorbed by light-sensitive pho-
todiodes arranged in a rectangular array within a-Si and is
re-emitted as electrons via the photoelectric effect.3–5 The
current established by the flow of photoelectrons in the pho-
todiode of each pixel provides the input for an integrating
circuit such as the one illustrated schematically in Fig. 1. The
circuit sums the current produced by each x ray �Fig. 2�a��
and integrates the net current over time to increase the charge
and hence voltage on a storage capacitor �Fig. 2�b��. The
output signal is then determined by the maximum potential
difference �Vmax� across the capacitor. Although Figs. 1 and 2
are simplified by not taking into account the complex cas-
cade of Compton x-ray interactions within the detector or the
different energies of photoelectrons produced by K, L, and M
fluorescence,6–9 they illustrate the concept that the readout
voltage per pixel is essentially proportional to the sum of the
energies of the incident x rays.

Outside of phosphor-based detectors, an additional ex-
ample of an energy integrating detector is an amorphous se-
lenium �a-Se� photoconductor operated in drift mode. This
energy integrating detector is said to be a direct converter, as
the x-ray signal generates an image without intermediate
conversion of x rays to visible light. In such a detector, an
absorbed x ray ionizes a Se atom located within the thickness
of the a-Se semiconductor and creates an electron-hole pair.
As a result of an electric field applied normal to the photo-
conductor surface, the electron and hole migrate in a nearly
perfect orthogonal path to the two different ends of the de-
tector and an image is formed.1 A defining characteristic of
drift mode is that the electric field is small enough so that the
electron moving along the field lines does not have sufficient
kinetic energy between collisions to ionize additional Se at-
oms and hence to create an avalanche formation of electrons
and holes. Photoconducting detectors operated in drift mode

have superior spatial resolution to phosphor-based detectors.
In fact, to a first approximation, the modulation transfer
function �MTF� of a-Se operated in drift mode is essentially
unity for all spatial frequencies.10 Although photoconductors
and phosphor-based detectors differ in terms of their spatial
resolution, they are similar in that they both present the ad-
vantage of a large sensitive area and that they both possess
the drawbacks of limited dynamic range and sensitivity to
dark current and electronic read-out noise.11

To overcome the drawbacks associated with energy inte-
grating detectors, photon counting detectors have been de-
veloped. One common photon counter used in mammogra-
phy, for example, consists of many thin silicon strip detectors
with their long axis parallel to the x-ray beam. This orienta-
tion increases the path length of absorption and hence quan-
tum efficiency, which often exceeds 90%.12–14 X-ray photons
incident on the detector interact with silicon atoms via the
photoelectric or Compton effect. Since 3.6 eV is required to
generate a single electron-hole pair, thousands of electron-
hole pairs are created per x ray. A bias voltage applied across
the detector generates an electric field which causes the

FIG. 1. A schematic diagram of the electrical circuit for processing current
in the photodiode of an energy integrating detector is shown.

FIG. 2. �a� The energy integrating circuit of Fig. 1 sums the current from
each individual x ray and �b� integrates the net current over time to increase
the charge and hence voltage across a storage capacitor. The output voltage
per pixel is determined by the maximum potential difference �Vmax� across
the capacitor. The two subplots �a� and �b� are matched to their respective
points in the circuit of Fig. 1.
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electron-hole pairs to migrate toward opposite ends of the
detector. Signal is then transferred from an aluminum strip to
a preamplifier and shaper through wire bonds and the voltage
gain is compared against the threshold established by the
potentiometer of a circuit such as the one shown in Fig. 3.
Voltage gains exceeding the threshold are counted as repre-
sentative of a single x-ray photon �Fig. 4�a�� and the total
signal per pixel is found by summing these counts �Fig.
4�b��. Since each x ray generates approximately 5000 elec-
trons and since the RMS noise is approximately 200 elec-
trons, the threshold might typically be set to 2000
electrons.14 A key advantage of counting individual x-ray
quanta over accumulating total charge is that the background
noise can be completely removed from the image. In addi-
tion, because the height of the voltage gain before threshold-
ing is proportional to the energy of the incident x ray, another
advantage of photon counting is that thresholds can be ad-
justed to achieve energy discrimination in a polyenergetic
beam.15–18 This information can be used to remove anatomi-
cal noise, quantify contrast uptake over a set of voxels, or
perform material decomposition. Additional benefits of pho-
ton counting detectors include high absorption efficiency,
virtually no electronic noise power or dark current rate, un-
limited dynamic range, fast readout, and a slit geometry that
efficiently eliminates scatter.19

In addition to silicon strip detectors, there has been con-
siderable interest in gaseous detectors as alternative forms of
photon counters. In these detectors, each x ray generates a
cascade of ionizations of gas atoms and voltage gains ex-
ceeding a threshold are counted as representative of one
x ray. Since x rays in the medical imaging energy range
interact with the gas primarily by the photoelectric effect,
which increases in prevalence with the atomic number Z of
the gas, high Z inert gases such as krypton �Kr� and xenon
�Xe� are commonly used in these detectors. To increase ab-
sorption efficiency further, the gases are typically placed un-
der high pressure. Finally, to smooth avalanche amplifica-
tion, which is exponential with the applied electric field, a
quencher gas such as carbon dioxide �CO2� is added to the
mixture.20

One important area of distinction between energy inte-
grating and photon counting detectors, regardless of the spe-
cific form of either detector type, is in the weighting of the

information carried by individual x rays in a polyenergetic
beam. Energy integrating detectors give the output signal of
high-energy photons more weight than low-energy photons,
while photon counting detectors give the output signals equal
contribution. As a direct result of this distinction, Tapiovaara
and Wagner21 have shown that a difference in detective
quantum efficiency �DQE� arises between the two detector
types when they are exposed to polyenergetic x-ray beams.
Assuming screen film imaging systems, DQE is calculated
for both detector types from the expression

DQE = A
���N1�E� − N2�E����E���E�dE�2

��N1�E� + N2�E����E��2�E�dE
. �1�

Following the notation of the authors, Ni�E� is the photon
fluence spectra for energy E either in the absence of signal
�i=1� or presence of signal �i=2�, ��E� is the fraction of
absorbed x-ray quanta, ��E� is the output response of the
detector for each incident x ray, and A is the detector area
which is taken to be large compared against the width of the
point spread function �PSF�. Equation �1� assumes that the
incident photons of energy E are Poisson-distributed random

FIG. 4. In the photon counting circuit of Fig. 3, �a� the voltage gains ex-
ceeding the threshold established by the potentiometer are counted as rep-
resentative of one x ray and �b� the total signal per pixel is found by sum-
ming these counts. The two subplots �a� and �b� are matched to their
respective points in the circuit of Fig. 3.

FIG. 3. A schematic diagram of the electrical circuit for processing current
in the photodiode of a photon counting detector is shown.
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variables with mean ANi�E� and are detected by a binomial
process whose resultant distribution is Poisson with mean
ANi�E���E�. The calculation of DQE is different for the two
detector types in that the energy integrator has the output
response ��E�=E, while the photon counter exhibits the out-
put response ��E�=constant. Using these two substitutions
in Eq. �1�, Tapiovaara and Wagner investigated the degrada-
tion in DQE as a function of the x-ray tube kilovoltage �kV�,
assuming the presence of an ideal antiscatter grid, a noiseless
detector, and complete x-ray absorption. Raising the kV
served the purpose of increasing the width of the polyener-
getic x-ray spectra. The authors demonstrated that while both
detector types have DQE degradation with increasing kV, the
degradation is more considerable as a function of kV for the
energy integrating detector than for the photon counting de-
tector. Furthermore, for any fixed kV, the DQE difference
between the two detector types is much more pronounced in
imaging bone and iodine than in imaging soft tissue.21

Tapiovaara and Wagner do not predict a DQE difference
between the two detector types when they are both exposed
to monoenergetic x rays. However, since their work is lim-
ited to screen film systems, it is an open question whether a
DQE difference exists in the monoenergetic case if the two
detector types are digital. For this reason, the purpose of this
work is to propose analytical models of the optical transfer
function �OTF�, noise power spectra �NPS�, and DQE for
digital energy integrating and photon counting detectors in
the case of monoenergetic x rays. The proposed models dem-
onstrate an intrinsic difference in imaging performance be-
tween the two detector types which has not yet been ex-
plored in the literature.

This work begins by deriving analytical expressions for
the signal intensity autocovariance of the two detector types
from first principles and shows that these expressions are
different for energy integrating and photon counting digital
x-ray detectors. The autocovariance analysis facilitates the
development of a key theorem regarding the NPS difference
between the two detector types. An important corollary of
this theorem is then derived as it relates to OTF and DQE. To
illustrate OTF, NPS, and DQE calculations for the two de-
tector types, a PSF modeling the blurring of the x-ray con-
verter as a Gaussian is analyzed.

II. ENERGY INTEGRATING AUTOCOVARIANCE

Suppose that a two-dimensional �2D� rectangular energy
integrating digital x-ray detector of dimensions Lx�Ly is
centered on the origin and evenly partitioned into rectangular
pixels of dimensions lx� ly placed side-by-side. The center
of each pixel may be defined as position Xn, where n is a
doublet with integer components nx and ny used for unique
labeling of the pixels in the lattice. For the purpose of this
work, we will assume that each x ray landing on the detector
at position x is counted by each pixel centered at Xn with a
weight w�x−Xn� ranging from zero to unity. The weighting
function for counting x rays is taken to be dependent only on
the displacement of each x ray from the pixel center, that is,
it exhibits invariance under translations across pixels. Under

these assumptions, the total signal intensity In recorded by
each pixel centered at Xn is found by simply summing the
weights for counting each incident x ray

In = �
m=1

N

w�xm − Xn� , �2�

where xm is the position at which the mth x-ray photon is
incident on the detector and where N is the total number of
x rays landing on the detector.

In stipulating that the detector’s response to each x ray is
a weighting function determined only by the position of the
photon relative to the pixel centers, our model neglects a few
factors which we point out here for completeness. For ex-
ample, the model neglects detector lag and ghosting,22–24

which alter the effective number of x rays incident on the
detector from N in Eq. �2� to a different value. In addition,
the model does not incorporate the possibility for scatter
within the detector.25–29 Because scatter is a stochastic pro-
cess, a more complete description of the weighting function
would include probabilities of x-ray interactions within the
detector using Monte Carlo simulations.30,31 Finally, the
model does not take into account the energy-dependent am-
plification of secondary quanta in an indirect-converting
detector1 or the energy-dependent response of photodiodes in
converting optical photons to electrons. Although our model
neglects to consider all the properties of real imaging sys-
tems, it will be sufficient to describe a fundamental differ-
ence between energy integrating and photon counting digital
x-ray detectors.

In an ideal energy integrating detector, the weighting
function w�x−Xn� should be exactly unity if the x ray lands
within the pixel area and zero if the x ray lands elsewhere, so
that there is no cross-talk between pixels. In a blurring de-
tector, however, an x ray landing outside of the nth pixel
may indeed cause that pixel to record a count. Assuming that
the noise is stationary, the spatial correlation of pixels can be
expressed in terms of the signal intensity autocovariance
function

Knn� = ��In − Īn��In� − Īn��� �3�

=�InIn�� − ĪnĪn�. �4�

In the case of nonstationary noise, a more general formula-
tion of pixel correlation would make reference to a covari-
ance function. However, a study of nonstationary noise
would merit a separate investigation, as it is less readily
adapted to Fourier theory.32 Defining the x-ray fluence as

� =
N

LxLy
�5�

and defining the intensity transfer characteristic of the nth
pixel as
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Gn = 	
−Ly/2

Ly/2 	
−Lx/2

Lx/2

w�x − Xn�dxdy , �6�

it follows from Eqs. �2�–�6� that the signal intensity autoco-
variance is

��In − Īn��In� − Īn���N

=
��
m=1

N

w�xm − Xn��� �
m�=1

N

w�xm� − Xn���
− �2GnGn� �7�

= �
m=1

N

�
m�=1

N

�w�xm − Xn�w�xm� − Xn��� − �2GnGn�, �8�

where the linearity of the expectation operation permits the
transition from Eq. �7� to Eq. �8�. On the left-hand side of
Eq. �7�, the subscript N is applied to emphasize that the
number of x rays landing on the detector is precisely known.
This condition will be removed shortly. In the double sum of
Eq. �8�, the N terms for which m=m� and the N2−N terms
for which m�m� can now be evaluated separately, giving

��In − Īn��In� − Īn���N

= N�w�xm − Xn�w�xm − Xn���

+ �N2 − N��w�xm − Xn���w�xm� − Xn��� − �2GnGn�.

�9�

The second term of the expansion in Eq. �9� incorporates the
fact that the quantities w�xm−Xn� and w�xm�−Xn�� are inde-
pendent provided m�m�. Noting that

�w�xm − Xn���w�xm� − Xn���

= 	
−Ly/2

Ly/2 	
−Lx/2

Lx/2 dxdy

LxLy
w�x − Xn�

�	
−Ly/2

Ly/2 	
−Lx/2

Lx/2 dx�dy�

LxLy
w�x� − Xn��

=
GnGn�

Lx
2Ly

2 , �10�

one finds

��In − Īn��In� − Īn���N

= N�w�xm − Xn�w�xm − Xn��� −
�GnGn�

LxLy
. �11�

The second term in Eq. �11� is negligible in the limit of an
infinitely large detector �Lx ,Ly→��.

In order to generalize Eq. �11� to incorporate the possibil-
ity that the number of x rays landing on the entire detector is
not uniform from one experiment to the next but instead
exhibits temporal variation, one may assume that N is a

Poisson-distributed random variable. To compute the signal
intensity autocovariance in this case, begin by noting that

�InIn�� − ĪnĪn� = ���In − Īn + Īn��In� − Īn� + Īn���N� − ĪnĪn�.

�12�

The nested brackets emphasize that one can first average for
fixed values of N and then average over the varying numbers
of incident x-ray quanta. Expanding the terms gives

�InIn�� − ĪnĪn� = ���In − Īn��In� − Īn���N� + ���In − Īn�Īn��N�

+ ��ĪnIn��N� − ĪnĪn�. �13�

Since

�In − Īn�N = 0, �14�

one sees that the second term of the expansion in Eq. �13�
vanishes. The third and fourth terms combine as

��ĪnIn��N� − ĪnĪn� =
GnGn�

Lx
2Ly

2 ��N2� − �N�2� . �15�

The assumption that the variance in the number of x rays is
equal to the mean number of x rays, as would be the case for
Poisson statistics,33 can be introduced into Eq. �15� so that
Eq. �13� can be simplified as

�InIn�� − ĪnĪn� = ���In − Īn��In� − Īn���N� +
�̄GnGn�

LxLy
. �16�

Combining Eq. �16� with Eq. �11� yields the final expression
for the signal intensity autocovariance of an energy integrat-
ing detector

Knn� = N̄�w�xm − Xn�w�xm − Xn��� �17�

=�̄	
−Ly/2

Ly/2 	
−Lx/2

Lx/2

w�x − Xn�w�x − Xn��dxdy , �18�

where �̄ is given by Eq. �5� with the exchange of N for N̄.

III. PHOTON COUNTING AUTOCOVARIANCE

Suppose now that the output of each pixel in detecting an
x ray landing at position x is binary �i.e., either zero or
unity�, as would be the case for a photon counter. Conse-
quently, instead of being detected by the nth pixel based on a
weight ranging from zero to unity, each x ray is either
counted as unity with probability p�x−Xn� or counted as
zero with probability 1− p�x−Xn�. For the purpose of this
work, we will assume that p�x−Xn� is mathematically
equivalent to w�x−Xn�, although its interpretation is differ-
ent. Denoting Cn as the total counts of the nth pixel, similar
logic up to Eq. �11� holds so that the signal intensity autoco-
variance can be calculated as
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��Cn − C̄n��Cn� − C̄n���N = N�Qn�xm�Qn��xm�� −
�GnGn�

LxLy
,

�19�

where Gn is the intensity transfer characteristic given by
Eq. �6� with the exchange of w�x−Xn� for p�x−Xn� and

where the quantity Qn�xm� is defined to be unity if the mth
x ray is counted by the nth pixel and zero otherwise. Unlike
the energy integrating detector, one must separately consider
the cases n�n� and n=n� in order to calculate the signal
intensity autocovariance of Eq. �19�. Beginning with n�n�,
one observes that

�Qn�xm�Qn��xm��

= 	
−Ly/2

Ly/2 	
−Lx/2

Lx/2 dxdy

LxLy
p�x − Xn�p�x − Xn���1��1� + 	

−Ly/2

Ly/2 	
−Lx/2

Lx/2 dxdy

LxLy
p�x − Xn��1 − p�x − Xn����1��0�

+ 	
−Ly/2

Ly/2 	
−Lx/2

Lx/2 dxdy

LxLy
�1 − p�x − Xn��p�x − Xn���0��1� + 	

−Ly/2

Ly/2 	
−Lx/2

Lx/2 dxdy

LxLy
�1 − p�x − Xn���1 − p�x − Xn����0��0� , �20�

where the four terms represent the four possible outcomes of
the x ray being counted by two distinct pixels. Conveniently,
the final three terms vanish. However, the case n=n� is dif-
ferent,

�Qn
2�xm�� = 	

−Ly/2

Ly/2 	
−Lx/2

Lx/2 dxdy

LxLy
p�x − Xn��12�

+ 	
−Ly/2

Ly/2 	
−Lx/2

Lx/2 dxdy

LxLy
�1 − p�x − Xn���02� , �21�

for there are only two possible outcomes of the x ray being
counted by a single pixel. Again, only the first term is non-
zero. Combining Eqs. �19�–�21� with Eq. �16� to incorporate
the assumption that N is a Poisson-distributed random vari-
able, one can write in summary that the signal intensity au-
tocovariance of the photon counting detector is

Knn� = ��̄Gn n = n�

�̄	
−Ly/2

Ly/2 	
−Lx/2

Lx/2

p�x − Xn�p�x − Xn��dxdy n � n�� .

�22�

One sees that covariance has the same form for both detector
types, but variance does not.

IV. COMPARATIVE ANALYSIS OF THE TWO
DETECTOR TYPES

With expressions for the signal intensity autocovariance
of the two detector types established, local NPS or Wiener
spectra W��� for pixel n� can now be calculated as the dis-
crete space Fourier transform �DSFT� of the signal intensity
autocovariance34,35

W��� = lxly�
ny

�
nx

Knn�e
−2	i��nx−nx��lx
x+�ny−ny��ly
y�, �23�

where i denotes the imaginary unit �−1 and where 
x and 
y

denote spatial frequency in the x and y directions, respec-
tively. This formulation of NPS implicitly makes the as-
sumption that x rays are converted to photoelectrons in the
detector elements in a single step. As a result, it ignores noise
due to stochastic variation in the number of optical photons
produced for each incident x ray in an indirect-converting
energy integrating detector. Stochastic amplification adds
white noise36 to the baseline NPS established by Eq. �23� and
will be addressed separately in Sec. VII.

Assuming that the two detector types have the same point
spread function P�x−Xn�, which is equivalent to w�x−Xn�
and p�x−Xn�, a frequency-independent difference in their
NPS may arise from the differing variance

WPC − WEI

= lxly�Kn�n�
PC − Kn�n�

EI � �24�

=�̄lxly	
−Ly/2

Ly/2 	
−Lx/2

Lx/2

�P�x − Xn�� − P2�x − Xn���dxdy ,

�25�

where Kn�n� denotes the variance of either the photon count-
ing detector or energy integrating detector based on the su-
perscripts. A key theorem can be written about the NPS dif-
ference established by Eq. �25�. Namely, the difference
vanishes if and only if P�x−Xn��= P2�x−Xn��. This property
is uniquely satisfied by a binary PSF that is either zero
or unity everywhere along the detector. Otherwise, a
frequency-independent difference in NPS exists such that
NPSPC�NPSEI. This result assumes a piecewise continuous
PSF appropriately bounded between zero and unity.

Unlike NPS, the optical transfer function T��� is equiva-
lent for the two detector types provided that they possess the
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same PSF and is calculated as the Fourier transform of the
PSF. This property arises immediately from linear response
theory for digital detectors,37 since the expected output Dn at
Xn in response to an input x-ray flux f is given for either
detector type as

Dn = 	
−�

� 	
−�

�

P�x� − Xn�f�x��dx�dy�. �26�

To verify that the expected output in response to a single
x ray landing at position x is P�x−Xn�, as we have assumed
repeatedly throughout this work for both detector types, one
simply inserts the Dirac delta function ��x�−x� as the input
flux f in Eq. �26�. Now, with local DQE calculated for both
detector types as

DQE��� =
�̄�T����2

W���
, �27�

it follows that one important corollary of the comparative
NPS theorem and the observation that the two detector types
possess the same OTF is that DQE may differ between the
two detector types in the case where NPSPC�NPSEI, so that
DQEPCDQEEI. Unlike the NPS difference between the two
detector types, the DQE difference is indeed spatial fre-
quency dependent.

V. IDENTITIES FOR CALCULATING
AUTOCOVARIANCE AND NPS IN LARGE
DETECTORS

In the special case of an infinitely large detector
�Lx ,Ly→��, one can show that NPSEI may be computed
directly from knowledge of the OTF. To prove this claim,
consider a pixel centered at the origin to be surrounded by
infinitely many neighbors on all sides. In a physical applica-
tion, this geometry would be approximately applicable to a
pixel positioned at or near the center of a large detector,
whose pixel dimensions are small relative to the overall size
of the detector. From Eq. �18�, the energy integrating signal
intensity autocovariance in multiples of pixel spacing
nxlx�nyly is given by the expression

Kn,0
EI = �̄	

−�

� 	
−�

�

w�x,y�w�x − nxlx,y − nyly�dxdy , �28�

where 0 denotes the doublet �0, 0�, corresponding to the
location of the central pixel. From Parseval’s theorem,38

Eq. �28� can be rewritten as

Kn,0
EI = �̄	

−�

� 	
−�

�

�T��x,�y��2e−2	i�nxlx�x+nyly�y�d�xd�y , �29�

so that NPSEI is

WEI��� = lxly �
ny=−�

�

�
nx=−�

�

Kn,0
EI e−2	i�nxlx
x+nyly
y� �30�

=�̄lxly	
−�

� 	
−�

�

�T��x,�y��2

� �
ny=−�

�

�
nx=−�

�

e−2	i�nx��x+
x�lx+ny��y+
y�ly�d�xd�y .

�31�

Using standard properties concerning comb functions to sim-
plify the double summation in Eq. �31�, one finds

WEI��� = �̄ �
ky=−�

�

�
kx=−�

� 	
−�

� 	
−�

�

�T��x,�y��2

����x + 
x + kxlx
−1����y + 
y + kyly

−1�d�xd�y �32�

=�̄ �
ky=−�

�

�
kx=−�

�

�T�
x + kxlx
−1,
y + kyly

−1��2. �33�

Equation �33� provides a method for determining NPSEI di-
rectly from the OTF. This technique is useful in circum-
stances in which the OTF is known but in which it is difficult
to determine autocovariance directly. To calculate NPSPC,
one simply adds to Eq. �33� the frequency-independent NPS
difference given by Eq. �24� or Eq. �25�.

VI. RESULTS FOR MODEL DETECTORS

The OTF, NPS, and DQE calculations for the two detector
types are now illustrated for a PSF given as the convolution
of a Gaussian with the product of rect functions for a pixel
centered on the origin of an infinitely large detector. The
Gaussian models the blurring of the x-ray converter, while
the product of rect functions models the sampling of the
detector.

P�x,y� =
1

2	�2e−�x2+y2�/2�2
� rect� x

al
�rect� y

al
� �34�

=
1

4
�erf��2�2x + al�

4�
� − erf��2�2x − al�

4�
��

��erf��2�2y + al�
4�

� − erf��2�2y − al�
4�

�� . �35�

Following convention, the Gaussian has been normalized by
area and its standard deviation has been denoted �. In
Eq. �34�, the rect function is defined by the relation

rect�z� � �1 , �z� � 1/2
0 , �z� � 1/2� �36�

and in Eq. �35�, the error function is defined by the integral
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erf�z� �
2

�	
	

0

z

e−t2dt . �37�

Recent work by Freed et al.39 has verified that a Gaussian
provides a valid approximation for the blurring function of a
thick CsI:Tl scintillator irradiated at normal incidence. While
most photon counting detectors do not use a scintillator, the
choice of a Gaussian as the approximate blurring function of
the x-ray converter is expected to be relatively independent
of technology.

The PSF convolution of Eq. �34� assumes a square pixel
with sides of length lx= ly = l and a photosensitive area
al�al that is symmetric about the pixel center. The effect of
a translational shift in the sensitivity area on OTF, NPS, and
DQE is explored in Appendix A. It is straightforward to
show that the PSF of Eq. �34� is bounded above by unity, as
required for application of the comparative NPS theorem,
since

P�x,y� = 	
y−al/2

y+al/2 	
x−al/2

x+al/2 1

2	�2e−�x�2+y�2�/2�2
dx�dy� �38�

�	
−�

� 	
−�

� 1

2	�2e−�x�2+y�2�/2�2
dx�dy� = 1. �39�

Because the Gaussian itself is nonnegative, it follows from
Eq. �38� that the PSF is nonnegative, which is also necessary
for application of the comparative NPS theorem.

In Fig. 5, cross sections of the PSF surface are plotted
versus position for two polar angles of the position vector
��=0° and 45°�, assuming that the entire pixel area is sensi-
tive to x rays. Unless otherwise indicated, all figures also
make the assumption that a=1. Following convention, the
polar angle is defined as the angle of the position vector
relative to the x axis, so that the two cross sections are taken
along the x axis and the diagonal of the detector lattice, re-
spectively. Before smoothing by the Gaussian, each cross

section is a rect function which is unity over the length
l sec � and is zero elsewhere. Increasing the polar angle
from 0° to 45° thus increases the width of the plateau before
smoothing from l to 1.414l. Increasing the blurring param-
eter � increases the spread of the tails of the PSF and hence
increases the cross-talk between pixels.

In order to calculate the OTF associated with the PSF of
Eq. �34�, one may apply the convolution theorem38 to obtain

T��� = Ge−2	2�2�
x
2+
y

2� sinc�al
x�sinc�al
y� , �40�

where

sinc�z� �
sin�	z�

	z
�41�

and where G, the intensity transfer characteristic, is the sen-
sitive area of the pixel

G = a2l2. �42�

Normalizing the OTF to unity at �=0 and taking its modulus
gives the MTF

MTF��� = e−2	2�2�
x
2+
y

2��sinc�al
x�sinc�al
y�� . �43�

In Fig. 6, MTF is plotted versus frequency for two polar
angles of the frequency vector ��=0° and 45°�. Figure 6
shows that increasing � decreases MTF, thereby worsening
spatial resolution. In addition, Fig. 6 indicates that altering
the directionality of the frequency vector shifts the zeros of
the MTF. The zeros of the first subfigure, in which frequency
is measured along the x direction, occur at integer multiples
of l−1. By contrast, the zeros of the second subfigure, in
which frequency is measured along the diagonal of the de-
tector lattice, occur at integer multiples of 1.414l−1. Altering
the blurring of the x-ray converter has no effect on the zeros
of the MTF.

A comparative NPS analysis for the two detector types
can now be made. From Eqs. �33� and �40�, NPSEI is

FIG. 5. Cross sections of the PSF surface are plotted versus position for two polar angles of the position vector ��=0° and 45°� and four blurring parameters
���, assuming that the pixel is square with sides of length l and that the entire pixel is sensitive to the detection of x rays. The PSF is interpreted as a weighting
function for detecting x rays in an energy integrator and as a probability function for detecting x rays in a photon counter.
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WEI��� = �̄G2 �
ky=−�

�

�
kx=−�

�

e−4	2�2��
x + kxl−1�2+�
y + kyl−1�2�

�sinc2�a�l
x + kx��sinc2�a�l
y + ky�� . �44�

To determine NPSPC, one adds to Eq. �44� the NPS differ-

ence l2�K00
PC−K00

EI� given from Eq. �24�, where K00
PC is �̄G and

where K00
EI is calculated from Eq. �29� as

K00
EI = �̄G2	

−�

� 	
−�

�

e−4	2�2��x
2+�y

2� sinc2�al�x�sinc2�al�y�d�xd�y

�45�

=
�̄

	
�2��1 − e−a2l2/4�2

� − al�	 erf� al

2�
��2

. �46�

In Fig. 7, the variances of the two detector types are plotted
versus the blurring of the x-ray converter for multiple pixel
sensitivity areas. The three values of a investigated in the

figure �100%, 95%, and 90%� correspond to 100%, 90.25%,
and 81% sensitive areas, respectively. Figure 7 shows that
the variance of the photon counter is independent of the blur-
ring of the x-ray converter, while the variance of the energy
integrator is reduced with increased blurring, tending to zero
in the limit of infinite blurring. Figure 7 also indicates that
lowering the pixel sensitivity area reduces the variance. In
the limit of a perfectly resolving x-ray converter ��=0�, the
variances of the two detector types match.

In Fig. 8, plots of NPS versus frequency are shown for the
two detector types. The plots are terminated at the alias fre-
quency or the frequency beyond which the plots would begin
to slope upward and replicate. The alias frequency is 0.5l−1

with frequency measured along the x direction and is
0.707l−1 with frequency measured along the diagonal of the
detector lattice. At a fixed spatial frequency, Fig. 8 shows
that for both detector types, aliasing generates more noise
along the x direction than along the diagonal of the detector
lattice. Importantly, Fig. 8 also demonstrates that a photon
counter is noisier than an energy integrator with the same
blurring ���, except in the limit of a perfectly resolving x-ray
converter. In taking this limit, the two detector types possess
the same white NPS

lim
�→0

W��� = �̄G2 �
ky=−�

�

�
kx=−�

�

sinc2�a�l
x + kx��

�sinc2�a�l
y + ky�� �47�

=a2�̄l4. �48�

A mathematical justification for the transition from Eq. �47�
to Eq. �48� is provided in Appendix B.

To illustrate that the NPS difference between the two de-
tector types increases with the blurring of the x-ray con-
verter, the NPS difference is plotted versus � in Fig. 9. The

NPS difference plateaus to its maximum a2�̄l4 in the limit of
infinite blurring within the x-ray converter, as would be

FIG. 6. The MTF is plotted versus frequency at two polar angles of the frequency vector ��=0° and 45°�, assuming that the entire pixel is sensitive to the
detection of x rays.

FIG. 7. The variance of the two detector types is plotted versus the blurring
of the x-ray converter for three pixel sensitivity areas.
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found in a nonimaging system which simply detects the
number of incident x-ray quanta without distinguishing their
position along the detector. An additional property seen in
Fig. 9 is that decreasing the pixel sensitivity area reduces the
NPS difference.

Using Eq. �27� and the preceding NPS results, DQE is
plotted versus frequency in subplots a and b of Fig. 10. The
two subplots show that at a fixed spatial frequency in either
detector type, aliasing generates lower DQE along the x di-
rection than along the diagonal of the detector lattice. In
addition, subplots a and b demonstrate that DQEPC is inferior
to DQEEI, except in the limiting case of a perfectly resolving
x-ray converter. The DQEs of both detector types match in
taking this limit

lim
�→0

DQE��� = a2 · sinc2�al
x�sinc2�al
y� . �49�

Figure 10 also illustrates that the DQEs of the two detector
types have different dependence on the blurring of the x-ray
converter. While DQEEI increases with blurring, DQEPC for
the most part decreases with blurring; the exceptional case
for DQEPC is comparing �=0 and �=0.075l at high frequen-
cies measured along the diagonal of the detector lattice.

Unlike the difference in NPS between the two detector
types, the difference in DQE is indeed spatial frequency de-
pendent, as shown in Fig. 10�c�. Like the NPS difference, the
DQE difference increases with the blurring of the x-ray con-
verter. At all frequencies, there is a smaller DQE difference
along the x direction than along the diagonal of the detector
lattice due to aliasing.

In Fig. 10�d�, the dependence of DQE on the blurring
of the x-ray converter is studied in the special case �=0.
Figure 10�d� shows that DQE�0� is the same for the two
detector types in the limit of a perfectly resolving x-ray con-
verter and is equivalent to the percentage of the pixel area
that is sensitive to x rays. However, once the blurring of the
x-ray converter begins to increase from zero, the behavior of
DQE�0� is quite different for the two detector types.
DQEEI�0� is unity for all blurring profiles of the x-ray con-
verter if the entire pixel is sensitive to x rays and increases
with blurring from a2 to unity in the limit of a nonimaging
detector if only a portion of the pixel is sensitive to x rays.
By contrast, DQEPC�0� decreases with blurring for all sensi-
tive areas and in the limit of a nonimaging detector attains a
different horizontal asymptote.

lim
�→�

DQEPC�0� =
a2

1 + a2 . �50�

With a=100%, 95%, and 90% in Fig. 10�d�, the horizontal

FIG. 8. The NPS is plotted versus the frequency, assuming that the entire pixel is sensitive to the detection of x rays for �a� an energy integrator and �b� a
photon counter.

FIG. 9. The NPS difference between the two detector types is shown to
increase with the blurring of the x-ray converter for three pixel sensitivity
areas.
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asymptotes from Eq. �50� are 0.500, 0.474, and 0.448, re-
spectively.

VII. REVISITING THE ENERGY INTEGRATING
DETECTOR MODEL

To incorporate additional realism into the detector model-
ing, one can investigate outside noise sources which are
commonly found in phosphor-based energy integrating de-
tectors but which are not present in direct converting photon
counting detectors to a first approximation. These additional
noise sources include �1� stochastic variation in the number
of secondary quanta produced for each incident x ray �i.e.,
secondary quantum noise�36 and �2� electronic noise. Based
on the work of Albert and Maidment,37 the two noise sources
add frequency-independent terms to the baseline NPSEI de-
termined from Eq. �33�

WEI��� = �̄ �
ky=−�

�

�
kx=−�

�

�T�
x + kxl
−1,
y + kyl

−1��2 +
�̄G2

m
+ WE,

�51�

where m is the average number of secondary quanta pro-
duced for each incident x ray and WE is the electronic noise
power. In Eq. �51�, the number of secondary quanta pro-
duced for each incident x ray is taken to be a Poisson-
distributed random variable. The previous NPS results for
the energy integrating detector can be viewed as limiting
cases of Eq. �51� with infinitely many secondary quanta pro-
duced for each incident x ray and with the electronic noise
power set to zero.

According to the comparative NPS theorem, a photon
counter has white noise added to baseline NPSEI as given by
Eq. �25�, just as a phosphor-based energy integrator has
white noise added to baseline NPSEI as specified by Eq. �51�.
It is natural then to ask how the additive white noise sources

FIG. 10. The DQE is plotted versus the frequency, assuming that the entire pixel is sensitive to the detection of x rays for �a� an energy integrator and �b� a
photon counter. In �c�, the DQE difference between the two detector types is shown to be frequency dependent and to increase with the blurring of the x-ray
converter. Subplots �a�–�c� implicitly share a common legend. In �d�, DQE�0� is plotted versus the blurring of the x-ray converter for three pixel sensitivity
areas.
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of the two detector types compare. Equating the NPS of the
two detector types, we generate Fig. 11 showing the average
secondary quanta that must be produced for each incident
x ray in the energy integrating detector in order to generate
equivalent NPS and thus DQE with a photon counting detec-
tor having the same PSF. The figure assumes 1000 x rays per
pixel and electronic noise levels of WE=0, 42G, and 82G,
corresponding to zero, four, and eight x rays per pixel. The
plot possesses vertical asymptotes at the blurring parameters
�=0, �=0.007 12l, and �=0.0288l, corresponding to elec-
tronic noise levels of zero, four, and eight x rays per pixel,
respectively. If the blurring parameter is less than the value
specified by the vertical asymptote, the electronic noise
power exceeds the NPS difference given by Eq. �25� and the
energy integrator has inferior DQE to a photon counter with
the same PSF regardless of the average secondary quanta
produced for each incident x ray. However, if the blurring
parameter exceeds the value specified by the vertical asymp-
tote, the energy integrator has superior DQE to a photon
counter with the same PSF, provided that the average sec-
ondary quanta produced for each x ray exceeds the values
specified by the curves in Fig. 11. For blurring parameters
��� exceeding 0.05l, as would be typical for many phosphor-
based imaging systems, approximately 10–20 visible quanta
must be produced on average for each incident x ray in order
to generate superior DQE to a photon counter with the same
PSF.

Since optical photons have an energy of approximately
2–3 eV, which is small compared against the energy of the
incident x rays, most energy integrating detectors can pro-
duce on average between 400 and 1000 optical photons per
keV of an x-ray photon.1 As a result, Fig. 11 would seem to
imply that over many typical values of the blurring of the
x-ray converter, energy integrating detectors produce more
than enough average secondary quanta to achieve superior

DQE to a photon counting detector with the same PSF. How-
ever, since so many factors characteristic of real imaging
systems were not modeled in generating Fig. 11, ranging
from polyenergetic x rays to scatter within the detector, the
reader should take caution against concluding that an energy
integrating detector has superior DQE to a photon counter
over these blurring parameters. A more thorough description
of the limitations of this work and directions for future mod-
eling are given in Sec. VIII.

VIII. DISCUSSION

This work develops analytical models of OTF, NPS, and
DQE for two types of digital x-ray detectors: Energy inte-
grating and photon counting. To distinguish the two detector
types, the PSF of the energy integrating detector is treated as
a weighting function for counting x rays, while the PSF of
the photon counting detector is interpreted as a probability.
Under these assumptions, this paper demonstrates that while
OTF is equivalent for two detector types possessing the same
PSF, NPS and DQE are not. More specifically, it is shown
that as a result of differing variance between the two detector
types, a frequency-independent difference in NPS exists such
that NPSPC�NPSEI. The necessary and sufficient condition
for equality is that the PSF is a binary function given as zero
or unity everywhere along the detector. The implication of
this finding is that thresholding output voltage gains in a
photon counter, in order to detect individual x rays, generates
additive white noise to baseline NPS. From the NPS inequal-
ity and the observation that two detector types with the same
PSF possess the same OTF, it immediately follows that
DQEPC�DQEEI.

The OTF, NPS, and DQE calculations for the two detector
types have been illustrated for a model detector whose PSF
is the convolution of a Gaussian with the product of rect
functions. The Gaussian models the blurring of the x-ray
converter, while the product of rect functions models the
sampling of the detector. Using this model detector, we have
shown that the NPS and DQE difference between the two
detector types increases with the blurring of the x-ray con-
verter. In addition, if secondary quantum noise and electronic
noise are present in the energy integrator, we determine the
average secondary quanta that the energy integrator must
produce for each x ray to have superior DQE to a photon
counter with the same PSF.

Many of the assumptions required for deriving the results
in this paper have been noted throughout this work. These
assumptions include a monoenergetic x-ray beam and the
absence of detector lag, ghosting, and scatter. Since these
factors will have considerable variation between imaging
systems, it is appropriate to omit an analysis of each one
from this work. In experimental practice, they should be
modeled on a case-by-case basis for each detector under con-
sideration.

A few additional assumptions and points for future inves-
tigation are now noted. One difficulty encountered in photon
counting detectors is charge sharing at the border of two
detector elements due to an x-ray photon landing at the bor-

FIG. 11. For equivalent NPS and DQE between the two detector types, the
average number of secondary quanta �m� that must be produced for each
incident x ray in the energy integrating detector is plotted versus the blurring
of the x-ray converter. The figure assumes 1000 x rays per pixel and elec-
tronic noise power �WE� of zero, four, and eight x rays per pixel.
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der. As a consequence, one photon may be counted as two
photons of low energy or may be not counted at all if the
energies in the two detector elements do not exceed the
threshold. A technique designed to suppress charge sharing
between detector elements is anticoincidence �AC� logic. If
two detector elements simultaneously fire, some imaging
systems record the signal as representative of a single high-
energy x ray in the detector element with the greater voltage
gain.17 Other systems use fitting techniques to determine the
most likely position of the x ray. Although AC logic has not
been modeled in this work, it merits a future investigation in
conjunction with the concepts of this paper.

In diagnostic applications with a high count rate, it is
possible for the detector to be too slow to distinguish con-
secutive x-ray photons and a pileup of charge within a de-
tector element may occur. As a result, multiple photons are
counted as a single photon and the absorption efficiency is
reduced. In silicon strip units with dead times of 200 ns, for
example, an efficiency loss of approximately 2.5% is
typical.18 Such an absorption loss was not modeled in the
current study.

In a phosphor-based energy integrating detector, DQEEI is
reduced if less than 100% of the incident x rays generate
visible light and less than 100% of the visible light is con-
verted to photoelectrons in the a-Si pixel layer.40 The absorp-
tion efficiency of both detector types was taken to be 100%
in this paper, but in future work, it should be expressed as a
parameter that is typically smaller for energy integrating de-
tectors than photon counting detectors. In addition, the OTF,
NPS, and DQE calculations can be affected by the possibility
of differing x-ray interactions at various depths of the phos-
phor. In Sec. VI of this work, we have observed that if the
entire pixel is sensitive to x rays, DQEEI�0� is unity regard-
less of the blurring of the x-ray converter �Fig. 10�d��. How-
ever, based on classic observations by Swank and Lubberts,
the presence of different x-ray interactions at each depth of a
phosphor may lower DQEEI�0� from unity.41–43 In modeling
the PSF of the detector, we have also not investigated the
effect of the x-ray focal spot size44 or non-normal x-ray
incidence.39,45–49

One final limitation of Sec. VI of this work is the stipu-
lation that each pixel is homogeneously sensitive to the de-
tection of x rays over the area al�al. Under this assumption,
we have neglected to consider the lateral diffusion of photo-
electrons to neighboring wells within the a-Si pixel layer. If
one were to incorporate this effect rigorously into the analy-
sis, the rect functions of the PSF convolution in Eq. �34�
should be replaced with trapezoids based on the research of
Schumann and Lomheim.50 Schumann and Lomheim have
shown that lateral diffusion of photoelectrons is considerable
when dealing with long wavelengths ��800 nm� of infrared
light incident on the a-Si pixel layer. However, they have
demonstrated that lateral diffusion is negligible when shorter
wavelengths of visible light land on the pixel layer, such as
the wavelengths generated by CsI:Tl in typical imaging sys-
tems. It is for this reason that we have omitted Schumann
and Lomheim’s correction in Sec. VI of this work. The

wavelength dependence of their correction arises from the
fact that silicon is a poor absorber of long wavelengths and a
strong absorber of short wavelengths; significant lateral dif-
fusion can only occur in the presence of weak absorption.51

IX. CONCLUSION

This work establishes fundamental techniques for calcu-
lating OTF, NPS, and DQE for energy integrating and photon
counting digital x-ray detectors. The central novelty of this
paper is a demonstration that photon counting detectors have
a white noise source analogous to electronic noise and sec-
ondary quantum noise in energy integrating detectors. As
noted in Sec. VIII, several aspects of real imaging systems
were not modeled to simplify the mathematics in deriving
this result. However, this general finding should continue to
apply when other subtleties of the detector are modeled.

One of the benefits of this work is that it generates a
platform for determining the average secondary quanta that
an energy integrating detector must produce for each incident
x ray to have superior DQE to a photon counter with the
same PSF. In order to investigate how polyenergetic spectra
alter the average secondary quanta that the energy integrating
detector must produce to have superior DQE to competing
photon counting technology, this work should ultimately be
integrated with the prior research of Tapiovaara and Wagner.
Since Tapiovaara and Wagner have shown that increasing the
broadness of the polyenergetic x-ray spectra generates DQE
benefits in photon counting detectors over energy integrating
detectors, we anticipate that the average secondary quanta
necessary for superior DQE in the energy integrator should
be greater than the values found in this paper for monoener-
getic x rays.
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APPENDIX A: THE EFFECT OF A SHIFT IN THE
PIXEL SENSITIVITY AREA

It is now shown that shifting the sensitivity area off the
pixel center does not affect MTF, NPS, or DQE calculations
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in an infinitely large detector. To derive this result, suppose
that the pixel sensitivity area is centered on �bxlx ,byly�, so
that

P�x,y� =
1

2	�2e−�x2+y2�/2�2
� rect� x − bxlx

axlx
�rect� y − byly

ayly
� .

�A1�

The pixel sensitivity lengths in the x and y directions are kept
as general as possible �axlx and ayly, respectively�. From the
Fourier shift theorem,38 the OTF is

T��� = e−2	i�bxlx
x+byly
y�

�Ge−2	2�2�
x
2+
y

2� sinc�axlx
x�sinc�ayly
y� , �A2�

where G is the pixel sensitivity area �axlx�ayly�. Since this
OTF differs from Eq. �40� only by the phase term, it is im-
mediately evident that the MTF, or the normalized modulus
of the OTF, is unaltered. Furthermore, because Eq. �33� for
calculating NPSEI is dependent only on the modulus of the
OTF and not on its phase, NPSEI is unaffected. Assuming
that the detector is infinitely large, the integral of Eq. �25�
giving the NPS difference is unchanged. With �T���� and
W��� unaffected for either detector type, DQE is unaltered as
well by Eq. �27�.

Shifting the pixel sensitivity area is indeed expected to
have an effect on NPS and DQE in certain applications in-
volving the presence of a detector edge, but this topic is
reserved for study in future work.

APPENDIX B: A PARSEVAL IDENTITY

We now provide a justification for the transition from
Eq. �47� to Eq. �48� by proving the following general iden-
tity:

�
k=−�

�

sinc2�a�l
 + k�� =
1

a
. �B1�

Equation �47� can be viewed as the product of two cases of
this identity. To prove Eq. �B1�, begin by defining the piece-
wise function h�x� as

h�x� = � 1

al
e−2	i
x, �x� � al/2

0, �x� � al/2
� . �B2�

The Fourier series38 of h�x� on the interval �−l /2, l /2�, with
l�al, is

h�x� = �
k=−�

�

cke
2	ikx/l, �B3�

where

ck =
1

l
	

−l/2

l/2

h�x�e−2	ikx/ldx �B4�

=
1

l
sinc�a�l
 + k�� . �B5�

From Parseval’s theorem

1

l
	

−l/2

l/2

�h�x��2dx = �
k=−�

�

�ck�2, �B6�

it follows that

1

al2 =
1

l2 �
k=−�

�

sinc2�a�l
 + k�� , �B7�

which yields Eq. �B1�.

APPENDIX C: GLOSSARY

� �N Expectation operator assuming exactly N x rays
incident on the detector

� � Expectation operator incorporating the possibil-
ity for Poisson variation in N

� Convolution operator
� Polar angle of either the 2D position vector or

the 2D spatial frequency vector
� Dirac delta function
��E� Fraction of x rays absorbed by the detector at

each energy E using the notation of Tapiovaara
and Wagner21

� Two-dimensional spatial frequency vector with
components 
x and 
y

�x ,�y Dummy variables with units of spatial frequency
used in intermediate integral calculations

� Standard deviation of a 2D Gaussian used for
the example blurring function of the x-ray con-
verter

� Fluence for exactly N x rays incident on the
detector

�̄ Mean fluence incorporating the possibility for
Poisson variation in N

��E� Output of a detector in response to a photon of
energy E using the notation of Tapiovaara and
Wagner.21 It is equivalent to E in an energy inte-
grating detector and to a constant in a photon
counting detector.

A Detector area under the notation of Tapiovaara
and Wagner21

AC Anticoincidence
a Percentage of pixel length in the x or y

direction that is sensitive to x-ray detection
�with subscripts, ax and ay denote differing sen-
sitivities in the x and y directions�

�bxlx ,byly� Coordinate of the center of the sensitivity area
of a pixel centered on the origin �Appendix A�
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Cn Total counts recorded by the nth pixel in a pho-
ton counting detector

C̄n
Mean counts recorded by the nth pixel in a pho-
ton counting detector

Dn Expected output of the nth pixel in response to
an x-ray flux f

DQE Detective quantum efficiency
DSFT Discrete space Fourier transform
E X-ray energy
EI Energy integrator
Gn Intensity transfer characteristic of the nth pixel
In Total signal intensity recorded by the nth pixel

in an energy integrating detector

Īn
Mean signal intensity recorded by the nth pixel
in an energy integrating detector

Knn� Signal intensity autocovariance of pixel n
against pixel n�

kV X-ray tube kilovoltage
lx , ly Dimensions of each rectangular pixel in the x

and y directions. If the x and y subscripts are
removed, it is assumed that the pixel is square
�lx= ly = l�.

Lx ,Ly Dimensions of the 2D rectangular detector in
the x and y directions

m Average number of secondary quanta produced
for each incident x ray in a phosphor-based en-
ergy integrating detector

MTF Modulation transfer function
n A doublet with coordinates �nx ,ny� used

for labeling pixels in a rectangular array
N Total number of x rays landing on the detector,

used in intermediate calculations before Poisson
variations are considered

N̄ Mean number of x rays landing on the detector
after accounting for Poisson variation

Ni�E� Photon fluence spectra at energy E in the ab-
sence of signal �i=1� or presence of signal
�i=2� under the notation of Tapiovaara and
Wagner21

NPS Noise power spectra
OTF Optical transfer function
p�x−Xn� Point spread function of the photon counting

detector, specifying the probability that an x ray
landing at position x is counted by the pixel
centered at Xn

P�x−Xn� Point spread function of the nth pixel of either
detector type.

PC Photon counter
PSF Point spread function
Qn�x� A quantity defined to be unity if an x ray land-

ing at position x is counted by the nth pixel and
zero otherwise in a photon counting detector

T��� Optical transfer function of either detector type,
given as the Fourier transform of the point
spread function

W��� Noise power or Wiener spectra of either detector
type, given as the discrete space Fourier trans-
form of the autocovariance of signal intensity

WE Electronic noise power

w�x−Xn� Point spread function of the energy integrating
detector, specifying the weight by which an
x ray landing at position x is counted by the
pixel centered at Xn

x Generalized position vector with components
�x ,y� specifying the coordinates of each x ray
landing on the detector

Xn Position vector of the center of the nth pixel in
a 2D rectangular detector lattice

Z Atomic number

a�Author to whom correspondence should be addressed. Electronic mail:
andrew.maidment@uphs.upenn.edu; Telephone: �1-215-746-8763; Fax:
�1-215-746-8764.

1J. A. Rowlands and J. Yorkston, “Flat panel detectors for digital radiog-
raphy,” in Handbook of Medical Imaging Volume 1 Physics and Psycho-
physics, edited by J. Beutel, H. L. Kundel, and R. L. Van Metter �SPIE,
Bellingham, 2000�, Chap. 4, pp. 223–328.

2E. Samei, “Image quality in two phosphor-based flat panel digital radio-
graphic detectors,” Med. Phys. 30�7�, 1747–1757 �2003�.

3T. Jing et al., “Amorphous silicon pixel layers with cesium iodide con-
verters for medical radiography,” IEEE Trans. Nucl. Sci. 41�4�, 903–909
�1994�.

4A. R. Cowen, S. M. Kengyelics, and A. G. Davies, “Solid-state, flat-
panel, digital radiography detectors and their physical imaging character-
istics,” Clin. Radiol. 63, 487–498 �2008�.

5V. V. Nagarkar, T. K. Gupta, S. R. Miller, Y. Klugerman, M. R. Squil-
lante, and G. Entine, “Structured CsI�Tl� scintillators for x-ray imaging
applications,” IEEE Trans. Nucl. Sci. 45�3�, 492–496 �1998�.

6G. Hajdok, J. Yao, J. J. Battista, and I. A. Cunningham, “Signal and noise
transfer properties of photoelectric interactions in diagnostic x-ray imag-
ing detectors,” Med. Phys. 33�10�, 3601–3620 �2006�.

7J. Yao and I. A. Cunningham, “Parallel cascades: New ways to describe
noise transfer in medical imaging systems,” Med. Phys. 28�10�, 2020–
2038 �2001�.

8M. Sattarivand and I. A. Cunningham, “Computational engine for devel-
opment of complex cascaded models of signal and noise in x-ray imaging
systems,” IEEE Trans. Med. Imaging 24�2�, 211–222 �2005�.

9I. A. Cunningham, M. S. Westmore, and A. Fenster, “A spatial-frequency
dependent quantum accounting diagram and detective quantum efficiency
model of signal and noise propagation in cascaded imaging systems,”
Med. Phys. 21�3�, 417–427 �1994�.

10D. L. Lee, L. K. Cheung, B. Rodricks, and G. F. Powell, “Improved
imaging performance of a 14�17 inch Direct Radiography �TM� system
using Se/TFT detector,” in Proceedings of the SPIE Conference on Phys-
ics of Medical Imaging, 1998 �SPIE, Bellingham, 1998�, pp. 14–23.

11P. M. Frallicciardi, J. Jakubek, D. Vavrik, and J. Dammer, “Comparison
of single-photon counting and charge-integrating detectors for x-ray high-
resolution imaging of small biological objects,” Nucl. Instrum. Methods
Phys. Res. A 607�1�, 221–222 �2009�.

12M. Åslund, B. Cederström, M. Lundqvist, and M. Danielsson, “Physical
characterization of a scanning photon counting digital mammography sys-
tem based on Si-strip detectors,” Med. Phys. 34�6�, 1918–1925 �2007�.

13M. Lundqvist, B. Cederström, V. Chmill, M. Danielsson, and B. Hase-
gawa, “Evaluation of a photon-counting x-ray imaging system,” IEEE
Trans. Nucl. Sci. 48�4�, 1530–1536 �2001�.

14M. Lundqvist, M. Danielsson, B. Cederström, V. Chmill, A. Chuntonov,
and M. Åslund, “Measurements on a full-field digital mammography sys-
tem with a photon counting crystalline silicon detector,” in Medical Im-
aging 2003: Physics of Medical Imaging, edited by M. J. Yaffe and L. E.
Antonuk �SPIE, Bellingham, 2003�, pp. 547–552.

15R. N. Cahn, B. Cederström, M. Danielsson, A. Hall, M. Lundqvist, and D.
Nygren, “Detective quantum efficiency dependence on x-ray energy
weighting in mammography,” Med. Phys. 26�12�, 2680–2683 �1999�.

16E. Fredenberg, M. Lundqvist, B. Cederström, M. Åslund, and M. Daniels-
son, “Energy resolution of a photon-counting silicon strip detector,” Nucl.
Instrum. Methods Phys. Res. A 613, 156–162 �2010�.

17E. Fredenberg, M. Lundqvist, M. Åslund, M. Hemmendorff, B. Ceder-
ström, and M. Danielsson, “A photon-counting detector for dual-energy
breast tomosynthesis,” in Medical Imaging 2009: Physics of Medical Im-

6494 R. J. Acciavatti and A. D. A. Maidment: Comparison of energy integrating and photon counting detectors 6494

Medical Physics, Vol. 37, No. 12, December 2010

http://dx.doi.org/10.1118/1.1578772
http://dx.doi.org/10.1109/23.322829
http://dx.doi.org/10.1016/j.crad.2007.10.014
http://dx.doi.org/10.1109/23.682433
http://dx.doi.org/10.1118/1.2336507
http://dx.doi.org/10.1118/1.1405842
http://dx.doi.org/10.1109/TMI.2004.839680
http://dx.doi.org/10.1118/1.597401
http://dx.doi.org/10.1016/j.nima.2009.03.158
http://dx.doi.org/10.1016/j.nima.2009.03.158
http://dx.doi.org/10.1118/1.2731032
http://dx.doi.org/10.1109/23.958392
http://dx.doi.org/10.1109/23.958392
http://dx.doi.org/10.1118/1.598807
http://dx.doi.org/10.1016/j.nima.2009.10.152
http://dx.doi.org/10.1016/j.nima.2009.10.152


aging, 2009, edited by E. Samei and J. Hsieh �SPIE, Bellingham, 2009�,
pp. 72581J-1–72581J-11.

18M. Åslund, E. Fredenberg, M. Telman, and M. Danielsson, “Detectors for
the future of x-ray imaging,” Radiat. Prot. Dosim. 139�1-3�, 327–333
�2010�.

19M. Åslund and B. Cederström, “Scatter rejection in multislit digital mam-
mography,” Med. Phys. 33�4�, 933–940 �2006�.

20L. Shekhtman, “Novel position-sensitive gaseous detectors for x-ray im-
aging,” Nucl. Instrum. Methods Phys. Res. A 522�1–2�, 85–92 �2004�.

21M. J. Tapiovaara and R. F. Wagner, “SNR and DQE analysis of broad
spectrum x-ray imaging,” Phys. Med. Biol. 30�6�, 519–529 �1985�.

22A. K. Bloomquist, M. J. Yaffe, G. E. Mawdsley, and D. M. Hunter, “Lag
and ghosting in a clinical flat-panel selenium digital mammography sys-
tem,” Med. Phys. 33�8�, 2998–3005 �2006�.

23J. H. Siewerdsen and D. A. Jaffray, “A ghost story: Spatio-temporal re-
sponse characteristics of an indirect-detection flat-panel imager,” Med.
Phys. 26�8�, 1624–1641 �1999�.

24W. Zhao, G. DeCrescenzo, S. O. Kasap, and J. A. Rowlands, “Ghosting
caused by bulk charge trapping in direct conversion flat-panel detectors
using amorphous selenium,” Med. Phys. 32�2�, 488–500 �2005�.

25P. C. Johns and M. J. Yaffe, “Coherent scatter in diagnostic radiology,”
Med. Phys. 10�1�, 40–50 �1983�.

26J. M. Boone, K. K. Lindfors, V. N. Cooper III, and J. A. Seibert, “Scatter/
primary in mammography: Comprehensive results,” Med. Phys. 27�10�,
2408–2416 �2000�.

27I. Sechopoulos, S. Suryanarayanan, S. Vedantham, C. J. D’Orsi, and A.
Karellas, “Scatter radiation in digital tomosynthesis of the breast,” Med.
Phys. 34�2�, 564–576 �2007�.

28A.-K. Carton, R. Acciavatti, J. Kuo, and A. D. A. Maidment, “The effect
of scatter and glare on image quality in contrast-enhanced breast imaging
using an a-Si /CsI�Tl� full-field flat panel detector,” Med. Phys. 36�3�,
920–928 �2009�.

29G. Wu, J. G. Mainprize, J. M. Boone, and M. J. Yaffe, “Evaluation of
scatter effects on image quality for breast tomosynthesis,” Med. Phys.
36�10�, 4425–4432 �2009�.

30D. R. Dance and G. J. Day, “The computation of scatter in mammography
by Monte Carlo methods,” Phys. Med. Biol. 29�3�, 237–247 �1984�.

31D. M. Cunha, A. Tomal, and M. E. Poletti, “Evaluation of scatter-to-
primary ratio, grid performance and normalized average glandular dose in
mammography by Monte Carlo simulation including interference and en-
ergy broadening effects,” Phys. Med. Biol. 55, 4335–4559 �2010�.

32H. H. Barrett and W. Swindell, Theory of Random Processes. Radiologi-
cal Imaging �Academic, New York, 1981�, Chap. 3, pp. 62–116.

33H. H. Barrett and K. J. Myers, “Poisson statistics and photon counting,”
in Foundations of Image Science, edited by B. E. A. Saleh �Wiley, New
York, 2004�, Chap. 11, pp. 631–699.

34J. C. Dainty and R. Shaw, “Image noise analysis and the Wiener spec-
trum,” Image Science �Academic, New York, 1974�, Chap. 8, pp. 276–
319.

35M. L. Giger, K. Doi, and C. E. Metz, “Investigation of basic imaging
properties in digital radiography. 2. Noise Wiener spectrum,” Med. Phys.
11�6�, 797–805 �1984�.

36M. Rabbani, R. Shaw, and R. Van Metter, “Detective quantum efficiency
of imaging systems with amplifying and scattering mechanisms,” J. Opt.
Soc. Am. A 4�5�, 895–901 �1987�.

37M. Albert and A. D. A. Maidment, “Linear response theory for detectors
consisting of discrete arrays,” Med. Phys. 27�10�, 2417–2434 �2000�.

38H. H. Barrett and K. J. Myers, “Fourier analysis,” in Foundations of
Image Science, edited by B. E. A. Saleh �Wiley, New York, 2004�, Chap.
3, pp. 95–174.

39M. Freed, S. Miller, K. Tang, and A. Badano, “Experimental validation of
Monte Carlo �MANTIS� simulated x-ray response of columnar CsI scin-
tillator screens,” Med. Phys. 36�11�, 4944–4956 �2009�.

40I. A. Cunningham, “Degradation of the detective quantum efficiency due
to a non-unity detector fill factor,” in Medical Imaging 1997: Physics of
Medical Imaging, edited by R. L. V. Metter and J. Beutel �SPIE, Belling-
ham, 1997�, pp. 22–31.

41G. Lubberts, “Random noise produced by x-ray fluorescent screens,” J.
Opt. Soc. Am. 58�11�, 1475–1483 �1968�.

42R. K. Swank, “Absorption and noise in x-ray phosphors,” J. Appl. Phys.
44�9�, 4199–4203 �1973�.

43R. K. Swank, “Calculation of modulation transfer functions of x-ray fluo-
rescent screens,” Appl. Opt. 12�8�, 1865–1870 �1973�.

44H. E. Johns and J. R. Cunningham, “Diagnostic radiology,” The Physics
of Radiology, 4th ed. �Charles C Thomas, Springfield, 1983�, Chap. 16,
pp. 557–669.

45W. Que and J. A. Rowlands, “X-ray imaging using amorphous selenium:
Inherent spatial resolution,” Med. Phys. 22�4�, 365–374 �1995�.

46G. Hajdok and I. A. Cunningham, “Penalty on the detective quantum
efficiency from off-axis incident x rays,” in Medical Imaging 2004: Phys-
ics of Medical Imaging, edited by M. J. Yaffe and M. J. Flynn �SPIE, San
Diego, 2004�, pp. 109–118.

47A. Badano, I. S. Kyprianou, and J. Sempau, “Anisotropic imaging perfor-
mance in indirect x-ray imaging detectors,” Med. Phys. 33�8�, 2698–2713
�2006�.

48J. G. Mainprize, A. K. Bloomquist, M. P. Kempston, and M. J. Yaffe,
“Resolution at oblique incidence angles of a flat panel imager for breast
tomosynthesis,” Med. Phys. 33�9�, 3159–3164 �2006�.

49R. J. Acciavatti and A. D. A. Maidment, “Calculation of OTF, NPS, and
DQE for oblique x-ray incidence on turbid granular phosphors,” in Pro-
ceedings of the International Workshop on Digital Mammography 2010,
Girona, Spain, 16–18 June 2010, edited by J. Martí �Springer-Verlag,
Berlin, 2010�, pp. 436–443.

50L. W. Schumann and T. S. Lomheim, “Modulation transfer function and
quantum efficiency correlation at long wavelengths �greater than 800 nm�
in linear charge coupled imagers,” Appl. Opt. 28�9�, 1701–1709 �1989�.

51G. C. Holst, “System MTF,” in CCD Arrays, Cameras, and Displays, 2nd
ed. �JCD/SPIE, Winter Park/Bellingham, 1998�, Chap. 10, pp. 267–314.

6495 R. J. Acciavatti and A. D. A. Maidment: Comparison of energy integrating and photon counting detectors 6495

Medical Physics, Vol. 37, No. 12, December 2010

http://dx.doi.org/10.1118/1.2179122
http://dx.doi.org/10.1016/j.nima.2004.01.024
http://dx.doi.org/10.1088/0031-9155/30/6/002
http://dx.doi.org/10.1118/1.2218315
http://dx.doi.org/10.1118/1.598657
http://dx.doi.org/10.1118/1.598657
http://dx.doi.org/10.1118/1.1843353
http://dx.doi.org/10.1118/1.595443
http://dx.doi.org/10.1118/1.1312812
http://dx.doi.org/10.1118/1.2428404
http://dx.doi.org/10.1118/1.2428404
http://dx.doi.org/10.1118/1.3077922
http://dx.doi.org/10.1118/1.3215926
http://dx.doi.org/10.1088/0031-9155/29/3/003
http://dx.doi.org/10.1088/0031-9155/55/15/010
http://dx.doi.org/10.1118/1.595583
http://dx.doi.org/10.1364/JOSAA.4.000895
http://dx.doi.org/10.1364/JOSAA.4.000895
http://dx.doi.org/10.1118/1.1286592
http://dx.doi.org/10.1118/1.3233683
http://dx.doi.org/10.1364/JOSA.58.001475
http://dx.doi.org/10.1364/JOSA.58.001475
http://dx.doi.org/10.1063/1.1662918
http://dx.doi.org/10.1364/AO.12.001865
http://dx.doi.org/10.1118/1.597471
http://dx.doi.org/10.1118/1.2208925
http://dx.doi.org/10.1118/1.2241994
http://dx.doi.org/10.1364/AO.28.001701

