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ABSTRACT 

 
A digital breast tomosynthesis (DBT) reconstruction algorithm has been optimized using an anthropomorphic software 
breast phantom.  The algorithm was optimized in terms of preserving the x-ray attenuation coefficients of the simulated 
tissues.  The appearance of the reconstructed images is controlled in the algorithm using three input parameters related 
to the reconstruction filter.  We varied the input parameters to maximally preserve the attenuation information.  The 
primary interest was to identify and to distinguish between adipose and non-adipose (dense) tissues.  To that end, a 
software voxel phantom was used which included two distinct attenuation values of simulated breast tissues.  The 
phantom allows for great flexibility in simulating breasts of various size, glandularity, and internal composition.  
Distinguishing between fatty and dense tissues was treated as a binary decision task quantified using ROC analysis.  We 
defined the reconstruction geometry to enable voxel-to-voxel comparison between the original and reconstructed 
volumes.  Separate histograms of the reconstructed pixels corresponding to simulated adipose and non-adipose tissues 
were computed.  ROC curves were generated by varying the reconstructed intensity threshold; pixels above the 
threshold were classified as dense tissue.  The input parameter space was searched to maximize the area under the ROC 
curve.  The reconstructed phantom images optimized in this manner better preserve the tissue x-ray attenuation 
properties; concordant results are seen in clinical images.  Use of the software phantom was successful and practical in 
this task-based optimization, providing ground truth information about the simulated tissues and providing flexibility in 
defining anatomical properties. 
 
Keywords: Mammography, digital breast tomosynthesis, anthropomorphic phantom, x-ray image simulation, 
tomographic reconstruction, optimization of imaging systems.  

1. INTRODUCTION 

Digital breast tomosynthesis (DBT)1 is undergoing final system development and initial clinical trials.2, 3  Optimization 
of DBT is typically based upon the use of physical measures, or subjective comparison of clinical images.  While 
clinical trials represent the preferred validation approach they pose a practical limitation; it is not feasible to conduct 
clinical trials for a large number of system configuration combinations.  We have developed a preclinical optimization 
method based upon the analysis of simulated images of an anthropomorphic breast software phantom.  The optimization 
method is well suited for quantitative assessment as the phantom provides ground truth about the spatial distribution of 
simulated tissue and tissue properties.   

The goals of this research are to validate and optimize DBT reconstruction methods.  Our initial effort was to 
reconstruct images which best portray linear x-ray attenuation coefficients of the breast tissue for the task of estimating 
breast density, an image-based biomarker of breast cancer risk.4  This work is an extension of our previous analysis of 
dense tissue regions extracted from clinical tomosynthesis images.5-7  In our previous research, we calculated the spatial 
correlation between regions of dense tissue segmented from the orthogonal DBT projection image and the central 
reconstructed image.6  While changing the DC component of the DBT reconstruction filter frequency response, we 
searched for the best spatial matching (estimated using the Jaccard coefficient8) between the segmented regions from 
projection and central reconstruction images.  Such an analysis of clinical images is, however, limited by the lack of 
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ground truth about the extent of dense tissue regions.  As an alternative, in this paper we describe the validation results 
based upon the use of an anthropomorphic breast phantom which provides known ground truth about the position and 
properties of the simulated tissues.  

2. METHODS 

2.1. Anthropomorphic software breast phantom 

The anthropomorphic software breast phantom used in this project was developed previously, based upon a detailed 
analysis of breast anatomy visualized by clinical imaging and sub-gross pathology.9-12  A phantom is created 
algorithmically from geometric primitives, and stored as a 3D voxel array at a user-specified spatial resolution.  Each 
voxel belongs to a unique tissue structure, characterized by physical properties of that tissue (e.g., linear x-ray 
attenuation, tissue elasticity, etc.)   

The software phantom allows for great flexibility in simulating breasts of various size, glandularity, and internal 
composition.  The phantom generation starts from a realistic breast (skin) surface.  The phantom interior is divided into 
a region of predominantly adipose tissue (AT) and a region of predominantly fibroglandular tissue (FGT).  Within these 
large scale regions, we simulated tissue details (e.g., adipose compartments, Cooper’s ligaments, and glandular tissue).  
Figure 1(a) shows a vertical section through the software breast phantom.  The adipose compartments and Cooper’s 
ligaments are simulated using a region-growing algorithm.12  The region-growing algorithm includes heuristic rules 
governing selection of seed points and growth parameters. 

2.2. DBT image acquisition and reconstruction 

DBT images were reconstructed from simulated x-ray projections through the software phantom.  The phantom was 
deformed to model mammographic compression, based upon a finite element model of 50% reduction in compressed 
phantom thickness.13  The phantom projections were simulated using a model of mono-energetic x-ray acquisition 
without scatter.  Values of the linear x-ray attenuation coefficients were selected as 0.456 cm-1 for adipose tissue, 0.802 
cm-1 for glandular and connective tissue and skin, and 0.94×10-3 cm-1 for air, assuming an x-ray energy of 20 keV.14  
The simulated DBT acquisition geometry corresponds to a GE DBT prototype system (Senographe DS, General Electric 
Healthcare, Chalfont St. Giles, U.K.).  We assumed a source – detector distance of 66 cm and a digital x-ray detector 
with 100 μm/pixel spatial resolution and a 23 cm × 19 cm field-of-view.  Fifteen DBT projections were simulated 
within an angular range of ±20 degrees.  An anti-scatter grid was not simulated.  Figure 1(b) shows an example of a 
simulated DBT projection through the phantom. 

A commercial back-projection filtered DBT reconstruction algorithm developed by Real Time Tomography (RTT), 
LLC (Villanova, PA) was used.  Implemented on a GPU, the algorithm offers real-time reconstruction.  It allows 
arbitrary selection of pixel size and slice spacing, ensuring that the reconstructed volume identically matches the 
phantom voxel spacing and alignment.  We have used a breast phantom generated with 200 micron/voxel spatial 
resolution.  The phantom contained a total of 56 million voxels, corresponding to a 450 ml phantom breast size.   

The reconstruction software offers numerous filter implementations.  A custom parameter-driven user interface provides 
external control of the reconstruction, allowing full exploration of the filter parameter space.  In this project, we 
explored a parameterized Fourier-domain filter developed by RTT for the purpose of estimating breast density.  We 
have focused on three parameters which control (i) the low frequency response shape (“LF Shape”), (ii) the mid 
frequency maximum (“MF Maximum”), and (iii) the mid frequency bandwidth (“MF Bandwidth”).  A total of 120 filter 
parameter combinations were chosen for analysis.  

2.3. ROC analysis 

Distinguishing between the two simulated tissue types was treated as a binary decision task quantified using ROC 
analysis.  The phantom images were reconstructed with a 200 μm/pixel spatial resolution, matching the volume 
resolution of the phantom.  We performed voxel-to-voxel comparison between the original and reconstructed volumes.  
Figure 1(c) shows an example of DBT reconstructed image corresponding to the phantom section shown in Figure 1(a).   

Separate histograms of the reconstructed image intensities corresponding to the true adipose and true non-adipose 
voxels were calculated.  The adipose and non-adipose tissue regions were segmented by thresholding the histograms of 
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the reconstructed images.  By varying the threshold values and calculating fractions of correctly and incorrectly 
classified voxels for each threshold value, we generated an ROC curve corresponding to each combination of filter 
parameters.  The histograms of the reconstructed pixels corresponding to adipose and dense tissues, and the ROC curve 
calculated for the optimal set of reconstruction parameters, are shown in Figure 2.  We selected the optimal combination 
of the reconstruction filter parameters as the one yielding the maximum area under the ROC curve (AUC); this 
parameter combination provides an image with the most accurate portrayal of the breast tissue.  In addition, an 
experienced clinical breast radiologist reviewed reconstructed images corresponding to the maximum AUC.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)   (b)     (c) 
Fig. 1:  (a) A section of the phantom showing simulated adipose (dark gray) and non-adipose tissues (bright gray).  (b) A phantom 
DBT projection, simulated assuming monoenergetic x-ray beam without scatter.  (c) A section of the reconstructed phantom DBT 
volume, corresponding to the phantom section from (a). 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

(a)      (b) 
Fig. 2:  (a) The histograms of reconstructed pixels corresponding to adipose and non-adipose tissues, and (b) the ROC curve 
generated using the histograms from (a).   
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Fig. 3:  Dependence of the AUC on the analyzed reconstruction filter parameters, while keeping constant (a) LF Shape 
parameter, (b) MF Maximum parameter, and (c) MF Bandwidth parameter.  The global and local maxima of the AUC 
are indicated in (c) by black and white circles, respectively. 

(a) 

(b) 

(c) 
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3. RESULTS 

In total we explored 120 filter parameter combinations.  The analysis results are summarized in Figure 3, illustrating the 
values of the AUC as a function of the selected filter parameters.  In each figure we varied a pair of filter parameters 
while keeping the third parameter constant.  Figure 3(a) shows AUC as a function of the MF Maximum and MF 
Bandwidth parameters for two different values of LF Shape parameter.  Similarly, Figure 3(b) was generated while 
keeping MF Maximum constant and Figure 3(c) was generated while keeping MF Bandwidth constant.  
One can see from Figures 3(a) and 3(b) that the AUC values have very little dependence on the MF Bandwidth 
parameter.  Figures 3(a) also shows that for a given value of the LF Shape parameter, one can identify the optimal MF 
Maximum value which maximizes the AUC.  Similarly, in Figure 3(b), for a given value of the MF Maximum 
parameter, there is an optimal LF Shape which maximizes the AUC.  Figure 3(c) shows a more complex AUC 
dependence on reconstruction filter parameters, while keeping MF Bandwidth constant.  For a given value of MF 
Bandwidth, one can identify a locus of points for which the AUC is near maximal.  The global maximum AUC=0.683 is 
indicated in Figure 3(c) by a dashed black circle.  The white dashed circle indicates the local maximum AUC=0.681.  
Note that, although corresponding to different sets of the reconstruction filter parameters, the global and local AUC 
maxima differ by less than 1%. 

The global maximum AUC corresponds to a broad spectral coverage of the reconstructed image intensities with 
suppressed high frequencies; the reconstructed images are relatively uniform across the entire breast.  Figure 4(a) shows 
the central reconstructed slice corresponding to the global maximum AUC.  The reconstructed images corresponding to 
the local maximum AUC=0.681, were preferred by our reference radiologist due to better preservation of the edge 
information.  Figure 4(b) shows the central reconstructed slice corresponding to the local maximum AUC.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

(a)        (b) 
Fig. 4.  Central slices of the reconstructed phantom volume corresponding to (a) the global and (b) local maximum 
AUC, (indicated in Figure 3(c)). 
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Figure 5 shows examples of clinical DBT images reconstructed using the optimal reconstruction filter parameters.  
These images have been reconstructed from DBT projections acquired previously in an IRB-approved, NCI/NIH-
funded clinical study at the University of Pennsylvania (P01 CA85484, PI: Schnall).  After providing informed consent, 
the women participating in that study had a DBT exam performed on a GE Senographe DS DBT prototype; this is the 
same system that we simulated.   As discussed above, Fig. 5(b) corresponds to the reconstruction parameters setting 
preferred by radiologists.  Fig. 5(a) provides marginally superior AUC, but results in a reconstruction that appears less 
sharp.  However, as with the phantom images, the global maximum results in a more uniform appearance in clinical 
images, which leads to more accurate tissue segmentation.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)     (b) 
Fig. 5:  Examples of clinical images of the same breast, reconstructed using the filter parameters corresponding to (a) 
the global and (b) local maximum AUC.   

4. DISCUSSION 

The presented approach allows quantitative assessment of reconstructed image quality based upon the ground truth 
provided by the phantom.  The validation is task specific.  Validation based upon various imaging tasks can be designed 
and performed using this approach.  We described results of the validation aimed at preserving x-ray attenuation of 
simulated breast tissue; a similar validation procedure can be proposed for the simulated breast lesion detection task.   

Our work to optimize DBT reconstruction to maximally preserve the breast tissue attenuation properties was motivated 
by a desire to estimate breast density in DBT.  The standard method for estimating breast density (Cumulus, v. 4.0, 
University of Toronto) is based upon interactive thresholding of mammographic images.15  This 2D approach is limited 
by the projective nature of mammographic images.  Methods for estimating the 3D (volumetric) breast density have 
been developed and reported in the literature.16-18  Those methods are predicated upon certain assumptions about the 
breast shape and compressed breast thickness to estimate the proportion of adipose and dense tissue.  These assumptions 
pose certain limitations to the accuracy of the estimation of volumetric breast density.  DBT, as a 3D breast imaging 
modality offers an alternative approach to estimating volumetric breast density.  Our preliminary assessment of breast 
density estimation from DBT images has revealed its limitations due to the use of limited number of x-ray projection 
angles in DBT acquisition.5, 6  The limited angle acquisition results in the contribution of out-of-plane densities to the 
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DBT reconstructed images.  DBT images, optimally reconstructed as described in this work, provide the best 
preservation of the tissue x-ray attenuation information, thus minimizing the out-of-plane contribution.  Such 
reconstructed images could be used for breast density estimation by either thresholding image intensities, or by the 
quantitative analysis of the reconstructed image intensities.   

We identified several limitations of the presented study.  The simulated DBT image acquisition assumed monoenergetic 
x-ray beam without scatter and without quantum noise.  The acquisition simulation can potentially be modified to 
include more detailed models of x-ray spectra and detector models.  An alternative approach is to apply the described 
ROC analysis approach to images of our physical phantom (Figure 5), fabricated based upon the software breast 
phantom.19  We also used only one phantom in this study, although our software phantom provides flexibility to cover a 
wide range of anatomic variations.  Error bars of the AUC values can be calculated by analyzing phantoms of the same 
size and glandularity with different composition.  We can also analyze the effects of breast size, compressed thickness, 
and glandularity by analyzing appropriately designed software phantoms.   

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 5:  Photograph of a physical anthropomorphic breast phantom designed based upon our software breast phantom.   

 

Further extension of the described validation approach can be based upon the inclusion of a simulated observer, either in 
the form of a general model of human visual properties (as, e.g., JNDmetrix20), or a detailed simulation of breast lesions 
and background tissues and the use of e.g., channelized Hotelling observer model21.  We can also implement a more 
efficient search for the global AUC maximum.  In this paper we used a “brute-force” search by testing individually a 
large number of predetermined filter parameter combinations from a regularly organized 3D grid.  Alternatively, we 
could use methods such as simulated annealing22 which may improve the efficiency and accuracy of the optimization.  
We can also simulate other modalities, e.g., breast ultrasound, dynamic contrast-enhanced magnetic resonance imaging, 
or contrast enhanced mammography or DBT.  

5. CONCLUSION 

We have developed a method for optimizing DBT reconstruction algorithms for specific imaging tasks using simulated 
images of an anthropomorphic software breast phantom.  In this paper, we have demonstrated the use of this method for 
the task of preserving breast tissue x-ray attenuation coefficients.  This task was chosen as being relevant in estimating 
breast density, a known biomarker of breast cancer risk.  Optimal images were obtained using reconstructions produced 
with filter parameters that provide broad spectral coverage in the Fourier domain, resulting in reconstructed images with 
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relatively uniform intensities across the area of the breast.  The described approach has value in preclinical optimization 
of breast density estimation algorithms.  Adaptation of this method to other clinical tasks may aid in the design of DBT 
clinical trials by identifying the most promising imaging devices and performing initial system configuration 
optimization in silico.  
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