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ABSTRACT 
Quantitative measures of image quality (IQ) are routinely obtained during the evaluation of imaging systems. These 
measures, however, do not necessarily correlate with the IQ of the actual clinical images, which can also be affected by 
factors such as patient positioning. No quantitative method currently exists to evaluate clinical IQ. Therefore, we 
investigated the potential of using computerized image texture analysis to quantitatively assess IQ. Our hypothesis is that 
image texture features can be used to assess IQ as a measure of the image signal-to-noise ratio (SNR). To test feasibility, 
the “Rachel” anthropomorphic breast phantom (Model 169, Gammex RMI) was imaged with a Senographe 2000D 
FFDM system (GE Healthcare) using 220 unique exposure settings (target/filter, kVs, and mAs combinations). The mAs 
were varied from 10%-300% of that required for an average glandular dose (AGD) of 1.8 mGy. A 2.5cm2 retroareolar 
region of interest (ROI) was segmented from each image. The SNR was computed from the ROIs segmented from 
images linear with dose (i.e., raw images) after flat-field and off-set correction. Image texture features of skewness, 
coarseness, contrast, energy, homogeneity, and fractal dimension were computed from the Premium ViewTM post-
processed image ROIs. Multiple linear regression demonstrated a strong association between the computed image texture 
features and SNR (R2=0.92, p≤0.001). When including kV, target and filter as additional predictor variables, a stronger 
association with SNR was observed (R2=0.95, p≤0.001). The strong associations indicate that computerized image 
texture analysis can be used to measure image SNR and potentially aid in automating IQ assessment as a component of 
the clinical workflow. Further work is underway to validate our findings in larger clinical datasets. 
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1. INTRODUCTION 
Mammography poses a demanding task for the radiologist, as low-contrast masses and small micro-calcifications can be 
obscured in the superposition of overlapping breast tissues. Good image quality (IQ) is therefore critical for lesion 
detection and characterization1,2. Currently no method exists to quantitatively assess clinical IQ in support of the 
diagnostic interpretation. Quantitative measures of IQ are mainly obtained during routine system evaluations for 
characterizing and monitoring the performance of specific imaging systems. Common quantitative measures include 
signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and the noise equivalent quanta (NEQ)3,4. Although useful for 
assessing the performance of specific imaging systems, these measures do not necessarily correlate with the IQ of actual 
clinical images5-7. Patient-specific image quality can also be affected by factors such as breast positioning, compression, 
and potential image artifacts, which are accounted for by radiologists in a qualitative assessment5,6.  

We investigated the potential use of computerized breast image texture analysis to quantitatively assess IQ.  Image 
texture features, such as skewness, coarseness, contrast, energy, homogeneity, and fractal dimension, have been used 
extensively in mammographic image analysis, to characterize parenchymal patterns8-12 and for estimating breast 
density13,14. Our hypothesis is that image texture features can also be used to assess IQ, as measured by the image SNR. 
To test feasibility, we determined the relationship between computer-extracted image texture features and SNR as a 
function of image acquisition parameters for a full-field digital mammography (FFDM) system.  Our long-term goal is to 
develop a Computer-Aided Diagnostic Image Quality (CADiq) tool that can be integrated into the clinical workflow to 
provide quantitative IQ measures for clinical images in support of the diagnostic interpretation. 
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2. METHODS 
2.1 Image acquisition 

The "Rachel" anthropomorphic breast phantom (Model 169, Gammex RMI, Madison, WI)15,16 was imaged with a 
Senographe 2000D FFDM system (GE Healthcare, Chalfont St. Giles, UK). Images were acquired with various 
combinations of target/filter (Mo/Mo, Rh/Rh, Mo/Rh), kV (25 – 34 kV), and mAs, resulting in 220 unique exposure 
settings. For each combination of acquisition settings two phantom images were acquired in order to compute a 
difference image for estimating noise (Eq. 1). The mAs was varied from 10%-300% of that required for a standard 
phototimed exposure yielding an average glandular dose (AGD) of 1.8 mGy. Thus, for each target/filter and kV 
combination, eight mAs settings were acquired relative to the reference mAs (10%, 20%, 40%, 70%, 100%, 150%, 
200%, and 300%).   

2.2 SNR calculation 

To calculate SNR, a 2.5 cm2 (256×256 pixels at 0.1 mm/pixel resolution) retroareolar region of interest (ROI) was 
segmented from each image (Fig. 1). The retroareolar region was selected for its texture richness, due to the underlying 
prominence of the ductal network17. The ROI was placed in the exact same position in the retroareolar region in each 
acquired image using automated software. SNR was computed from the ROIs of the images linear with dose (i.e., raw 
images) after flat-field and off-set correction. Signal intensity was computed as the average pixel value. Noise (σ) was 
computed as the root mean square (RMS) difference of each pair of images acquired with the same exposure settings as, 

      
2
Δ=

σσ                            (Eq. 1) 

where σΔ is the per-pixel standard deviation of the difference ROI.  
  

 

 

 

 

 

 

 

 

 

 
 

Figure 1. FFDM image of the “Rachel” anthropomorphic breast phantom acquired with Mo/Mo, 28kV, at 100% of the AGD. The 
segmented ROI is outlined, and displayed below over the entire range of mAs exposure settings.   
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2.3 Texture analysis 

Image texture features of skewness, coarseness, contrast, energy, homogeneity, and fractal dimension (FD) were 
computed from ROIs of the Premium ViewTM (GE Healthcare, Chalfont St. Giles, UK, v. ADS_43.10.1) post-processed 
images10,12,18-21.  

Skewness was computed as the third statistical moment of the gray-level histogram: 
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where ni represents the number of pixels in the ROI with gray-level value i, gmax is the maximum gray-level value, and N 
is the total number of pixels. Skewness measures the asymmetry of the gray-level histogram around the mean. For 
radiographic breast images, largely bright or dense regions tend to have a negative measure of skewness, whereas dark or 
fatty regions tend to have higher, positive values of skewness9,21. 

Coarseness is based on the neighborhood gray tone difference matrix (NGTDM), v(i), computed as9,17,21 : 
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Here, v(i) is derived from the difference between each pixel’s gray-level value i and the average gray-level value ( iL ) in 
the neighborhood window around the pixel (Eq. 4). The set {ni} contains all pixels with gray-levels equal to i, so that the 
NGTDM = 0 if there are no pixels with gray-level value i. 
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In equation (4), j(x,y) is the pixel located at (x,y) with gray-level value i, (k,l) ≠  (0,0), and 2)12( += tS , with 
1=t specifying the neighborhood size around pixel j. Coarseness is calculated based on the NGTDM as: 
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where gmax is the maximum gray-level value in the ROI, and pi is the probability that gray-level i occurs. Coarseness is 
inversely proportional to the amount of local variation in gray-level pixel values within the neighborhood. Hence, a high 
value of coarseness corresponds with little variation in local gray-levels, describing quantitatively the texture pattern 
humans perceive as coarse.  

Contrast, energy, and homogeneity, proposed originally by Haralick et. al.19, require the computation of second-order 
statistics from the gray-level co-occurrence matrix, which measures the frequency at which two given gray levels occur 
with a certain spatial separation in a specified direction. Contrast, energy, and homogeneity were computed as:  
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Equations (6-8) are summed over every pair of gray-level values (i,j), with gmax being the maximum gray-level value in 
the ROI, and C(i,j) being the normalized co-occurrence matrix. To optimize the computation of the gray-level co-
occurrence statistics, gray-level quantization was implemented10,12. The co-occurrence frequencies were calculated 
symmetrically in the four directions around each pixel using a displacement vector, ),( dydxd = , along x and y 
dimensions, where 1== dydx  pixel offset. The texture features calculated in each of these four directions were 
averaged to create a single measure that was used in our experiments12. 

Fractal dimension (FD) was calculated based on the power spectrum of the Fourier transform of the image18,20. The 2D 
discrete Fourier transform was performed using the fast-Fourier transform (FFT) algorithm as:  
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where I is the image ROI of size (M,N), and u and v are the spatial frequencies in the x and y directions. The power 
spectral density, P, was calculated from F(u,v) as:  

                        ( ) ( ) 2,, vuFvuP =                                                                   (Eq. 10) 

To compute the FD, P was averaged over radial slices spanning the FFT frequency domain. The frequency space was 
uniformly divided in 24 directions, with each direction uniformly sampled at 30 points along the radial component. To 
calculate the FD, the least-squares fit of log(Pf) versus log(f) was estimated, where 22 vuf += denotes the radial 
frequency. The FD is related to the slope, β , of this log-log plot by:  
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where DT is the topologic dimension, equal to 2 for a 2D image. FD indicates the measure of self-similarity in the texture 
pattern, and the overall texture roughness at different scales. 

2.4 Statistical analysis 

The Pearson's correlation coefficient (r) was computed to evaluate the relationship between individual texture features 
and SNR for each target/filter combination, over the full range of kV and mAs settings. Stepwise multiple linear 
regression was applied to model the association between i) combinations of the texture features versus SNR and ii) 
combinations of the texture features in addition to kV, target and filter versus SNR.  Variable normalization using the z-
score was performed prior to inclusion in the model. A threshold of p-value ≤ 0.01 was set during stepwise feature 
selection. Both correlation and regression analyses were performed after logarithmic transformation of the variables.    

3. RESULTS 

Individual texture features correlate strongly with SNR. Table 1 summarizes the Pearson’s correlation coefficients 
between the individual texture features and SNR, over the entire range of kV and mAs exposure settings. The strongest 
association was observed between energy and SNR (|r|=0.91-0.96, p≤0.001), and the weakest association was observed 
between contrast and SNR (|r|=0.64-0.83, p≤0.001). Figure 2 illustrates these trends for the specific texture features for 
the different target/filter combinations at 28 kV. With the exception of homogeneity, all texture features have an 
approximately linear relationship with SNR at low-dose settings until reaching a plateau at approximately 70% percent 
of the reference mAs. Homogeneity decreases continuously as a function of SNR.  
 
Table 1. Pearson’s correlation coefficients (r) for each texture feature and SNR, over the entire range of kV and mAs, for each target 
and filter combination, after logarithmic transformation of variables. All reported coefficients are statistically significant ( 001.0≤p ). 

Pearson correlation coefficient (r)  
Skewness Coarseness Contrast Energy Homogeneity FD 

Mo/Mo 0.94 0.96 -0.83 -0.96 -0.87 0.87 
Rh/Rh 0.83 0.89 -0.64 -0.91 -0.86 0.77 SNR 
Mo/Rh 0.90 0.94 -0.74 -0.96 -0.85 0.85 
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Figure 2. Relationship between individual texture features and SNR for the different target/filter combinations at 28 kV. Data points 
shown correspond to the eight different mAs settings investigated. The dotted line marks the reference AGD at 1.8 mGy. 
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Stepwise multiple linear regression models demonstrated a strong, significant association between combinations of the 
computed image texture features and SNR. Model (I) considers only combinations of texture features, while Model (II) 
considers combinations of texture features and image acquisition settings of kV, target and filter. Model (I) demonstrated 
strong predictive association between image texture features and SNR (R2=0.92, p<0.001), with contrast, energy and FD 
selected as the most significant input variables predictive of SNR (p ≤ 0.001).  In Model (II), the observed association 
was slightly stronger when kV, target and filter were also considered as predictor variables (R2=0.95, p<0.001), where all 
texture features were selected as significant predictors after the addition of kV, target and filter. Full model statistics are 
included in Tables 2 and 3. Figure 3 shows the values of the SNR predicted by the multiple linear regression Model (II) 
versus the actual SNR, over the entire range of administered dose, illustrating a highly accurate predictive association.  

Table 2. Model (I): Stepwise multiple linear regression of combined texture features vs. SNR. 
Model Summary  

R R2 Adjusted R2 Std. Error  
0.96 0.92 0.92 0.013 

Coefficients 
 B Std. Error t Sig. 

(intercept) 4.101 0.008 523.623 0.000 
Contrast 0.291 0.033 8.742 0.000 
Energy -0.302 0.014 -21.217 0.000 

FD 0.374 0.038 9.953 0.000 

Table 3. Model (II): Stepwise multiple linear regression of combined texture features, kV, target and filter vs. SNR. 
Model Summary   

R R2  Adjusted R2 Std. Error  
0.974 0.949 0.95 0.009 

Coefficients  
 B Std. Error t Sig. 

(intercept) 4.101 0.006 639.891 0.000 
Skewness -0.185 0.034 -5.442 0.000 

Coarseness -0.483 0.082 -5.871 0.000 
Contrast 0.389 0.059 6.597 0.000 
Energy -1.250 0.150 -8.310 0.000 

Homogeneity 0.319 0.067 4.747 0.000 
FD 0.443 0.039 11.317 0.000 
kV 0.098 0.010 9.474 0.000 

Target 0.039 0.008 4.949 0.000 
Filter 0.029 0.009 3.294 0.001 

4. DISCUSSION 

Clinical imaging procedures operate under the assumption that a well calibrated and well characterized imaging system 
will also produce images of good diagnostic quality, while no method exists to validate the actual IQ for the obtained 
clinical images. In order to assess the feasibility of a fully automated, quantitative method for assessing IQ of digital 
mammography images, we investigated the potential of using computerized image texture analysis to quantitatively 
assess IQ. Our results show that mammographic image texture is indicative of the corresponding IQ, as measured by 
SNR. Strong associations are observed between the texture features and image SNR, particularly when accounting for 
kV, target and filter acquisition settings (Fig 3). These observations could have significant implications in advancing 
technological developments for IQ assessment in clinical practice. If the observed association also holds true in clinical 
images, as compared to the phantom images analyzed in this proof-of-concept study, then computerized image texture 
analysis could be used to provide fully-automated, quantitative measures of clinical IQ on a per-patient basis at the time 
of imaging. Our ultimate goal is to develop a Computer-Aided Diagnostic Image Quality (CADiq) tool, based on 
computerized image texture analysis that can be integrated as a component of the clinical workflow. 
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Figure 3. Multiple linear regression, showing strong association between combination of texture features, kV, target/filter vs. SNR.   

The primary advantage of the envisioned CADiq tool is that it shifts the current practice towards personalized, patient-
specific IQ control. A recent paper published by Van Ongeval et al.22, highlighting the need to use practical criteria to 
assess clinical IQ and verify dose settings for digital mammography, proposed a set of parameters to assess IQ including 
factors such as contrast, sharpness and saturation of image regions; nevertheless the assessment was still based on the 
qualitative assessment of the radiologist and the assignment of rating scores on a small quantitative scale. With a CADiq 
tool, the SNR determined from texture analysis could be compared with the SNR expected from the amount of radiation 
used. In this way, texture analysis could be used to compare the achieved IQ with that which was desired. Such a dose-
efficiency measure could be used to establish objective guidelines for IQ control during clinical imaging procedures.  

In our experiments, relatively little change in texture was observed beyond 70% of the reference AGD. This may indicate 
that no additional anatomical texture information can be extracted from the image beyond these dose levels. Although 
this observation should be taken with caution, given that our results are restricted to the use of the specific breast 
phantom, a single x-ray system, and a particular image post-processing algorithm used in our experiments, the point at 
which texture features reach this threshold may indicate that anatomy dominates over quantum noise. This would 
indicate that sufficient dose has been used to extract quantitative information with respect to the particular texture 
feature. This could result in additional implications. For example, growing evidence supports the use of mammographic 
texture as a biomarker for breast cancer risk assessment10,12,20. If a dose of 40%-70% of the AGD is sufficient to quantify 
specific such textural characteristics from clinical images, then texture-based risk-related information could be measured 
at a lower radiation dose. However, it is uncertain whether the same plateau behavior of the texture features would be 
preserved in clinical images. The resulting plateau behavior of certain texture features versus SNR, for example, could be 
attributed to the limited spatial resolution of the phantom. It is also unclear if the natural texture variation of the breast 
tissue between women would dominate the observed variation due to the imaging physics that could potentially be 
observed on an individual basis. Further work is warranted to validate these findings in larger clinical datasets over a 
range of different breast parenchymal textures, imaging systems, and image-processing methods.  

5. CONCLUSION 
           To the best of our knowledge, our study is the first to investigate the potential of using computerized image texture 

analysis to quantitatively assess digital mammography IQ. Our results show that computer-extracted image texture 
features are indicative of IQ, as measured by SNR. In particular, multiple linear regression of image texture features can 
predict SNR measurements with high accuracy (R2>0.92, p≤0.001). When including kV, target and filter as additional 
predictor variables, a stronger association with SNR is obtained (R2=0.95, p≤0.001). To justify general applicability, 
larger clinical studies are deemed necessary that would investigate the association between clinical digital 
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mammographic image texture and IQ, and study the variation of texture features over a range of different breast 
parenchymal texture patterns, imaging systems, and image acquisition physics. Our results serve as a feasibility study for 
ultimately developing a CADiq tool based on computerized image texture analysis. Such a quantitative IQ assessment 
tool could be integrated into the clinical workflow to provide quantitative measures of clinical IQ on a per-patient basis, 
at the time of imaging, and could be used to establish objective clinical IQ guidelines for supporting diagnostic 
interpretation. 
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