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ABSTRACT

Accurate registration of the dynamic contrast-enhanced
(DCE) MR breast images is a well-known difficult problem.
It is because the breast motion is non-rigid and the intensity
variations of tumor between pre-contrast and post-contrast
images can cause the unexpected tumor shrinking/expanding
effect in the registration process. To obtain accurate regis-
tration, we propose two techniques: a novel image similarity
measure based on the robust estimation and a new global opti-
mization technique by reformulating the registration problem
as solving a linear programming. The novel similarity mea-
sure can help to handle the shrinking/expanding problem
while the global optimization technique offers more accurate
estimation of the breast motion.

1. INTRODUCTION

Image registration is a vital process in the dynamic contrast-
enhanced (DCE) magnetic resonance (MR) imaging based
breast tumor diagnosis. DCE-MR imaging process generally
involves multi-times of imaging before and after the adminis-
tration of a contrast agent, yielding the pre-contrast image and
a series of post-contrast images. In DCE-MR images, tumor
region can have various contrast enhancement pattern due to
the agent, leading to significant temporal intensity changes.
The analysis on the enhancement curve which describes the
temporal changes of intensity of a single pixel or a local re-
gion constructs the fundamentals of the diagnosis with DCE-
MR images. Image registration, which can provide accurate
spatial alignment of DCE-MR images taken at different time,
plays a critical role in offering accurate enhancement curves.

However, accurate registration of DCE-MR images is
plagued mainly with two challenges: the temporal changes
of image intensity, and the non-rigidity of the breast motion
in the imaging process. The intensity changes can produce
volume shrinking/expanding effect of tumor in the process of
registration [1]. This unexpected volume variation is not con-
sistent with the assumption that the soft tissue is incompress-
ible in the imaging process because of the small deformations
involved and the short time imaging durations. As the other
challenge, the nonrigid motion of breast makes the registra-

tion more complicated in both modeling and estimating the
deformations.

To address the above challenges, different mechanisms
have been proposed. To avoid or alleviate the tumor shrink-
ing/expanding problem caused by the temporal intensity
changes, there are many methods using some special regular-
ization terms on the deformation field [1, 2, 3] or accounting
for the enhancement effect [5]. However, most of them need
some extra processing like the identification of tumor [1, 2],
or the estimation of enhancement curve [5], etc. The regis-
tration accuracies significantly rely on the results of the extra
processing. In these previous work, the free-form deforma-
tion (FFD) model based B-spline [6] was probably the most
widely used model for its easiness to use and efficiency. How-
ever, most optimization strategies are gradient decent based,
with which only a local minimum can be guaranteed and the
results are highly dependent on the initialization. Some other
techniques like the simulated annealing can produce a global
optimization but require a lot of time.

In this paper, we propose two novel techniques for ac-
curate registration of DCE-MR breast images, which can effi-
ciently handle the challenges mentioned above. We first intro-
duce a new image similarity measure in registration based on
the robust estimation function [7]. It can account for the tem-
poral intensity changes, resulting in the alleviation of the tu-
mor shinking/expanding problem without any extra process-
ing. We then formulate the optimization of the FFD B-spline
deformation model in image registration as recursively solv-
ing a linear programming problem [8]. Our algorithm can
obtain a more optimal optimization compared with previous
work. Comprehensive experiments demonstrate the effective-
ness and high accuracy of our approach.

2. METHODS

Given two images I and J , our goal is to find an optimal
geometrical transformation T from I to J and constructs the
mapping of the voxels (volume pixels) in I to J . The optimal
T is found by maximizing a similarity measure between the
overlapping regions of the transformed image T (I) of I and
J . We next explain in detail three critical elements in our
registration algorithm: the representation of T in sec 2.1, the
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energy function to be minimized in order to estimate T in sec
2.2, and the optimization strategy in sec 2.3.

There are basically two significant contributions in our ap-
proach. First, we propose a new similarity measure based
on the robust estimation function [7]. It can account for the
temporal intensity changes in the DCE-MR data without any
extra processing, as explained in sec 2.2. Second, we intro-
duce a new optimization strategy accomplished by recursively
solving a linear programming [8] problem, for which a global
optimization can be obtained in each iteration without any ini-
tialization, as explained in sec 2.3.

2.1. Transformation Model

The transformation T in our registration algorithm is com-
posed of a global transformation TG and a local transforma-
tion TL. For an image point x = (x, y, z)T in the 3D image
I, where x, y and z are the coordinates, we then have

T (x) = TG(x) + TL(x). (1)

Global transformation TG is set as the affine transforma-
tion, and the parameters are estimated by the iterative multi-
resolution search strategy [6] with the Sum of Squared Dif-
ference (SSD) similarity measure.

Local transformation TL is given by the (FFD) model
based cubic B-splines in [6]. However, to estimate it, we will
use a more robust similarity measure (in sec 2.2) and a more
efficient optimization strategy (in sec 2.3).

The basic idea of the FFD based B-splines is to deform
the image through manipulating an underlying lattice of uni-
formly spaced control points (CPs) (denoted by set Ψ). The
transformation TL(x) is simply computed by interpolating the
displacements of CPs in a CP subset Ψx ⊂ Ψ denoting the
closest 4 × 4 × 4 CPs surrounding x. The 3D splines based
on Ψx can be treated as the tensor product of the independent
1D spline functions [3] on the three axes.

To define the 1D spline function, we take the x-axis for
an example. Apparently, there are totally four different x-
axis indices for the CPs in Ψx and hence we can use four 1D
spline functions for the interpolations, considering the CPs
in Ψx are distributed on a lattice. Let u denote the relative
position of x to the CPs with the second-low coordinate value
on the x-axis. The four 1D basis function of the B-spline can
be denoted by B0(u), B1(u), B2(u), and B3(u), representing
the interpolation coefficients with respect to the CPs in Ψx

from left to right, respectively. The expressions of the 1D
spline functions are referred to [6]. For other two axes, similar
to u, we use v and w to represent the relative positions of x

to the CPs with the second-low coordinate value on the y-
axis and z axis, respectively. The corresponding 1D spline
functions B0(v), · · · , B3(v) and B0(w), · · · , B3(w) have the
same forms with B0(u), · · · , B3(u), respectively.

Let (l0,m0, n0) denote the the CPs in Ψx with the lowest

Quadratic Lorentzian

original influence original influence

pre-contrast post-contrast Quadratic Lorentzian

original absolute-influence

Fig. 1. Upper: quadratic and Lorentzian estimation func-
tions and their influence functions. Lower: Original beast
MR images (left) and the corresponding color-coded pixel-
wise absolute-influence function value. The Lorentzian de-
emphasizes tumor pixels more while the quadratic emphasize
them more.

coordinate value on all three directions, we have

TL(x) =

3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φl0+l,m0+m,n0+n

(2)
where φ denotes the displacement of a CP.

2.2. Energy Function

The estimation of the local transformation expressed in Eq.
(2) can be formulated as the minimization of an energy func-
tion. Our energy function has two terms as in many other
methods [2, 6, 3, 9]: a data term Ed to characterize the sim-
ilarity between the transformed image and the target image,
driving force behind the registration process and aims to
minimize the matching cost between the two images; and a
smoothness term Es to regularize the transformation field,
discouraging certain improbable or impossible transforma-
tion. It is written as

E = Ed + λEs =
∑

p∈I′ C
(
I ′(p) − J (p)

)
+

λ
∑

p∈I′

∑
p′∈Np

‖TL(p) − TL(p′)‖2
(3)

where I ′ = TL(I), I ′(p) means the image value of p in I ′,
C models the matching cost, Np represents the neighboring
voxels of p, ‖ · ‖ is the L2 norm, λ is an adjusting parameter
(e.g. 0.01) balancing the two terms. Obviously, the unknowns
in Eq. (3) are the φ values for each CP in Eq. (2).

To specify the matching cost function C in Eq. (3), for
the intra-modality registration (the topic of the paper), the
SSD [9] measure is a sensible choice. However, due to the
temporal intensity changes in DEC-MR data, the shrink-
ing/expanding problem of tumor [1] can inevitably happen.
One significant contribution of this paper is the introduction
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of a new matching cost measure to solve this problem, by re-
placing the C function in Eq. (3) with any robust estimation
function [7]. We choose the Lorentzian estimator:

ρ(t) = log
(
1 + (t/σ)2/2

)
(4)

where σ is a scale parameter to control the function’s shape.
Without sacrificing the simplicity, the incorporation of the

Lorentzian function in Eq. (3) is extremely efficient in han-
dling the temporal intensity changes. The problem of the
SSD measure (and other previous measures) is that the out-
lying measurements corresponding to the temporal intensity
changes in DCE-MR images are assigned a high “weight”.
The CPs’ movements are driven more by the unreliable inten-
sity differences, leading to the shrinking/explanding problem
in registration. In contrast, the Lorentzian function is more
forgiving about the outlying measurements, reducing the driv-
ing force from the temporal intensity changes. The differ-
ences between the Lorentzian and quadratic functions can be
seen from their influence functions [7] which characterize the
bias of a particular measurement on the solution, as shown
in Fig. 1. Different from the increasing property in the influ-
ence function of the quadratic measure, the influence function
of the Lorentzian is redescending for which the influence of
outliers tends to zero.

To specify σ in Eq. (4), we denote all voxels’ intensity
differences in the first term of Eq. (3) with X , then

σ = cxMED
(∣∣X − MED(X )

∣∣) (5)

where MED refers to the median value, and cx is a constant
that depends on the statistical distribution of X . We simply
set cx = 1.4826 by assuming X is normally distributed.

2.3. Optimization

We novelly propose to recursively solve a linear programming
formulation [8] to minimize the energy function in Eq. (3).
Each iteration can produce a global optimization, resulting in
a more optimal solution of the the registration.

We reformulate the two terms in Eq. (3) to facilitates
the analysis. For the data term Ed, we approximate its mini-
mization by recursively minimizing the sum of the matching
costs each of which is caused independently by one CP’s dis-
placement. The displacement of any CP (i, j, k) ∈ Ψ only
influences the motions of voxels in a subregion, denoted by
Υ(i,j,k), around it but not at all for other voxels [6]. The sum
of matching costs of voxels in Υ(i,j,k) is denoted by C(i,j,k).
The minimization of Ed in Eq. (3) can then be approximated
by recursively minimizing the sum of {C(i,j,k), (i, j, k) ∈
Ψ}. Apparently, this strategy has already been implicitly used
in the gradient decent based optimization methods [6, 3]. For
the smoothness term Es of Eq. (3), from Eq. (2), it is easy
to see that TL(p) and TL(p′) can both be written as a lin-
ear combination of {φ(i,j,k), (i, j, k) ∈ Ψ}, and the same to
TL(p) − TL(p′). Eq. (3) then becomes

E =
�

(i,j,k)∈ψ

C
(i,j,k)

+ λ
�

p∈I′

�
p′∈Np

������
�

(i,j,k)∈ψ

ω
(i,j,k)

pp′ φ(i,j,k)

������
2

(6)

where ω
(i,j,k)
pp′ represents the combination coefficient.

The energy function in Eq. (6) is nonlinear and usually
highly non-convex, making it difficult to minimize without
a good initialization. We construct the convex approxima-
tion for the individual matching cost surface of each CP,
thus making the energy function convex. As a result, we
can approximate the minimization of the energy function by
recursively solving a linear programming problem [8], for
which a global optimization can be obtained in each itera-
tion. Specifically, for each CP (i, j, k) in I ′, we treat the
displacements corresponding to the points comprising the
facets of the lower convex hull of its matching cost surface
as the basis displacements, denoted by B

(i,j,k)
δ , and then we

can rewrite φi,j,k as a linear combination of φb in B
(i,j,k)
φ , i.e.

φi,j,k =
∑

φb∈B
(i,j,k)
φ

ε
(i,j,k)
φb

φb with the constraints

ε
(i,j,k)
φb

≥ 0 and
∑

φb∈B
(i,j,k)
φ

ε
(i,j,k)
φb

= 1. (7)

C(i,j,k) in Eq. (6) can also be represented as a linear combi-
nation of the costs with φb: Cφb . Therefore, the minimization
of Eq. (6) is formulated as

arg min

��
(i,j,k)∈ψ

�
φb∈B

(i,j,k)
φ

ε
(i,j,k)
φb

Cφb+

+λ
�

p∈I′

�
p′∈Np

������(i,j,k)∈ψ
ω

(i,j,k)

pp′

�
φb∈B

(i,j,k)
φ

ε
(i,j,k)
φb

φb

�����
2�

. (8)

The optimization in Eq. (8) with the constraints in Eq. (7)
is a linear programming problem [8]. Different methods can
be used to efficiently solve it. We chose the barrier method
[8] due to its high efficiency. In [10], integer programming
is used to solve a similar registration problem. However, in
that work, CP displacement takes value from quantized la-
bels. As shown by that paper, the number of labels influences
greatly the registration accuracy and is impossibly set to in-
finity. In contrast, our method is free from this limitation and
determines CP displacement as a continuous value.

3. RESULTS

The DCE-MR scans were acquired from 18 patients. Five
post-contrast scans were obtained after the injection of the
agent. The resolution is 0.70 × 0.70 × 3.75 mm3. In our
registration, we set the CPs’ spacing as 13mm.

To evaluate our new image similarity measure in sec 2.2
in handling the expanding/shrinking problem, we performed
the registration with the optimization in sec 2.3 to map the
post-contrast images on the pre-contrast images. The shrink-
ing/expanding effects were measured by the absolute percent-
age of the tumor volume changing relative to the original vol-
ume. We selected 48 pairs of pre-contrast and post-contrast
images, such that a wide range of tumor shapes, sizes, and
temporal intensity changes can be covered. The tumors were
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pre-contrast post-contrast SSD measure our measure

Fig. 2. Examples of registration results on DCE-MR breast
images with the SSD measure and our new similarity mea-
sure. The numbers of the absolute tumor shrinking/expanding
percentage are labeled on the corresponding image.

manually segmented by an experienced rater. From the ex-
periments, we found that the mean and standard deviation
(STD) of the percentages with SSD are 19.87% and 13.45%,
respectively, and in contrast, the mean and STD with our new
similarity measure are 0.04% and 0.01%, respectively. Our
new similarity measure is extremely efficient in handling the
shrinking/explanding problem. Some example images and the
corresponding results are shown in Fig. 2.

To show the efficiency of our new optimization tech-
nique in sec 2.3, we compared the registration accuracies
with the gradient decent method in [6]. We chose 16 pairs
of pre-contrast and post-contrast images for which the pa-
tient’s motion is negligible through visually checking the
intensity differences between them by an experienced rater.
We then added some artificial deformations on the post-
contrast images, constructed using the model in sec 2.1 with
CPs’ spacing 55mm. We added a motion on each CP with
a random displacement between 0mm and 8mm and along a
random direction in the 3D space. The registration accuracy
was then assessed by computing the mean and STD of the
absolute deformation errors of all voxels and over all image
pairs. From the results, we found that the mean and STD
of errors by the gradient decent method [6] are 8.7mm and
5.1mm, respectively, and in contrast, the values of our lin-
ear programming based optimization are 4.1mm and 3.2mm,
respectively. It means that our optimization technique can
obtain a more optimal solution.

Through the experiments, we found that the minimization
of Eq. (8) needs to be minimized for four times at most to get
an optimal solution.

4. CONCLUSIONS AND FUTURE WORK

We propose to use the robust estimation functions to mea-
sure the image similarity in registration and show that it can
efficiently handle the shrinking/expanding problem in tumor
caused by the temporal intensity changes in DCE-MR breast
images. We also reformulate the energy minimization in the

FFD B-spline based registration as recursively solving a lin-
ear programming problem, for which, a global optimization
can be obtained in each iteration, and a more optimal solu-
tion can be finally acquired, compared with the widely used
gradient decent based methods.

Our energy minimization strategy with linear program-
ming can be easily adjusted to other transformation model
like the thin-plate spline [11], etc. We will do experiments
to show the improvement in breast tumor diagnosis through
incorporating our registration approach.
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