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 Purpose: To correlate the parenchymal texture features at digital 
breast tomosynthesis (DBT) and digital mammography 
with breast percent density (PD), an established breast 
cancer risk factor, in a screening population of women.

 Materials and 
Methods: 

This HIPAA-compliant study was approved by the institu-
tional review board. Bilateral DBT images and digital mam-
mograms from 71 women (mean age, 54 years; age range, 
34–75 years) with negative or benign fi ndings at screening 
mammography were retrospectively collected from a sep-
arate institutional review board–approved DBT screening 
trial (performed from July 2007 to March 2008) in which 
all women had given written informed consent. Parenchy-
mal texture features of skewness, coarseness, contrast, 
energy, homogeneity, and fractal dimension were com-
puted from the retroareolar region. Principal component 
analysis (PCA) was applied to obtain orthogonal texture 
components. Mammographic PD was estimated with soft-
ware. Correlation analysis and multiple linear regression 
with generalized estimating equations were performed to 
determine the association between texture features and 
breast PD. Regression was adjusted for age to determine 
the independent association of texture to breast PD when 
age was also considered as a predictor variable.

 Results: Texture feature correlations to breast PD were stronger 
with DBT than with digital mammography. Statistically 
signifi cant correlations ( P   ,  .001) were observed for con-
trast ( r  = 0.48), energy ( r  =  2 0.47), and homogeneity 
( r  =  2 0.56) at DBT and for contrast ( r  = 0.26), energy 
( r  =  2 0.26), and homogeneity ( r  =  2 0.33) at digital mam-
mography. Multiple linear regression analysis of PCA tex-
ture components as predictors of PD also   demonstrated 
signifi cantly stronger associations with DBT. The asso-
ciation was strongest when age was also considered as 
a predictor of PD ( R  2  = 0.41 for DBT and 0.28 for digital 
mammography;  P   ,  .001).

 Conclusion: Parenchymal texture features are more strongly correlated 
to breast PD in DBT than in digital mammography. The au-
thors’ long-term hypothesis is that parenchymal texture anal-
ysis with DBT will result in quantitative imaging biomark-
ers that can improve the estimation of breast cancer risk.

 q  RSNA, 2011
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sition, offering the ability to analyze the 
fi broglandular tissue texture selectively 
( Fig 1  ). We performed this study to 
correlate parenchymal texture features 
seen at DBT and digital mammography 
with breast PD in a screening popula-
tion of women. Our hypothesis was that 
the superior parenchymal tissue visual-
ization with DBT will provide texture 
features that are more informative in 
characterizing breast parenchymal pat-
terns and ultimately result in more ac-
curate measures with which to estimate 
breast cancer risk. 

 Materials and Methods 

 Imaging 
 This study was in compliance with the 
Health Insurance Portability and Ac-
countability Act and received institu-
tional review board approval. Anony-
mized images from DBT and digital 
mammography were retrospectively col-
lected from a separate institutional re-
view board–approved DBT screening 
trial that was previously completed in 
our department (performed from July 
2007 to March 2008  ). Women who 

automation and are highly subjective to 
inter- and intrarater variability ( 19,20 ). 
Byng et al ( 21,22 ) showed that mam-
mographic texture analysis can be used 
to automate the analysis of breast 
density patterns. Manduca et al ( 23 ) 
demonstrated that mammographic tex-
ture features have similar odds ratios 
to those of breast PD and can help 
predict breast cancer risk at a similar 
magnitude. Studies with digitized mam-
mograms have also shown that mam-
mographic texture features can help dif-
ferentiate women who are carriers of 
BRCA1/2 from those at low risk for 
breast cancer ( 24–28 ). 

 Mammography, however, is limited 
in the performance of parenchymal tex-
ture analysis. Because mammography is 
a projection imaging technique, texture 
features refl ect an admixture of over-
lapping tissues, including fi broglandular, 
fatty, and superfi cial skin tissue layers 
( 29 ). Because the risk of breast cancer 
based on breast texture and/or density 
is mainly associated with the properties 
of fi broglandular tissue (ie, dense tis-
sue), the texture projected from the skin 
or the subcutaneous fat could be re-
garded as “noise” and potentially affect 
the information content of the computed 
texture features  . 

 Digital breast tomosynthesis (DBT) 
is an emerging radiographic imaging 
modality in which tomographic breast 
images are reconstructed from multiple 
low-dose projections acquired at differ-
ent angles of the x-ray tube ( 30–34 ). DBT 
alleviates the effect of tissue superpo-

             The assessment of breast cancer 
risk has become increasingly im-
portant for establishing screen-

ing recommendations ( 1–4 ) and form-
ing preventive strategies ( 5,6 ). Growing 
evidence suggests that mammographic 
breast density, in addition to affecting 
the sensitivity of mammography by ob-
scuring breast lesions ( 7 ), is a strong 
independent risk factor for breast can-
cer ( 8–12 ); in fact, it is the strongest 
known attributable risk factor after age 
( 13 ). Several studies have shown that the 
relative risk of breast cancer increases 
with increasing mammographic density 
( 9–12 ) and that breast density can be 
used to improve risk stratifi cation at 
the individual level by improving the 
discriminatory accuracy of breast can-
cer risk assessment models ( 14–17 ). 
Boyd et al ( 10,18 ) have established risk 
stratifi cation levels based on mammo-
graphic breast percent density (PD), 
as follows: 0%  ,  PD  ,  10%, relative 
risk = 1.2; 10%  �  PD  ,  25%, relative 
risk = 2.2; 25%  �  PD  ,  50%, relative 
risk = 2.4; 50%  �  PD  ,  75%, relative 
risk = 3.4; and 75%  �  PD  ,  100%, 
relative risk = 5.3. 

 Although useful for estimating the 
risk of breast cancer, the methods cur-
rently used to assess breast density lack 

 Implications for Patient Care 

 Parenchymal texture features at  n

DBT have the potential to be 
used as imaging biomarkers to 
identify women at high risk for 
breast cancer, so that customized 
screening protocols and individu-
alized risk reduction strategies 
may be implemented. 

 Parenchymal texture features  n

could be combined with breast 
density measures to provide a 
more comprehensive index for 
characterizing parenchymal pat-
tern complexity. 

 Advances in Knowledge 

 Computerized parenchymal tex- n

ture analysis can be used to 
characterize breast parenchymal 
patterns quantitatively on digital 
breast tomosynthesis (DBT) 
images. 

 Texture features at DBT are more  n

strongly correlated with breast 
density patterns than are those 
at digital mammography (Pearson 
correlation  r:   2 0.56  �   r  [DBT]  �  
0.48,  2 0.33  �   r  [digital mammog-
raphy]  �  0.26  ). 

 Parenchymal texture features  n

capture information different 
from that of breast density with 
respect to the complexity of the 
parenchymal pattern (linear 
regression  R 2  :  R  2  = 0.38 with 
DBT and 0.28  ,  1.0 with digital 
mammography). 
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 Mammographic Density Estimation 
 Breast PD was estimated by a medical 
physicist (P.R.B, with 10 years of expe-
rience in x-ray imaging physics, breast 
anatomy, and breast density estimation) 
( 35,36 ) from the postprocessed (Pre-
mium View) digital mammograms by 
using Cumulus (version 4.0; University of 
Toronto, Toronto, Ontario, Canada), a 
widely validated software used to esti-
mate mammographic density ( 10,37–39 ). 
Although Cumulus was originally de-
veloped for use with digitized screen-
fi lm mammograms, recent studies have 
also applied Cumulus to digital mam-
mograms to estimate cancer risk ( 36,
40,41 ). We have previously reported high 
intra- and interreader agreement of 
clinical radiologists when using Cumu-
lus to estimate breast PD from post-
processed digital mammograms ( 42 ). In 
addition, the difference in PD obtained 

processed with the Premium View algo-
rithm (GE Healthcare) to produce 12-
bit gray level postprocessed images. Of 
the 83 women originally enrolled in the 
trial, one was diagnosed with breast 
cancer and therefore excluded from our 
study. In addition, fi ve women had in-
complete imaging data (three unilat-
eral and two bilateral image data sets 
were missing), fi ve women had substan-
tial DBT reconstruction image artifacts 
within the retroareolar region (four of 
which were attributed to the presence 
of calcifi cations), and one woman had 
insufficient image quality. Therefore, 
these 11 women were also excluded 
(mean age, 54 years; age range, 40–77 
years), yielding a total of 71 women 
(mean age, 54 years; age range, 34–75 
years) with bilateral DBT images and 
digital mammograms available for retro-
spective analysis. 

participated in the trial were asymp-
tomatic volunteers who had presented 
for annual screening mammography, had 
given written informed consent before 
their participation, and had normal or 
benign results from screening. Bilateral 
imaging was performed with a DBT pro-
totype system (Senographe DS; GE 
Healthcare, Chalfont St Giles, England ) . 
The x-ray tube was rotated to acquire 
15 source projection images by varying 
the x-ray tube angle from  2 20° to +20° 
in increments of 2.65°. DBT source 
projections and the raw digital mammo-
grams were acquired with a resolution 
of 0.1 mm per pixel at 14-bit gray lev-
els. A fi ltered backprojection algorithm 
developed in our laboratory was used 
to reconstruct DBT images with 0.22-mm 
in-plane resolution at 15-bit gray levels 
with 1-mm tomographic section spac-
ing. The raw digital mammograms were 

 Figure 1 

  
  Figure 1:  Differences in parenchymal tissue texture visualization in a 56-year-old woman on  (a)  a digital mammogram, where 
parenchymal tissue layers are superimposed, and  (b, c)  DBT images, where the superfi cial skin layer, in which the skin pore 
texture is seen in  b , is separated from the deeper fi broglandular tissue layers, as seen in  c .   
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are provided in Appendix E1 (online). 
For the experiments reported herein, a 
representative value ( N g  /16) was selected. 

 Statistical Analysis 
 Correlation analysis and univariate lin-
ear regression were performed to de-
termine the association between the 
individual texture features and the cor-
responding breast PD estimates (Matlab 
R2010b; Mathworks, Natick, Mass). To 
investigate associations between tex-
ture feature combinations and breast 
PD, principal component analysis (PCA) 
was performed to construct orthogo-
nal texture components and remove 
multicolinearity effects ( 48 ). Texture 
features were normalized before PCA 
by using the  z  score ( 49 ). Multiple lin-
ear regression with a generalized esti-
mating equation ( 50,51 ) was applied 
to model the association between the 
orthogonal PCA texture components and 
breast PD. The generalized estimating 
equation was implemented by using the 
robust covariance matrix ( 52 ) to adjust 
for bilateral correlations of the PCA tex-
ture components in the regression anal-
ysis. Age was also evaluated as a predic-
tor of breast PD both independently and 
as an additional predictor in the multi-
variate models. The  R  2  and adjusted  R  2  
metrics were used to assess goodness of 
fi t. A  P  value threshold of .01 was used 
to determine statistically signifi cant dif-
ferences. The Akaike information cri-
terion ( 53 ) was used as a measure of 
goodness of fi t to compare the perfor-
mance between the different models. 
Bonferroni correction was considered 
to adjust for multiple comparisons in 
statistical signifi cance across the differ-
ent models ( P  = .01/5 = .002 with Bon-
ferroni adjustment). 

 Results 

 The computed breast PD varied from 
0.07% to 85.11%, with a mean of 
38.54%. For both digital mammogra-
phy and DBT, the strongest correla-
tions were observed for the Haralick 
co-occurrence texture features  —which 
were stronger with DBT than with digital 
mammography ( Table 1  ). Statistically 
signifi cant correlations ( P   �  .001) were 

distribution and has been used to assess 
parenchymal density ( 26,38 ). Coarseness 
refl ects the local granularity (ie, rough-
ness) in image texture and is based on 
the computation of the neighborhood 
gray tone difference matrix ( 26,44 ). 
Contrast, energy, and homogeneity, as 
originally proposed by Haralick et al 
( 45 ), require the computation of the 
gray-level spatial co-occurrence matrix. 
Contrast quantifi es variation in image 
intensity, providing a measure of gray-
level contrast between neighboring pix-
els over the entire image. Energy is a 
measure of texture uniformity of the 
gray-level spatial distribution. Homoge-
neity refl ects the heterogeneity of the 
texture pattern and decreases with con-
trast. Fractal dimension indicates the 
measure of self-similarity in the texture 
pattern and the overall texture rough-
ness at different scales ( 28,46 ). De-
tails of the mathematical notations and 
the computation of these texture fea-
tures have been previously published 
( 26,28 ), including in our preliminary 
study ( 35 ), and are provided in Appen-
dix E1 (online). 

 For the DBT ROIs, a feature was 
computed for each of the six texture de-
scriptors (ie, skewness, coarseness, con-
trast, energy, homogeneity, and fractal 
dimension) from each of the 26 tomo-
graphic sections of the three-dimensional 
ROI, resulting in a texture feature vec-
tor of 26  3  6 = 156. The average value 
over the 26 tomographic ROI sections 
was used as the representative feature, 
providing an estimate of the mean global 
texture within the ROI for each of the 
six main texture descriptors considered 
in our experiments. For the digital mam-
mography ROIs, the equivalent single-
valued texture feature was computed 
from the corresponding two-dimensional 
ROIs ( Fig 2  ). Gray-level quantization 
was implemented to optimize the com-
putation of the co-occurrence statis-
tics, as previously defi ned in the litera-
ture ( 23,24,47 ), to cover a wide range of 
spatial scales and feature strengths rel-
ative to noise. Briefl y, the initial range 
 N g   of gray-level values in each ROI was 
linearly reduced by uniformly dividing 
the gray-level range by a constant. Details 
of the gray-level quantization method 

from raw versus postprocessed digital 
mammograms is relatively small ( , 1%) 
compared with the validated Boyd risk 
categories  , indicating that image post-
processing is unlikely to have a substan-
tial effect on density-based breast can-
cer risk stratifi cation in clinical practice 
( 43 ). With use of Cumulus, the image 
background and pectoral muscle region 
are excluded and gray level intensity 
thresholds are manually defi ned to out-
line the fi broglandular tissue regions 
within the breast ( 38 ). Breast PD is 
then estimated as the percentage of the 
total breast area occluded by the seg-
mented fi broglandular tissue as follows: 
( A  D / A  B )  3  100%, where  A  D  and  A  B  rep-
resent the area of dense tissue and the 
total breast area, respectively. 

 Parenchymal Texture Analysis 
 Texture analysis was performed on all 
digital mammograms and DBT images 
within manually selected retroareolar 
regions of interest (ROIs). The place-
ment and physical dimensions of the 
ROIs were chosen on the basis of pre-
vious studies ( 24–28 ), which indicated 
that the retroareolar breast region can 
provide the most discriminative texture 
features for differentiating women at 
high risk for cancer from those at low 
risk. The ROIs were placed in the central 
breast region immediately behind the 
nipple, which is usually texturally dense 
owing to the prominence of the underly-
ing ductal network, and the placement 
was such that the subcutaneous fat re-
gion immediately under the skin was 
excluded. The ROIs used for DBT were 
2.5 cm 3  (116  3  116  3  26 voxels). The 
ROIs used for digital mammography 
were placed in identical spatial locations 
to those on corresponding DBT images 
and were 2.5 cm 2  (256  3  256 pixels). 

 Parenchymal texture descriptors of 
skewness, coarseness, contrast, energy, 
homogeneity, and fractal dimension were 
computed by using established comput-
erized methods ( 24–28 ). These descrip-
tors have been previously used to char-
acterize breast parenchymal patterns 
and have been shown to be predictive 
of the risk for developing breast cancer 
( 21–28 ). Briefl y, skewness refl ects the 
asymmetry of the gray-level pixel value 



84 radiology.rsna.org n Radiology: Volume 261: Number 1—October 2011

 BREAST IMAGING:  Parenchymal Texture at Digital Breast Tomosynthesis Kontos et al

observed for contrast ( r  = 0.48), en-
ergy ( r  =  2 0.47), and homogeneity ( r  = 
 2 0.56) with DBT and for contrast ( r  = 
0.26), energy ( r  =  2 0.26), and homoge-
neity ( r  =  2 0.33) with digital mammog-
raphy. Texture features at DBT showed 
stronger linear trends with the com-
puted breast PD values compared with 
those at digital mammography, as evi-
denced by the steeper slopes and higher 
 R  2  estimates ( Fig 3  ). Compared with the 
texture features at digital mammography, 
texture features at DBT had a stronger 
dependency on the different breast PD 

 Figure 2 

  
  Figure 2:  Examples of  (a)  digital mammograms and  (b)  corresponding DBT images in two 41-year-old women   with the same 
overall PD (45%) and different parenchymal patterns, as demonstrated by a range of different parenchymal texture descriptors in the 
retroareolar breast region. Top images are from one woman and bottom images are from another. For upper image in  a : skewness = 
0.161, coarseness = 2.773  3  10  2 4 , contrast = 1.607, energy = 0.018, homogeneity = 0.617, and fractal dimension = 2.538; for 
lower image in  a : skewness =  2 0.146, coarseness = 3.558  3  10  2 4 , contrast = 1.619, energy = 0.013, homogeneity = 0.616, and 
fractal dimension = 2.548. For upper image in  b : skewness = 0.051, coarseness = 0.0015, contrast = 588.06, energy = 7.383  3  
10  2 5 , homogeneity = 0.112, and fractal dimension = 2.835; for lower image in  b : skewness = 0.817, coarseness = 0.0016, 
contrast = 313.32, energy = 1.160  3  10  2 4 , homogeneity = 0.142, and fractal dimension = 3.123.   

 Table 1 

 Correlation between Parenchymal Texture Features and Breast PD 

Feature

Digital Mammography DBT

 r  Value *  P  Value  r  Value *  P  Value

Skewness  2 0.21 .01  2 0.23 .007
Coarseness  2 0.02 .81  2 0.18 .02
Contrast 0.26 .001 0.48  , .001
Energy  2 0.26 .001  2 0.47  , .001
Homogeneity  2 0.33  , .001  2 0.56  , .001
Fractal dimension 0.14 .09 0.10 .23

* Data are Pearson correlation coeffi cients.
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categories, as evidenced by the steeper 
linear trends and higher  R  2  estimates 
( Fig 4  ). 

 When we investigated the associa-
tion between combinations of texture 
features and breast PD, the DBT mul-
tiple linear regression models demon-
strated stronger associations between 
the PCA texture components and breast 
PD than did the digital mammography 
models, as evidenced by the lower mean 
square error of the residual fi ts (mean 
square error for digital mammogra-
phy: 354; mean square error for DBT: 
298.16), the higher  R  2  estimates ( R  2  = 
0.28 for digital mammography and 0.38 
for DBT), and the signifi cant  P  values 

 Figure 3 

  
  Figure 3:  Scatterplots of contrast and homogeneity versus breast PD for digital mammography ( DM ) and DBT. Fitted linear regression lines 
are also shown. Texture features have stronger linear trends over the range of breast PD estimates with DBT than with digital mammography.   

( P  = .21 for digital mammography and 
 , .001 for DBT). 

 The results of the different multiple 
regression models correlating PCA tex-
ture components and breast PD for digi-
tal mammography and DBT are shown 
in  Table 2   (details about the model co-
effi cients are provided in Appendix E1, 
online  ). The model including only the 
digital mammography PCA texture com-
ponents as PD predictors was not sta-
tistically signifi cant ( R  2  = 0.28;  P  = 0.21, 
analysis of variance [ANOVA]). When 
age was added as an additional predictor 
of breast PD, the regression model was 
statistically signifi cant ( R  2  = 0.28,  P  = 
.002, ANOVA) and the fi fth and sixth   

PCA texture components were identi-
fi ed as the most signifi cant predictors 
( P  = .02 for the fi fth PCA component; 
 P   ,  .001 for the sixth PCA component) 
in addition to age ( P  = .005). 

 Both of the corresponding regres-
sion models for DBT were statistically 
signifi cant ( R  2  = 0.38 for the model in-
cluding only PCA texture components 
as predictors,  R  2  = 0.41 for the model 
with PCA components and age as pre-
dictors;  P   ,  .001, ANOVA). In the model 
including only the PCA texture compo-
nents as predictors of breast PD, the 
fi rst two components were identifi ed as 
the most signifi cant ( P  = .002 for the 
fi rst component,  P   ,  .001 for the second 
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component). When age was included as 
an additional predictor of breast PD, 
the fi rst two PCA texture components 
were again identifi ed as the most sig-
nifi cant ( P  = .003 for the fi rst compo-
nent,  P   ,  .001 for the second compo-
nent) in addition to age ( P   ,  .001), and 
the observed predictive association was 
stronger. 

 For comparison, regression was also 
performed with age as the only predic-
tor of breast PD ( P   ,  .001, ANOVA). 
As shown in  Table 2 , the observed as-
sociations between combinations of the 
PCA texture features and age as predictors 

 Figure 4 

  
  Figure 4:  Box plots, with fi tted linear regression lines, of contrast and homogeneity at digital mammography ( DM ) and DBT versus increasing 
categories of breast PD, as established by Boyd et al ( 10,18   ). Texture features at DBT have a stronger dependency on the different categories of 
breast PD than do those at digital mammography.   

 Table 2 

 Multiple Linear Regression Models of PCA Texture Components and Age as Predictors 
of Breast PD 

Model * Mean Square Error  R  R   2 Adjusted  R   2  P  Value AIC  †  

DM-I 354.00 0.53 0.28 0.19 .21 847.44
DM-II 325.82 0.53 0.28 0.25 .002 837.66
DBT-I 298.16 0.61 0.38 0.32  , .001 823.06
DBT-II 269.08 0.64 0.41 0.38  , .001 810.49
AGE 395.55 0.30 0.09 0.09  , .001 853.20

* DM-I = digital mammography model with only PCA texture components as predictors; DM-II = digital mammography model 
with PCA texture components and age as predictors; DBT-I = DBT model with only PCA texture components as predictors; 
DBT-II = DBT model with PCA texture components and age as predictors; AGE = model with age as the only predictor.

 †  AIC = Akaike information criterion.
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the statistically signifi cant  P  values ( P   ,  
.001,  Fig 5  ). The observed associations 
with both digital mammography and 
DBT models are again stronger when 
age was added as an additional predic-
tor of the breast PD category of risk. 

 Discussion 

 Our results demonstrate that parenchy-
mal texture features at DBT are more 
strongly correlated with breast PD than 

considered at a signifi cance level of  P  = .01 
for the fi ve models compared, all mod-
els, except the one with only PCA texture 
components as predictors, retained sta-
tistical signifi cance ( P  = .002 with Bon-
ferroni adjustment). 

 Breast PD estimates obtained with 
the DBT regression models were more 
strongly associated with the different 
categories of breast PD, as evidenced 
by the steeper slopes of the linear re-
gression fi ts, the higher  R  2  values, and 

of breast PD were stronger than the cor-
responding association when age alone 
was considered as the only predictor 
of breast PD ( R  2  = 0.09) for both digi-
tal mammography and DBT. The DBT 
model incorporating PCA texture com-
ponents and age as predictor variables 
of breast PD achieved the best perfor-
mance based on the Akaike informa-
tion criterion ( Table 2 , lowest Akaike 
in formation criterion = 810.49). Note that 
even when Bonferroni correction was 

 Figure 5 

  
  Figure 5:  Box plots, with fi tted linear regression lines, of breast PD estimated with multiple linear regression models versus increasing 
categories of breast PD, as established by Boyd et al ( 10,18 ). The DBT model estimates are more strongly associated with the different breast 
PD categories of risk than are the digital mammography model estimates.  DBT-I  = DBT model with only PCA texture components as predictors, 
 DBT-II  = DBT model with PCA texture components and age as predictors,  DM-I  = digital mammography model with only PCA texture compo-
nents as predictors,  DM-II  = digital mammography model with PCA texture components and age as predictors.   
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the same distribution of breast den-
sity in BRCA1/2 carriers and the gen-
eral population ( 60 ), mammographic 
texture features can help differentiate 
the patterns in BRCA1/2 carriers from 
those in women at low risk for cancer 
( 24–28 ). A prospective clinical trial with 
digital mammography, DBT, and long-
term patient follow-up will enable es-
timation of the relative risk of breast 
cancer and corresponding odds ratios 
associated with parenchymal texture in 
digital mammography versus DBT and 
will also allow the investigation of the 
attributable predictive value of various 
parenchymal texture descriptors when 
breast density measures are also consid-
ered in risk estimation. In our study, 
the observed associations between pa-
renchymal texture features and breast 
PD were stronger when age was added 
as a predictor of PD ( R  2  = 0.38 with the 
DBT model when only PCA texture com-
ponents were used as predictors,  R  2  = 
0.41 with DBT model when PCA compo-
nents and age were used as predictors, 
 P   ,  .001), indicating the need to con-
sider additional patient risk factors to 
fully predict risk. 

 Our conclusions are limited by the 
use of a specifi c DBT prototype imag-
ing system. Considering that image gray 
levels in DBT may be affected by fac-
tors such as the image acquisition geom-
etry and the reconstruction algorithm 
( 33,61   ), future work must investigate 
approaches to standardize the computed 
texture features across imaging plat-
forms and processing algorithms. Pre-
liminary studies with simulated phan-
toms have shown that although the 
angular range of the x-ray tube rotation 
and the number of source projections 
in DBT can affect the distributions of 
the computed texture features, the in-
dividual values are highly correlated 
and appear to follow specifi c nonlinear 
trends ( 62 ). Therefore, standardization 
of computerized descriptors should 
be feasible through investigation and, 
therefore, ultimately within reach of 
wide-scale dissemination. The concur-
rence of results, however, between our 
current study and the previous pilot 
study ( 35 ) despite the use of different 
imaging systems further validates the 

risk. Although signifi cant associations 
were detected between the extracted 
parenchymal texture features and breast 
PD, the observed correlations indi-
cate that the variability in breast PD 
does not appear to be fully accounted 
for by the texture feature components, 
as evidenced by the  R  2  values of the 
corresponding regression models ( R  2  = 
0.28 with the digital mammography 
model when only PCA texture compo-
nents were used as predictors,  R  2  = 
0.38 with use the DBT model when only 
PCA texture components were used as 
predictors). 

 Currently, there is no standard lexi-
con that refl ects parenchymal complexity 
completely; in mammography, breast 
density is the only image-based descrip-
tor in the standard clinical Breast Im-
aging Reporting and Data System lexi-
con ( 57 ). Breast PD is a measure of the 
amount of fi broglandular tissue in the 
breast. Parenchymal texture features char-
acterize the complexity of the paren-
chymal tissue composition, as refl ected 
by the underlying epithelial and stromal 
breast tissue components ( 58,59 ), by 
quantifying properties of the distribu-
tion of the gray-level values in the im-
age. Therefore, these textural features 
capture different information than that 
provided by breast PD   with respect to 
the complexity of the parenchymal pat-
tern and could ultimately be combined 
with breast density measures to provide 
more comprehensive imaging descrip-
tors of breast tissue composition and 
complexity. 

 The research question yet to be fully 
investigated is to what extent paren-
chymal texture descriptors can comple-
ment breast density measures in breast 
cancer risk estimation. Most studies pub-
lished to date addressing this question 
have used digitized screen-fi lm mammo-
grams for parenchymal texture analysis 
( 23,55,56 ). Manduca et al ( 23 ) showed 
that parenchymal texture features can 
help predict breast cancer risk with simi-
lar odds ratios to that of breast den-
sity and that these features retain sta-
tistical signifi cance even when breast 
density is included in a risk prediction 
model. Studies with BRCA1/2 carri-
ers have shown that, despite  observing 

are those at digital mammography, sug-
gesting that DBT image texture analy-
sis can provide more informative imag-
ing features with which to characterize 
parenchymal patterns. Our results from 
this screening population of women are 
in agreement with data published from 
our previous pilot study with a diagnos-
tic population of women at high risk for 
breast cancer ( 35 ). Given that breast 
cancer risk assessment is likely to have 
value primarily in the screening set-
ting for prevention and early detection, 
this confi rmatory study with a screen-
ing population of women investigates 
the potential impact of our previously 
reported techniques in the actual clini-
cal population of interest. 

 In addition, in this study we built on 
our previous investigation by performing 
multivariate analysis to determine the 
combined effect of the parenchymal tex-
ture components, rather than just the 
individual components reported previ-
ously, in association with parenchymal 
density patterns. We also considered the 
effect of age both in combination with 
the extracted image texture features and 
alone (ie, univariate model) as a predictor 
of density (ie, risk). We believe that this 
multivariate analysis will pave the way 
for an integrated modeling approach that 
will incorporate demographics, familiar 
risk factors, and novel imaging mark-
ers into an augmented breast cancer 
risk assessment model for the general 
population. 

 We attribute the stronger linear as-
sociation of the DBT texture features 
with breast PD to the tomographic sep-
aration of the parenchymal tissue layers 
in DBT. By alleviating the effect of tis-
sue superposition in digital mammogra-
phy, DBT offers the ability to analyze 
the fi broglandular tissue texture selec-
tively, therefore providing features that 
are more strongly associated with the 
underlying fi broglandular (ie, dense) tis-
sue patterns. 

 Starting with the pioneering work of 
Wolfe in 1976 ( 54 ), several studies have 
demonstrated an association between 
breast parenchymal pattern complexity 
and breast cancer risk ( 10–12,55,56 ). 
In our study, breast PD was used as a 
short-term surrogate of breast cancer 



Radiology: Volume 261: Number 1—October 2011 n radiology.rsna.org 89

 BREAST IMAGING:  Parenchymal Texture at Digital Breast Tomosynthesis Kontos et al

    7 .  Mandelson   MT ,  Oestreicher   N ,  Porter   PL , 
 et al .  Breast density as a predictor of mam-
mographic detection: comparison of interval- 
and screen-detected cancers .  J Natl Cancer 
Inst   2000 ; 92 ( 13 ): 1081 – 1087 .  

    8 .  Boyd   NF ,  Martin   LJ ,  Bronskill   M ,  Yaffe   MJ , 
 Duric   N ,  Minkin   S .  Breast tissue compo-
sition and susceptibility to breast cancer . 
 J Natl Cancer Inst   2010 ; 102 ( 16 ): 1224 – 1237 .  

    9 .  Martin   LJ ,  Boyd   NF .  Mammographic density: 
potential mechanisms of breast cancer risk 
associated with mammographic density—
hypotheses based on epidemiological evi-
dence .  Breast Cancer Res   2008 ; 10 ( 1 ): 201 .  

    10 .  Boyd   NF ,  Guo   H ,  Martin   LJ ,  et al .  Mam-
mographic density and the risk and detec-
tion of breast cancer .  N Engl J Med   2007 ; 
356 ( 3 ): 227 – 236 .  

    11 .  Vachon   CM ,  van Gils   CH ,  Sellers   TA ,  et al . 
 Mammographic density, breast cancer risk 
and risk prediction .  Breast Cancer Res   2007 ;
 9 ( 6 ): 217 .  

    12 .  Harvey   JA ,  Bovbjerg   VE .  Quantitative assess-
ment of mammographic breast density: re-
lationship with breast cancer risk .  Radiology  
 2004 ; 230 ( 1 ): 29 – 41 .  

    13 .  Tice   JA ,  Kerlikowske   K .  Screening and pre-
vention of breast cancer in primary care . 
 Prim Care   2009 ; 36 ( 3 ): 533 – 558 .  

    14 .  Tice   JA ,  Cummings   SR ,  Ziv   E ,  Kerlikowske   K . 
 Mammographic breast density and the Gail 
model for breast cancer risk prediction in 
a screening population .  Breast Cancer Res 
Treat   2005 ; 94 ( 2 ): 115 – 122 .  

    15 .  Tice   JA ,  Cummings   SR ,  Smith-Bindman   R , 
 Ichikawa   L ,  Barlow   WE ,  Kerlikowske   K . 
 Using clinical factors and mammographic 
breast density to estimate breast cancer 
risk: development and validation of a new 
predictive model .  Ann Intern Med   2008 ;
 148 ( 5 ): 337 – 347 .  

    16 .  Barlow   WE ,  White   E ,  Ballard-Barbash   R , 
 et al .  Prospective breast cancer risk predic-
tion model for women undergoing screen-
ing mammography .  J Natl Cancer Inst   2006 ;
 98 ( 17 ): 1204 – 1214 .  

    17 .  Chen   J ,  Pee   D ,  Ayyagari   R ,  et al .  Project-
ing absolute invasive breast cancer risk in 
white women with a model that includes 
mammographic density .  J Natl Cancer Inst  
 2006 ; 98 ( 17 ): 1215 – 1226 .  

    18 .  Boyd   NF ,  Byng   JW ,  Jong   RA ,  et al .  Quantita-
tive classifi cation of mammographic densi-
ties and breast cancer risk: results from the 
Canadian National Breast Screening Study . 
 J Natl Cancer Inst   1995 ; 87 ( 9 ): 670 – 675 .  

    19 .  Nicholson   BT ,  LoRusso   AP ,  Smolkin   M , 
 Bovbjerg   VE ,  Petroni   GR ,  Harvey   JA . 

risk could be of great clinical advantage in 
reaching the goal of customizing screen-
ing recommendations on the basis of 
personal risk levels, tailoring individ-
ual treatments, and forming preventive 
strategies—especially for women at a 
higher risk of breast cancer. 
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