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ABSTRACT 
 
Digital breast tomosynthesis (DBT) is an emerging 3D x-ray imaging modality in which tomographic sections of the 
breast are generated from a limited range of tube angles.  Because non-normal x-ray incidence causes the image of an 
object to be translated in sub-pixel increments with increasing projection angle, it is demonstrated in this work that DBT 
is capable of super-resolution (i.e., sub-pixel resolution).  The feasibility of super-resolution is shown with a commercial 
DBT system using a bar pattern phantom.  In addition, a framework for investigating super-resolution analytically is 
proposed by calculating the reconstruction profile for a sine input whose frequency is greater than the alias frequency of 
the detector.  To study the frequency spectrum of the reconstruction, its continuous Fourier transform is also calculated.  
It is shown that the central projection cannot properly resolve frequencies higher than the alias frequency of the detector.  
Instead, the central projection represents a high frequency signal as if it were a lower frequency signal.  The Fourier 
transform of the central projection is maximized at this lower frequency and has considerable spectral leakage as 
evidence of aliasing.  By contrast, simple backprojection can be used to image high frequencies properly.  The Fourier 
transform of simple backprojection is correctly maximized at the input frequency.  Adding filters to the simple 
backprojection reconstruction smoothens pixilation artifacts, and reduces spectral leakage found in the frequency 
spectrum.  In conclusion, this work demonstrates the feasibility of super-resolution in DBT experimentally and provides 
a framework for characterizing its presence analytically. 
 
Keywords: Digital breast tomosynthesis (DBT), bar pattern phantom, aliasing, super-resolution, image reconstruction, 
filtered backprojection (FBP), Fourier transform, spectral leakage. 

1. INTRODUCTION 
 
Digital breast tomosynthesis (DBT) is a 3D imaging modality in which projections of the compressed breast are acquired 
over a limited range of x-ray tube angles.  Using digital image reconstruction techniques, tomographic sections can be 
generated at all depths of the breast volume.  Preliminary studies have demonstrated that DBT has greater sensitivity and 
specificity for early cancer detection in women relative to conventional 2D digital mammography (DM) [1]. 
 
In DBT, the projection images are sampled by a digital detector before being filtered and backprojected to generate the 
reconstruction.  Because the samplings differ by sub-pixel increments, it will be demonstrated in this work that DBT has 
the potential for super-resolution (i.e., sub-pixel resolution).  Super-resolution is a term which describes the ability to 
resolve frequencies higher than the alias frequency of the detector, or the frequency above which high frequency 
information is represented as if it were low frequency information.  Super-resolution has been well-described in a 
number of applications involving reconstruction from projections [2], including forensics, satellite imaging, 
computerized tomography (CT), and magnetic resonance imaging (MRI), but to our knowledge, its potential in DBT has 
not yet been identified. 
 
In breast imaging, super-resolution has applications in the visualization of small microcalcification clusters which are an 
early indication of cancer.  As a result, an understanding of super-resolution and an analysis of how to optimize its 
presence may prove to be important for designing the highest quality DBT systems.  Although it would seem easy to 
improve spatial resolution simply by reducing the pixel size, there are practical limits as to the smallest pixel size that 
can be manufactured.  In addition, smaller pixels generate increased shot noise that lowers image quality, and the number 
of photons per pixel is reduced. 
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Using a lead phantom with etched line pairs (lp), we have experimentally verified the feasibility of super-resolution in 
DBT.  The bar patterns range in frequency from 1 lp/mm to 10 lp/mm in 1 lp/mm increments, and each frequency spans 
a 6.0 mm length.  The lead phantom was taped underneath the compression paddle (18.0 cm × 24.0 cm) of a Selenia 
Dimensions integrated multi-mode mammography and tomosynthesis x-ray system (Hologic Inc., Bedford, MA) and 
placed 4.0 cm above the breast support.  With the phantom positioned at an approximately 3° angle relative to the 
detector lattice, 15 projections were acquired at 30 kV and 14 mAs with a W/Al target-filter combination and a 0.3 mm 
focal spot.  The mAs setting was determined after acquiring photo-timed images of the phantom positioned on top of 
stacked acrylic blocks of varying thicknesses (2.0, 4.0, and 6.0 cm).  The optimal mAs for imaging the bar pattern 
phantom alone was found by fitting the photo-timed mAs versus the acrylic thickness and then extrapolating for 0 cm 
acrylic thickness (graph not shown). 
 
Reconstruction was subsequently performed using a commercial backprojection filtering (BPF) algorithm developed by 
Real Time Tomography, LLC (Villanova, PA).  The filter parameters were representative of those used clinically.  In the 
plane of reconstruction, the pixel size of the reconstruction grid (11.5 μm) was specified to be considerably smaller than 
that of the detector elements (140 μm), so that the alias frequency of the reconstruction grid (43.5 lp/mm) was 
significantly higher than the alias frequency of the detector (3.57 lp/mm). 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. A lead bar pattern phantom was imaged with a Selenia Dimensions x-ray unit.  The BPF reconstruction (right image) can 
clearly distinguish higher spatial frequencies that the central projection (left image), providing experimental evidence of DBT’s 
potential for super-resolution. 
 
As shown in Figure 1, one can clearly see frequencies up to 3 lp/mm in the central projection without any evidence of 
aliasing.  This finding is expected, since these frequencies are smaller than the alias frequency 0.5a-1 (3.57 lp/mm), 
where a denotes the detector element length (140 μm).  At the next highest frequency, 24 line pairs spanning 6.0 mm can 
be observed, accurately corresponding to 4 lp/mm; however, their orientation is skewed and Moiré patterns [3] are 
present.  Finally, at 5 lp/mm, fewer line pairs are resolved than expected and the line pairs are displayed at an erroneous 
oblique orientation, indicating that the pattern is aliased. 
 
By contrast, the BPF reconstruction clearly resolves frequencies higher than the detector alias frequency of 3.57 lp/mm.  
In fact, up to 6 lp/mm (36 line pairs spanning 6.0 mm) can be observed at the correct orientation with no Moiré pattern.  
At 7 lp/mm, however, the signal is too faint to distinguish the pattern.  This finding arises from the fact that the 
modulation of the reconstruction is reduced at higher frequencies. 
 

(b) BPF Reconstruction (a) Central Projection 

A) Central Projection B) BPF Reconstruction 
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2. METHODS 
 
2.1 Projection Images of a Sinusoidal Input 
An analytical framework for investigating DBT’s potential for super-resolution is now proposed by studying the 
reconstruction of a sinusoidal input whose frequency is greater than the alias frequency of the detector.  Accordingly, 
suppose that a 2D rectangular sheet with infinite extent in the +x and –x directions has a linear attenuation coefficient 
μ(x, z) which varies sinusoidally with position x.  Although an actual input to a clinical breast imaging system would be 
3D, a 2D construct is a useful pedagogical tool for modeling detector measurements along the chest wall.  A study of 
measurements made in directions perpendicular to the chest wall is reserved for future work.  As shown in Figure 2, the 
rectangular sheet is positioned between z = z0 – ε/2 and z = z0 + ε/2, where z0 is the central height of the sheet above the 
detector and ε is the sheet’s thickness.  The frequency of the waveform may be denoted ν0, and its translational shift 
relative to the origin O (i.e., the center of the detector) may be denoted x0. 
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For convenience, the attenuation coefficient is normalized by a factor of 1/ε so that the total attenuation found by 
integrating along the z direction is simply cos[2πν0(x – x0)] for all ε.  Provided that |z – z0| ≤ ε, the continuous Fourier 
transform (F) of Eq. (1) along the x direction peaks at the frequencies ν = ±ν0 and vanishes at all other frequencies [4]. 
 

 
0 0 0 02 2

2 0
0 0( , ) ( , ) ( ) ( ) rect

2 2

i x i x
i x z ze ez x z e dx

π ν π ν
π νμ ν μ δ ν ν δ ν ν

ε ε ε

−∞ −

−∞

⎡ ⎤ −⎛ ⎞= ⋅ = + + − ⋅⎢ ⎥ ⎜ ⎟
⎝ ⎠⎣ ⎦

∫F      (2) 

Typically, only the positive frequency is of interest in an experimental measurement.  Thus, although it is non-physical 
for an attenuation coefficient to vary between negative and positive values, formulating μ(x, z) by Eq. (1) is helpful for a 
thought experiment in interrogating the reconstruction of a single input frequency. 
 
Super-resolution in DBT arises because sub-pixel shifts in the image of the object occur with increasing projection angle.  
The translational shift for each projection is now determined from the x-ray acquisition geometry diagrammed 
schematically in Figure 2.  The most general case of a divergent x-ray beam and a rotating detector is analyzed. 
 

 
 
Figure 2. A schematic diagram of the DBT acquisition geometry for a divergent x-ray beam and a rotating detector is shown.  The 
input has a linear attenuation coefficient which varies sinusoidally along the direction of the chest wall. 
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In acquiring the nth projection image, the point-like x-ray source rotates around the midpoint of the detector with the 
nominal projection angle ψn, and the detector rotates at the angle γn relative to the same point.  The two parameters ψn 
and γn are determined from the nominal angular spacing Δψ and the detector gear ratio g by the relations 
 

 n nψ ψ= ⋅ Δ ,     n
n g

ψγ = .            (3) 

 
For N total projections, the index n varies from –(N – 1)/2 to (N – 1)/2, and the special case n = 0 defines the central 
projection.  Positive directionalities of the angle of x-ray incidence and the rotation of the detector are defined as the 
ones shown in Figure 2.  Now, in applying trigonometry to triangles BEF, ADF, and CFO, one finds 
 

 0EF sin tan( )
2 n n nz rε γ θ γ⎛ ⎞= − − +⎜ ⎟

⎝ ⎠
,     0DF sin tan( )

2 n n nz rε γ θ γ⎛ ⎞= + − +⎜ ⎟
⎝ ⎠

,     CF cos nr γ= ,                       (4) 

 
where r measures position along the detector relative to the COR.  Assuming that x rays travel in straight lines from the 
point of creation to the point of incidence on the detector, one can show that the angle of incidence θn relative to the 
normal to the detector varies with r as 
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n n
n n

n n

h r
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where h is the source-to-COR distance.  The displacements x1 and x2 in Figure 2 can therefore be determined from the 
relations 
 

 1 CF DF n nx rρ λ += − = − ,     2 CF EF n nx rρ λ −= − = − ,                          (6) 
 
where 
 

 cos sin( ) tan( )n n n n nρ γ γ θ γ≡ + + ,     0 tan( )
2n n nz ελ θ γ± ⎛ ⎞≡ ± +⎜ ⎟

⎝ ⎠
.       (7) 

 
Importantly, x1 and x2 define the x coordinates of the entrance and exit points of the x ray traveling through the object 
and thus determine the path length Ln for the nth projection.  Total attenuation may now be calculated as 
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Eq. (9) provides an expression for signal intensity versus position r along the detector, assuming that the detector is non-
pixilated and has a modulation transfer function (MTF) of unity at all frequencies and all values of θn.  An amorphous 
selenium (a-Se) photoconductor operated in drift mode is a good approximation for a detector with these properties.  To 
justify this claim, recall the analytical model of a-Se proposed by Que and Rowlands [5].  Their work calculates the MTF 
degradation that occurs at each frequency with increasing projection angle, and demonstrates that the degradation is 
minimal for detector positions along the chest wall.  For example, using their model, one can show that the MTF at the 
corner of the chest wall side of the detector (θn = 11.6°) in the Selenia Dimensions system for 200 μm thick a-Se is 
96.6% at 5.0 lp/mm assuming 20 keV x rays.  Since the angle of incidence deviates less considerably from the normal at 
positions closer to the COR, the MTF must be no smaller than 96.6% at all values of r.  Consequently, for the purpose of 
this work, it is reasonable to neglect the MTF degradation that occurs due to oblique x-ray incidence on the detector. 
 
In a clinical setting, the a-Se x-ray converter is often placed in electrical contact with a large area plate of amorphous 
silicon (a-Si) in which a thin-film transistor (TFT) array samples the detector signal in pixels (i.e., detector elements).  
Using Eq. (9), the logarithmically-transformed signal in the mth detector element for the nth projection is calculated as 
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where a denotes the length of the detector elements, which are taken to be centered on r = ma.  The detector element at 
the center of rotation (COR) may be defined as the one corresponding to m = 0.  Because the angle of incidence varies 
minimally along the length of a single detector element, the integral of Eq. (10) can be calculated by approximating the 
angle of incidence θn with its value at the center of the detector element.  Under this approximation, it follows that 
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where 
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=
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The quantities ρmn, and mnλ ±  may be defined similarly by evaluation at r = ma.  Hence, for the nth projection, the raw 
signal Sμ(r, n) and the Radon transform Rμ(t, n) are determined from 
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where t denotes the affine parameter [6, 7].  The Radon transform differs from the raw signal by the use of a secant term. 
 
2.2 Filtered Backprojection (FBP) Reconstruction from the Projections 
The reconstructed attenuation coefficient can now be determined by filtering the Radon transform with the function φ(t) 
and backprojecting the result along the angular ray of incidence [6, 7].  The specific formula for the filter φ(t) will be 
addressed in the next section.  Assuming that the reconstruction grid is infinitesimally fine (i.e., non-pixilated), the 
filtered backprojection (FBP) reconstruction is 
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In Eq. (14), μFBP denotes the reconstructed linear attenuation coefficient, ∗  denotes the convolution operator, and B 
denotes the backprojection operator.  As shown in Eq. (15), backprojection may be performed for each of the n 
projections using the primed coordinate system in which the nx′  axis is parallel to the rotated detector and the nz′  axis is 
perpendicular to the rotated detector.  The matrix transformation from the ( , )n nx z′ ′  coordinate system to the (x, z) 
coordinate system generates the transition from Eq. (15) to Eq. (16). 
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A special case of Eq. (16) is simple backprojection (SBP) reconstruction. 
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With SBP, the filter φ effectively becomes a delta function in the spatial domain and a constant in the frequency domain. 
 
2.3 Formulation of the Reconstruction Filter 
Following Zhao’s linear systems theory for DBT [8], a ramp (RA) filter should be applied to the Radon transform of 
each projection image to reduce the low frequency detector response [9].  The filter is truncated at the spatial frequencies 
ν = –ξ and ν = +ξ in the Fourier domain. 
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The spatial representation φRA(t) of the RA filter is determined by its inverse Fourier transform [4].   
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Using this result, the convolution in Eq. (16) can be calculated. 
 

 

[ ]
[ ]

[ ][ ]RA 2

cos( ) cos( cos )cos 2 ( cos ) 1

2( cos )sin( cos )sin 2 ( cos )sec( ) rect
2 ( 1/ 2) cos ( 1/ 2) cos

mn mn mn

mn mn mnmn

mn mn

a a t ma

t ma a t mat mat
a t m a t m a

θ π ξ θ πξ θ

θ π ξ θ πξ θθφ
π θ θ

⎡ ⎤⎡ ⎤− −⎣ ⎦⎢ ⎥
⎢ ⎥+ − −−⎛ ⎞ ⎣ ⎦∗ =⎜ ⎟ − − − +⎝ ⎠

  (21) 

 
Since noise tends to occur at high frequencies, a spectrum apodization (SA) filter is often applied in addition to the RA 
filter in order to reduce the high frequency detector response.  Following Zhao’s approach, we use a Hanning window 
function as the SA filter. 
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According to the convolution theorem [4], the net filter is thus 
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The convolution of the net filter in Eq. (23) with the rect function in Eq. (16) can be performed in closed form similar to 
Eq. (21).  For the sake of brevity, this result is omitted. 
 
2.4 Fourier Spectra of the DBT Images 
The continuous Fourier transform of the input waveform in the x direction peaks at the frequencies ν = ±ν0 and vanishes 
at all other frequencies provided that |z – z0| ≤ ε.  To investigate whether the frequency spectra of the DBT images 
possess this expected dependency on ν0, continuous Fourier transforms may be calculated.  The continuous Fourier 
transform of an individual projection is determined from Eq. (13) as 
 

 2 2( )( , ) ( , ) sinc( ) ( , )i r ima

m

n r n e dr a a m n eπ ν π νμ ν μ ν μ
∞ − −

−∞
= ⋅ = ⋅ ⋅ ⋅∑∫F S S D ,     sin( )sinc( ) uu

u
π

π
≡ ,                    (24) 

 
and the continuous Fourier transform for SBP reconstruction is determined from Eq. (18) as 
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To calculate the continuous Fourier transform for FBP reconstruction 
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one must apply the convolution theorem in conjunction with Eq. (16). 

3. RESULTS 
 
DBT image acquisition is now simulated along the chest wall of a Selenia Dimensions detector with 15 projections taken 
at a nominal angular spacing (Δψ) of 1.07°, assuming h = 70.0 cm, x0 = 0 mm, z0 = 25.0 mm, ε = 0.5 mm, a = 140 μm, 
and ν0 = 0.7a-1 (5.0 lp/mm).  To illustrate DBT’s potential for super-resolution, the input frequency has been specified to 
be higher than the detector alias frequency 0.5a-1 (3.57 lp/mm).  In addition, the distance z0 has been chosen so that it 
corresponds to the central height within a 5.0 cm breast volume, which would be typical for many women. 
 
3.1 Individual DBT Projections 
In Figure 3, signal is plotted versus position r and the modulus of its Fourier transform is plotted versus frequency ν for 
the central projection (n = 0) and the most oblique projection (n = 7).  The two projections are similar in that they both 
represent a high frequency input as if it were a lower frequency input.  For this reason, the major peak in the Fourier 
transform of a single projection does not occur at the input frequency 5.0 lp/mm but instead occurs at a lower frequency.  
Both projections also have considerable spectral leakage as evidence of aliasing. 
 
The two DBT projections and their Fourier transforms are also plotted in Figure 3 for an infinite source-to-COR distance 
h with no change in the value of any of the other parameters.  This limiting case is illustrative as it effectively transforms 
the divergent x-ray beam geometry into a parallel x-ray beam geometry.  As such, the angle of incidence relative to the 
normal to the detector does not vary with position r by Eq. (5) but instead is always ψn – γn for all values of r.   
 
In the parallel beam geometry, the central projection represents the input frequency ν0 as if it were a-1 – ν0 or 0.3a-1.  As a 
result, the Fourier transform has a major peak at the frequency 0.3a-1 (2.14 lp/mm), and has minor alias peaks at 0.7a-1 
(5.0 lp/mm), 1.3a-1 (9.29 lp/mm), and 1.7a-1 (12.14 lp/mm).  Unlike the parallel beam geometry, the divergent beam 
geometry magnifies the input so that its effective frequency is ν0/M, where M is the magnification.  For a thin input 
object, the magnification is determined from the ratio of the source-to-COR distance to the source-to-object distance 
[10].  With h = 70.0 cm and z0 = 25.0 mm, M is found to be 1.037. 
 

 
0

hM
h z

=
−

                                      (27) 

 
As expected, Figure 3 demonstrates that the major peak of the Fourier transform for the divergent beam geometry occurs 
at a-1 – ν0/M (2.32 lp/mm).  The minor alias peaks occur at ν0/M (4.82 lp/mm), 2a-1 – ν0/M (9.46 lp/mm), and a-1 + ν0/M 
(11.96 lp/mm).  In short, the Fourier transform for the divergent beam geometry peaks at different frequencies than the 
parallel beam geometry.  The Fourier peaks of the most oblique projection effectively occur at similar frequencies as the 
central projection. 
 
3.2 SBP Image Reconstruction 
In Figure 4, SBP reconstruction is performed at the height z = z0, corresponding to the central value of z within the input 
object.  Although a single projection is not capable of resolving the input frequency, SBP reconstruction is capable of 
representing 5.0 lp/mm properly.  This property arises because the oblique projections give information about the input 
waveform which is not present in the central projection alone (Figure 3).  The SBP Fourier transform correctly possesses  
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Figure 3. Assuming N = 15, Δψ =1.07°, x0 = 0 mm, z0 = 25.0 mm, ε = 0.5 mm, a = 140 μm, and ν0 = 0.7a-1 (5.0 lp/mm), the output 
profiles of the central projection and the most oblique projection of a Selenia Dimensions DBT system are plotted versus position.  In 
addition, continuous Fourier transforms are plotted versus spatial frequency. 
 
its major peak at the input frequency.  The major peak of the central projection, occurring at 2.32 lp/mm, is now highly 
suppressed in magnitude. 
 
3.3 FBP Image Reconstruction 
FBP reconstructions and their Fourier transforms are shown in Figure 4 at the height z = z0, assuming that the filter 
truncation frequency ξ is 10 lp/mm.  Although ξ is often specified to be the alias frequency 0.5a-1 (3.57 lp/mm), it is 
necessary to choose a higher value for the purpose of this work in order to achieve super-resolution.   
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Figure 4. The SBP and FBP reconstructions are plotted in the spatial domain and the Fourier domain, assuming the same parameters 
as those used in Figure 3.  Both the RA and the SA filters used in the FBP reconstruction are truncated at the frequency ξ = 10 lp/mm. 
 
Figure 4 demonstrates that FBP reconstruction smoothens pixilation artifacts found in the SBP reconstruction, and 
further suppresses the magnitude of the alias peak at 2.32 lp/mm in the Fourier domain.  In addition, Figure 4 indicates 
that reconstructing with the RA filter alone gives greater overall modulation than reconstructing with the RA and SA 
filters together.  More specifically, the modulation for reconstruction with the RA filter alone is 28%, while the 
modulation for reconstruction with the RA and SA filters together is 17%.  It is expected that the reconstruction with the 
RA filter alone has greater modulation, since the SA filter places more weight on low frequencies to reduce high 
frequency noise.  Importantly, the modulation of either FBP reconstruction technique is well above the limit of resolution 
for typical imaging systems, which is often taken to be 5%.  In addition, the modulation of either FBP reconstruction 
technique is greater than that of SBP reconstruction (14%). 
 

Proc. of SPIE Vol. 7961  79615K-9

Downloaded From: http://spiedigitallibrary.org/ on 07/15/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



 

Although reconstruction with the RA filter alone has the benefit of a higher modulation than reconstruction with the RA 
and SA filters together, the trade-off is greater spectral leakage at very high frequencies, such as those exceeding the 
input frequency 5.0 lp/mm.  In fact, reconstruction with the RA filter alone has even more spectral leakage at very high 
frequencies than reconstruction with SBP.  For example, the ratio of the amplitude of the alias peak at 9.75 lp/mm 
against that of the major peak at 5.0 lp/mm is 39.3% for FBP reconstruction with the RA filter alone and 22.1% for SBP.  
The reason for the increased high frequency spectral leakage is that the RA filter tends to amplify noise occurring at high 
frequencies.  Recall that even with no shot noise or anatomical noise, a pixilated detector has an intrinsic white noise 
power spectrum (NPS) given by the product of the x-ray fluence with the square of the detector element length [11-13].   
 
The high frequency spectral leakage that occurs in reconstructing with the RA filter alone generates flattening artifacts in 
the peaks of the reconstruction in the spatial domain (for example, see the peak at r = ±0.40 mm).  The offset of the 
reconstructed waveform effectively appears downshifted from zero as a result.  The reconstruction with both the RA and 
SA filters possesses less high frequency spectral leakage, and has fewer flattening artifacts in the spatial domain. 

4. DISCUSSION AND CONCLUSION 
 
In DBT, oblique x-ray incidence in the projections shifts the image of the object under study in sub-pixel increments 
along the detector.  This work is novel in describing DBT’s potential for super-resolution as a result of this property.  
Super-resolution has been shown to improve the visualization of line pairs in a bar pattern phantom.  A theoretical 
framework for investigating super-resolution analytically has also been developed by calculating the reconstruction of a 
sinusoidal input.  It is demonstrated that a reconstruction can resolve frequencies higher than the alias frequency of the 
detector, unlike a single projection which represents the information as a lower frequency. 
 
In the analytical model, FBP reconstruction of the sinusoidal input was performed either with the RA filter alone or with 
both the RA and SA filters.  Although reconstruction with the RA filter alone has the benefit of greater overall 
modulation in the spatial domain, it presents the drawback of increasing the presence of high frequency noise.  As a 
result, the RA filter generates more high frequency spectral leakage in the Fourier domain, as well as more flattening 
artifacts in the spatial domain.  High frequency spectral leakage is even more pronounced in reconstructing with the RA 
filter alone than in reconstructing with SBP.  Reconstruction with both the RA and SA filters together has the greatest 
suppression of high frequency noise in the Fourier domain and the fewest flattening artifacts in the spatial domain. 
 
Super-resolution is a particularly useful property because of the detector element binning that occurs in many clinical 
imaging systems that switch between DM mode and DBT mode.  For example, in the Selenia Dimensions system, the 
DM detector element dimensions are 70 μm × 70 μm, while the DBT detector element dimensions are 140 μm × 140 μm.  
Binning has the effect of reducing the readout time for the DBT scan, which has multiple projections.  The trade-off of 
binning is that the effective alias frequency of the detector is lowered.  Although it would seem that detector element 
binning would make DBT less capable of resolving microcalcifications and other subtle signs of breast cancer, the 
existence of super-resolution in the reconstruction may counteract the drawback of a smaller alias frequency.  For this 
reason, super-resolution has significant potential for many future applications in breast imaging. 
 
Some of the limitations of this paper and directions for future modeling are now addressed.  One limitation of this work 
is that MTF degradation with increasing angles of incidence θn relative to the normal has not been modeled [14-16].  
Analytical models for the point spread function (PSF) and MTF of a-Se for non-normal x-ray incidence have been 
proposed by Que and Rowlands [5] and later verified with Monte Carlo simulations by Hajdok and Cunningham [17].  
For more thorough modeling, the PSF of a-Se should be convolved with Eq. (9) to give signal intensity versus position r 
along the detector before detector element sampling is performed.  As stated in the Methods sections, this rigorous 
modeling is not critical for measurements along the chest wall, since the angle of incidence does not deviate considerably 
from the normal and the MTF is no less than 96.6% for 20 keV x rays.  However, at the corners of the detector opposite 
the chest wall, the angle of incidence deviates more considerably from the normal.  For example, in the Selenia 
Dimensions detector (28.7 cm × 25.1 cm), the angle of incidence relative to the normal for many projections can be as 
high as 20°.  For 200 μm thick a-Se and 20 keV x rays, one can show that the MTF for θn = 20° is 90.5% at 5.0 lp/mm 
and is 80.6% at 7.5 lp/mm.  In imaging these frequencies at the corner of the detector, the MTF degradation should 
indeed be modeled. 
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The analytical models of this paper can furthermore be refined by using polynomial filters which have been shown to 
generate superior reconstructions to the conventional RA and SA filters [18, 19].  Also, shot noise and anatomical noise 
can be incorporated into the modeling [20, 21], and the orientation of the input sinusoidal waveform in 3D space can be 
made more general.  In addition, the MTF degradation with increasing focal spot size and increasing focal spot motion 
during a continuous scan of the projections can be carefully considered [8, 22]. 
 
As a final extension of our current work, it would be useful to transition from simulating a pure sinusoidal input to 
simulating an array of microcalcification clusters in a breast-like background [23, 24].  One could then assess whether 
super-resolution allows model observers to distinguish finer morphological details than would otherwise be visible 
without super-resolution.  Having greater insight into the fine structural details of the microcalcifications would yield 
useful diagnostic information about their pathology [25]. 
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