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Abstract—In this paper we propose using a learning-based
method for vessel segmentation in mammographic images. To
capture the large variation in vessel patterns not only across
subjects, but also within a subject, we create a feature pool
containing local, Gabor and Haar features extracted from
mammographic images generating a feature space of very high
dimension. We also employ a huge number of training samples,
which essentially contains the pixels in the training images. To
deal with the very high dimensional feature space and the huge
number of training samples, we apply a forest with boosting
trees for vessel segmentation. Specifically, we use the standard
AdaBoost algorithm for each tree in the forest. The randomness
is encoded, when training each AdaBoost tree, using randomly
sampled training set (pixels) and randomly selected features
from the whole feature pool. The proposed method is tested
using a real dataset with 20 anonymous mammographic images.
The effectiveness of the proposed features and classifiers is
demonstrated in the experiments where we compare different
approaches and feature combinations. In the paper, we also
present full analysis of different types of features.
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I. INTRODUCTION

Mammographic image analysis plays an important role
in computer-aided breast cancer diagnosis. Properties of
mammographic image such as vessel structures provide
basic measurements for anatomic and pathological studies
are present in a variety of biomedical contexts of the breast.
Patterns of properties such as branching topology, length,
spatial distribution, and tortuosity have been analyzed in
the literature [1]; alterations in these patterns have been
associated with altered function and/or pathology [2], [3].
Vessel segmentation in mammographic images serves as a

key step towards automatic or semi-automatic mammograph-
ic image analysis. However, this task is challenging because
the anatomic vessel structure is usually very complicated in
both topology and appearance. In addition, vessel patterns
often vary from patient to patient. Even in the same mammo-
graphic image, vessel structure can be different for different
parts. These challenges even cause difficulties to annotation
experts. Fig. 1 gives two examples of mammographic images

Figure 1. Examples of mammographic images (top row) and annotated
vessel groundtruth (bottom row)

(top row) and their annotated vessel groundtruth (bottom
row).
Our objective in this paper is to utilize a learning-based

approach for the vessel segmentation task in mammographic
images. To handle the large variation in vessel patterns, we
explore different types of features including local, Gabor
and Haar features. As for local features, we use intensities
in local regions surrounding a pixel and differential features
(e.g. gradients). Haar features are utilized for their ability
to capture context information across scales and for their
computational efficiency. Gabor features are known for
their power in describing across-scale texture patterns. We
investigate the performance of these features individually
and in combination.
The above mentioned features form a very high dimen-

sional feature space. Furthermore, since we are interested
in pixel-wise vessel segmentation, essentially every pixel
in the training images serves as a training sample, which
consequently leads to a huge set of training samples. Both
observations cause practical difficulties to many existing
learning-based techniques.
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Targeting these challenges, we propose using the random
forest framework with a feature pool composed of all local,
Gabor and Haar features for vessel detection. We employ the
random forest framework because of its known capability to
handle both huge number of samples and large feature pools.
For each tree in the forest, which we use AdaBoost, not
only samples but also features are randomly selected. In the
experiments, we compare the proposed method with a single
Adaboost tree. We also test the performance of different
features. The results clearly demonstrate the effectiveness
of our approach.
Furthermore, the random forest and boosting framework

provides a natural way to analyze the resulting classifiers,
which leads to a comprehensive understandings towards the
properties of vessel patterns.
The rest of the paper is organized as follows: In Section

2, we present background information and related work. In
Section 3, we introduce the feature pool and the learning
framework. Experiments are presented in Section 4. We fully
analyze and discuss the effectiveness of proposed features
in Section 5. Conclusion is given in Section 6.

II. BACKGROUND

Vessel structure analysis is an important task in mammo-
graphic image analysis, which provides critical information
for computer-aided breast cancer detection and diagnosis. As
a result, vessel segmentation has been attracting research ef-
forts for many years. Early works usually involve manual or
semi-automatic efforts, often combined with vessel specific
enhancement.
Leaning-based techniques play an important role in recent

vessel anatomy studies (e.g., [6], [7], [9]). Staal et al.
presented an algorithm to detect vessel based on using ridges
as features [6]. KNN was used to train a classifier which is
utilized for classifying the vessels and the background. A
hierarchical model with learning-based method was studied
in [7]. Haar-like and steerable features were used in their
work. Clear boundary points were needed in their method.
Similar work has been done in retinal and blood vessel

detection. Some approaches focus on image processing
technoques such as using Gaussian kernel to do the pre-
processing [4]. Other approaches involved region growing
methodologies [5]. The shape model was also introduced
to achieve vessel segmentation. Shape prior and contour
information was explored in [8] where experiments were
performed on both 2D and 3D data.
The proposed method is motivated by these studies. Our

main focus is on automatic vessel segmentation using an
effective ensemble learning framework. In addition, we also
evaluate the effects of several important features.

Figure 2. Haar-like filters

III. METHODOLOGY

A. Feature Pool
In this section we describe the three different types of

features used in our proposed framework. Our final goal
is two-fold: to use these features for building robust vessel
segmentation algorithms and to analyze the roles of these
features in the algorithms.
1) Local features: In Fig. 1, vessels are shown as the

brightest areas in mammographic images. This is because
vessels are filled by a contrast agent in the capturing step.
Intensity and its variation can also be utilized as features
[9].
Given an image I , we consider I(x, y), Ix(x, y), Iy(x, y),

Ixx(x, y), Ixy(x, y) and Iyy(x, y) as local features, where
I is intensity, Ix, Iy denote the image gradients along
horizontal and vertical directions, Ixx, Iyy and Ixy denote
the second derivatives. In addition, the Laplacian L(x, y)
and the eigen values Hessian matrix H(x, y) are included
in the local feature pool.
It is apparent that neighbor information is meaningful

because those vessel pixels are always connected with their
neighbors. In order to capture the context information in the
images, a patch-based method is used to extract such local
features. When we calculate local features for a pixel in the
mammographic image, values of neighbors covered by an
N × N rectangle are also taken into account. In addition,
statistical values, i.e., average and standard deviation in the
rectangle are included into the local feature space.
2) Haar features: Haar-like features (Haar features for

short) have been successfully used in the first real-time face
detector [10]. Taking benefit of the integral images, a Haar
feature can be calculated efficiently in constant time. The
computation of Haar features is through the Haar-like filters
as shown in Fig. 2.
Fig. 2 illustrates seven types of Haar-like filters. In this

figure, the sum of the pixels lying inside the white rectangles
is subtracted from the sum of the pixels lying within the
grey rectangles. More spaciality, the value of a two-rectangle
feature is the difference between the sum of the pixels within
two rectangular regions. The regions have the same size
and shape and are horizontally or vertically adjacent. A
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Figure 3. Gabor filters along different orientations

three-rectangle feature computes the sum within two outside
rectangles subtracted from the sum in a center rectangle.
Finally a four-rectangle feature computes the difference be-
tween diagonal pairs of rectangles or two outside rectangles.
Given a patch size is 15× 15, the number of combinations
of rectangles is exhaustively large.
The width of vessel structures varies a lot depending both

on patients and on locations within a mammographic image.
To handle this variation, we collect Haar features at different
scales within a patch centered at each pixel. Haar features
provide a bunch of combination of rectangles shown in
Fig. 2. Some combinations weakly simulate different vessel
structures in mammographic images.
3) Gabor features: Gabor wavelet is known to be very

effective for texture representation [13]. Compared with
Haar features, Gabor features capture additional information
from the frequency domain.
The real and imaginary Gabor filters are expressed as:

Gaborr(u, v, λ, θ, ϕ) = exp(−
u′2

2δ2x
−

v′2

2δ2y
) cos(2π

u′

λ
+ ϕ)

Gabori(u, v, λ, θ, ϕ) = exp(−
u′2

2δ2x
−

v′2

2δ2y
) sin(2π

u′

λ
+ ϕ)

where u′ = u cos θ+v sin θ,v′ = −u sin θ+v cos θ (u, v)
is the relative coordinate using (x, y) as origin, and λ, δ and
ϕ are the spatial frequency, standard deviation (along x and
y axes), and shift, respectively.
Examples of Gabor filters are showed in Fig. 3. It shows

four Gabor filters of wavelength of 5, δx,δy = 1/2, and
rotations at 0, 45, 90 and 135 degrees respectively.
Gabor features are popular used in vessel segmentation or

extraction [13], [14], [15] due to their directional selective-
ness capability. Gabor filters provide responses along differ-
ent orientations. Vessels have strong orientation information
in mammographic images. Consequent results of Gabor
filters produce rich information about vessel orientation.
To compute Gabor features, an input image is convoluted

with real and imaginary Gabor filters along a direction θ.
For each pixel, amplitudes of these outputs is calculated
as Gabor feature related to direction θ. Besides responses

at a pixel, the responses of its neighbors covered by an
N × N patch are also taken into consideration to enhance
the descriptive power. In particular, this kind of informa-
tion enables our method to encode context information for
segmentation.

B. Learning framework
For each pixel in a mammographic image, the features

presented in the above subsection forms a huge feature pool.
Furthermore, we also have a huge number of samples that
are essentially all the pixels from the training images. We
choose the random forest framework for this learning task
due to its flexibility and its excellent performance in many
recent applications.
The random forest framework is an ensemble classifier

consisting of N decision trees which outputs the class that
is the mode of the class’s output by individual trees [11].
Associated with each tree i is a learned class distribution
p(c|i). In each tree, a subset of training samples is randomly
drawn from the whole training set. For each node in the
forest, a subset of features is randomly chosen as input. The
best feature from the randomly selected features is calculated
based on the gini index. Then a tree is grown based on the
new training set using random feature selection. The trees
grown are not pruned.
The benefit of random forest lies in that it can handle a

large training set using a large feature set. Another advantage
of the random forest framework is that trees in the forest can
be processed in parallel. In the training stage, we can train
each tree parallel. The predicting step can be conducted si-
multaneously. Random forests has been successfully applied
to medical image analysis in various tasks [16], [17].
We adapt the random forest framework to a forest with

boosting trees in it. In our implementation, we use Adaboost
classifiers instead of decision trees as members of the
random forest. Adaboost is an efficient ensemble learning
method that builds a strong classifier as a linear combination
of a set of weak classifiers [12]. Specifically, let x ∈ �d

be a d dimensional input feature vector, the final (strong)
classifier h(x) : �d → {−1, 1} has the following form:

h(x) =

n∑

i=1

cihi(x)

where h1(x), · · ·, hn(x) are the n weak classifiers.
Fig. 4 gives an illustration of the random forest frame-

work. Training process is shown with solid blue line. Dash
line represent inference pipeline when a testing instance
comes.
In the training step, for each tree in the forest, samples

are randomly selected from the whole training set. Features
used in each tree are also randomly sampled from the feature
pool. This strategy has the ability to solve the problem of
having both a huge number of samples and a huge number
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Figure 4. The learning and inference framework

of features for each instance. Each tree is recognized as an
Adaboost classifier. Certain numbers of weak classifiers are
selected in each tree to be combined into a strong classifier.
The features responding to these weak classifiers help us
analyze the importance and effectiveness of each feature in
the whole feature space.
After training all Adaboost classifiers in each tree, the

inference is performed based on voting by these classifiers.
Given a testing instance, in the testing process, features
are sub-sampled from the entire feature space. These sub-
sampled features are the same as the ones used in the training
approach. For each pixel x in a given new image, we use
probabilistic responses (through logistic transformation) for
each Adaboost tree.

pi(vessel|x) =
ehi(x)

1 + ehi(x)

Each boosting tree provides a probability value of the
pixel being inside a vessel. The final random forest result
is the average of probabilistic maps over all the Adaboost
outputs

pfinal(vessel|x) =
1

N

N∑

i

pi(vessel|x)

where N is the number of trees in the random forest, and
pi(x) is the probabilistic map of the i-th Adaboost classifier.
Pixels with higher probability value indicate a higher chance
to be inside vessels in mammographic image. As in the
random forest framework, the training and testing process
can be parallelized in the whole experiments.

C. Evaluation
The final vessel segmentation can be obtained by selecting

thresholds based on the average probabilistic map.

Figure 5. Components for calculating ROC curve

For the evaluation task, the equal error rate (EER), is
defined as the error rate when a threshold generates the
same correct acceptance rate (CAR) and correct rejection
rate (CRR), which are defined as:

CAR =
correctly acceptly vessel pixels

all vessel pixels

CAR =
correctly rejected non− vessel pixels

all non− vessel pixels

The ROC curve is also provided as an evaluation criterion.
It is based on true positive rate and false positive rate
calculated as follows:

True positive rate =
True Positive

T otal Number of Positive

False positive rate =
False Positive

T otal Number of negative

where, true positive and false positive are explained in
Fig. 5. Total number of positive is the number of vessel
pixels in the whole dataset. Number of non-vessel pixels in
the all mammographic images is represented as total number
of negative.
When vessel probabilistic maps are predicted with learned

classifiers, we can get binary images using different thresh-
olds. In the probabilistic map, all the values are between
0 and 1. We use thresholds between 0.01 to 0.99 and set
the interval to 0.01. The result for each threshold provides
values in Fig .5 to calculate the ROC curve.
Using these different thresholds, we could can generate

an ROC curve. The horizontal axis is the false positive rate
and the vertical axis is the true positive rate.

IV. EXPERIMENT RESULTS
A. Experiment Setup
The dataset we used in the experiments consists of 20

anonymous mammographic images.
To calculate local features for each pixel, a patch of size

15× 15 centered at each pixel is used. Responses of all the
pixels together with the mean and standard derivation for
each patch are used. This generates 1818 local features.
The dimension of Haar features for one pixel is 7056

using patch size of 15× 15. There are seven different types
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Table I
NUMBER OF FEATURES USED IN EACH APPROACH

Training set Random Boosting Forest Adaboost
Local 145 1818
Haar 564 7056
Gabor 290 3632
All 1000 12506

of Haar features as shown in Fig. 2. A Haar feature generates
a lot of Haar-like shapes at different location and different
sizes. The combination of these features simulate the vessel
structures to a certain degree. Through feature selection,
most discriminative features at certain position and certain
size are chosen in the training step.
The Gabor filters are of size 15× 15 and the parameters

used are combinations of δx, δy = 1/2, 1/16, and four
angles (0, 45, 90 and 135 degrees). For each pixel, we also
collect neighbors covered by a 15 × 15 rectangle centered
at this pixel. Similarly to calculate local feature, the mean
and standard derivation within the rectangle are chosen as
features. That gives 3632 Gabor features in total for each
pixel in the mammographic image.
Combining local, Haar and Gabor features together, we

have a large feature pool of size 12506. Our learning
framework is able to select most important features from
the original large feature pool.
To study the effectiveness of the proposed learning and

inference framework, we compared random boosting forest
with a single Adaboost. For random boosting forest, we
used 64 Adaboost classifiers, each of them having 50 weak
classifiers. Each weak classifier is responded to one kind of
feature in the feature space. That means we have 64 boosting
trees in the forest and each tree trains an Adaboost classifier
with 50 weak classifiers in it.
For each tree in the boosting forest, 10000 samples are

randomly selected for training each Adaboost classifier. For
both random forest and single Adaboost, we also tested
effectiveness of different features. In summary, there are two
different classifiers and four different feature sets tested in
our experiments, resulting in eight different configurations.
These configurations and corresponding number of features
are summarized on Table I.
For each tree in the boosting forest, features are randomly

selected as input. Column 2 in Table I shows the number
of randomly selected features used in the random boosting
forest. The number of features in total for each combination
are listed in the column 3 of Table I. These features are used
in single Adaboost.

B. Experimental Results
We used 4-fold cross validation for evaluating different

configurations. In each fold, 15 mammography images were
used for training and the remaining 5 images were used for
testing. For each training/testing combination in each folder,

Table II
EQUAL ERROR RATES OF DIFFERENT METHODS

Feature Random Boosting Forest Adaboost
Local 10.94% 14.58%
Haar 10.66% 14.03%
Gabor 10.41% 12.32%
All 10.06% 12.19%

Figure 6. ROC curve of four different feature configurations using random
forest framework

we test all different configurations described above. The
equal error rates for different combinations are presented
in Table II.
In the random forest method, we calculate the ROC curve

for each of these four different configurations. Fig .6 displays
the ROC curves in different colors.
Table II and Fig. 6 shows that when we use the random

forest as the learning and inference framework, the best
result is archived by using all the features as input. In
other words, combination of local, Haar and Gabor features
generates better results than using each type of features indi-
vidually. Another observation is that Gabor features perform
better than do the local and Haar features. This is because
that Gabor features have orientation selection capability. The
observation implies that Gabor features capture the tree-like
pattern which is the most important property of vessels in
mammographic images. Besides considering local texture
based on intensity, the Haar-like feature also includes width
information of vessels under various scales.
We also compare the effectiveness of random forest with

boosting trees and using single Adaboost as classifier. We
compare their results both using all features as input. Simply,
the single AdaBoost is a tree in the random forest.
Fig. 7 shows results (probabilistic maps) on testing images

with random forest and single AdaBoost as classifier. The
first row is the original image. The second row gives the
result using random forest with 64 boosting trees in it.
Probabilistic maps tested with single AdaBoost is provided
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Figure 7. Input images (first row) and the probabilistic maps of random
forest (middle) and Adaboost (bottom). Both results use all features. Higher
intensity of probabilistic map indicates high possibility of a vessel being
present.

in the last row.
Examples in Fig. 7 clearly demonstrate the effectiveness

of the proposed method. We have the following observations:
for all feature combinations, the random forest consistently
outperforms a single Adaboost. This agrees with our moti-
vation for using random forest since it effectively handles a
large number of features and samples.

V. ANALYSIS AND DISCUSSION

A. Results of different features
In this section, we analyze the weak classifiers chosen in

the random boosting forest. Each classifier is corresponding
to one type of features in the entire feature space. We
have 64 boosting trees in the forest and each tree train a
AdaBoost classifier. In the training stage, each tree selects 50
features from randomly sub-sampled feature space as weak
classifiers. Each selected feature is considered as a weak
classifier. These 50 selected weak classifiers are combined
to form a strong AdaBoost Classifier. Together with four-
fold cross validation, 64 × 50 × 4 = 12800 features are
selected as weak classifiers in the experiment. These chosen
features help us to evaluate different types of features.
Fig. 8 illustrates the percentages of different kinds of

features being selected as weak classifiers and the ratios in
the whole feature space individually. In the three different
types of features, Gabor features are the features chosen the
most in all the weak classifiers. The ratio of Gabor features
in the feature pool is less than the ratio that they are being
selected as classifiers. Ratios of Haar and local feature in the
whole feature space are higher than the percentages being

Figure 8. Percentages of different kinds of features being selected as weak
classifiers (blue) and the ratio in the whole feature space (brown).

I Ixx Iyy Ixy Ix Iy Har L H
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 9. Histogram of each local feature being selected as weak classifier

selected as weak classifiers. This explains Gabor feature
performs better than other features in the experiments.
In the following parts, we also analyze three different

features individually with random boosting forest as learning
and inference framework.

B. Importance of local features
As description in Section III-A1, there are 9 types of

features in all the local feature space. With random forest
with 64 trees in it, 12800 features are chosen in the training
step. We group these selected features into 9 categories.
Histogram of ratio of each component in the local feature
is presented in Fig .9.
In local feature pool, the three most chosen features

are gradient Iy , Intensity I and gradient Ix. Intensity is
apparent as characteristic in mammographic images This is
true because vessels with bright intensity in mammographic
images which are obtained by agent projected via x-rays.
Gradient Ix and Iy information demonstrate that vessels vary
along certain directions. There are significant of vessels in
mammographic images.
Fig. 10 comprehensively illustrates the importance of all
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Figure 10. Weight of each feature being selected in the local feature space

Figure 11. The four most frequently selected Haar features

the features in the local feature space. In Fig. 10 (a), each
local feature is given a weight of being selected in the
training approach. Bright color indicates features that are
more discriminative than features with darker color. Fig. 10
(b) explains the structure of Fig. 10 (a). Each block in Fig.
10 (a) represents one group feature in local feature pool. Fig.
10 (c) shows the context in each block of Fig. 10 (a). Each
block is of size 15×16. The first 15×15 elements denote the
importance of itself and its neighbors. Pixels covered by the
red rectangle is the neighbors of the centered (black) pixel.
The first two values in the 16 column is the importance
of mean (blue) and standard deviation (green) within the
neighborhoods.
For local feature, we collect values in 15 × 15 neigh-

borhoods. Weight of each block infers that the statistical
values are always more significant than the individual value
in the block. Fig. 10 (a) shows that the most discriminative
neighbor size is around 5× 5.

C. Importance of Haar features
With a patch size of 15 × 15, we collect 7056 features

totally using seven different types of Haar-like features.
Configurations of Haar features simulate the tree-like vessel
structure in mammographic images. In combination with
Adaboost used as a classifier in each tree, most important
features are selected as weak classifiers. Using Haar features
and random boosting forest as framework, 50 Haar-like
features specified by its location and shape in the 15 × 15
patch are chosen to form the strong classifier in each tree.
We count the frequencies of each Haar-like feature and show
the four most chosen features in Fig. 11.

Figure 12. Feature importance in Gabor feature space.

Fig. 11 shows the top four Haar features chosen in all
the weak classifiers. First row is the top1 and top 2 selected
features. Top3 and top 4 chosen features are shown in the
second row.
In the experiment, the patch to calculate Haar features

of size 15 × 15. The location of these top 1 and top 3
features in the 15 × 15 patch is (1, 3) along vertical and
horizontal directions. The top 2 and top 4 chosen features
are in location (1, 5). The sizes of shape which represent the
top 4 Haar features are 10× 7, 5× 10, 10× 8 and 4× 10.
The shapes of these top 4 selected features indicate that

the most likely width of vessel is around 5×5. This is similar
as we prove in the local feature; the most discriminative
neighbor size is around 5× 5. These four shapes of chosen
most features indicate that Haar features simulate vessels
go along horizontal and vertical directions. This confirms
in local feature pool, gradient Iy and Ix are much more
significant than other groups of features.

D. Analysis on Gabor features
The 2D Gabor filters are of size 15×15 and the parameters

used are combinations of δx, δy = 1/2, 1/16, and four
angles (0, 45, 90 and 135 degrees). We group Gabor features
into 16 categories. Like local features, weight of each Gabor
feature is shown in Fig .12 (a).
There are 4 × 4 blocks in Fig .12 (a). The structure is

explained in Fig. 12 (b). Rows of blocks are features along
0, 45, 90 and 135 degrees, respectively. The combinations
of different variation of horizontal and vertical orientation
of Gabor filters are shown in the upper part of Fig. 12 (b).
For extracting Gabor features, values in neighborhood of

15 × 15 are collected. In addition, statistical values of the
patch are taken to extend the power of features. Context
of each block is the same as shown in Fig. 10 (c). Like
analyzed in local features, most statistical values are always
discriminative.
Weights being selected in the training stage of categories

in Gabor features are compared and evaluated. The his-
togram of these weights is provided in Fig. 13. We extend
the groups of features shown in Fig. 12 by row to get the
weight of their importance.

125321321



Figure 13. Histogram of each Gabor feature being selected as weak
classifier.

By comparing the types of features grouped by orientation
and derivation in horizontal and vertical directions, we see
that the most chosen gabor feature is along 90, 135 and
45 degrees with kx = 1/2 and ky = 1/2. The fact that
90 degrees is chosen proves that gradient Iy is the most
important feature in local feature space. Orientations 45 and
135 mean that the vessels always go along these directions.
Also, from the block of Fig .12 (a), we can conclude that

the most interesting neighborhoods size is around 5×5. This
holds among local, Haar and Gabor features.

E. Summary on analysis of features

In collusion, our analysis shows orientation and context
information plays an important role in vessel segmentation.
In addition, the most discriminative neighborhood size is
5× 5.

VI. CONCLUSION

In this paper we propose using a learning-based method
for vessel segmentation in mammography images. More
specifically, we employ the random boosting forest frame-
work that uses Adaboost classifiers as members. In addition,
we use a combination of three types of features for vessel
description. The proposed method was evaluated in a real
dataset with different feature combinations. Its effectiveness
was observed in the experiments and was compared to that of
a single Adaboost classifier. Moreover, we evaluate different
features in the paper. In the future, we plan to explore high-
level context models.
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