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Purpose: The authors present an efficient method for generating anthropomorphic software breast

phantoms with high spatial resolution. Employing the same region growing principles as in their

previous algorithm for breast anatomy simulation, the present method has been optimized for com-

putational complexity to allow for fast generation of the large number of phantoms required in vir-

tual clinical trials of breast imaging.

Methods: The new breast anatomy simulation method performs a direct calculation of the Cooper’s

ligaments (i.e., the borders between simulated adipose compartments). The calculation corresponds

to quadratic decision boundaries of a maximum a posteriori classifier. The method is multiscale

due to the use of octree-based recursive partitioning of the phantom volume. The method also pro-

vides user-control of the thickness of the simulated Cooper’s ligaments and skin.

Results: Using the proposed method, the authors have generated phantoms with voxel size in the

range of (25–1000 lm)3=voxel. The power regression of the simulation time as a function of the re-

ciprocal voxel size yielded a log-log slope of 1.95 (compared to a slope of 4.53 of our previous

region growing algorithm).

Conclusions: A new algorithm for computer simulation of breast anatomy has been proposed that

allows for fast generation of high resolution anthropomorphic software phantoms. VC 2012 American
Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.3697523]

Key words: modeling, visualization, validation, simulation of clinical breast imaging

NOMENCLATURE

A ¼ label for voxels representing air—or

another exterior medium depending on

the simulated imaging modality

B ¼ phantom subvolumes, corresponding to

octree nodes at various levels

Ci, i¼ 1, …, K ¼ simulated tissue compartments

D ¼ thickness of the simulated Cooper’s

ligaments

Fij(x) ¼ difference of the compartment shape

functions fi(x) and fj(x)

K ¼ number of simulated compartments

N ¼ simulated nipple point

Q ¼ label for voxels representing fibrous

Cooper’s ligaments

R2 ¼ goodness-of-fit of the regression model

Ri ¼ eigenvectors of a positive definite matrix

specifying shape functions and region

growing

S ¼ label for voxels representing the phan-

tom outline, i.e., a simulated layer of

skin
V ¼ phantom volume

Z ¼ normalization constant based upon the

desired overall phantom glandularity

a ¼ distance of the simulated nipple point

from the chest wall

b0 ¼ vertical phantom dimension measured

above the nipple level

b00 ¼ vertical phantom dimension measured

below the nipple level

c ¼ half of the uncompressed phantom

thickness

d ¼ thickness of the simulated skin

ei ¼ ellipsoid containing a seed and a nipple

at region growing algorithm

fi(x), i¼ 1, …, K ¼ compartment shape functions

fM(x) ¼ shape function defining the outer surface

of the simulated skin layer

fm(x) ¼ shape function defining the inner surface

of the simulated skin layer

kai, kbi, kci ¼ proportionality coefficients for region

growing growth of ellipsoids

k ¼ shrinkage coefficient at region growing

algorithm

l¼ 1, …, (L �1) ¼ Levels of the octree

n̂ ¼ axis vector of local ellipsoid in region

growing algorithm

pi ¼ probability that the ith simulated com-

partment contains dense tissue
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qi ¼ parameters of the proposed algorithm

(analog to distribution priors in MAP

classification algorithm)

r1,i, r2,i ¼ axis ratios of region growing algorithm

spi ¼ growing speed of region growing

algorithm

(sxi, syi, szi) ¼ coordinates of the ith compartment seed

vector

t ¼ phantom simulation time (min).

û ¼ axis vector of local ellipsoid in region

growing algorithm

v̂ ¼ axis vector of local ellipsoid in region

growing algorithm

x ¼ coordinate of a point within the phantom

(or the exterior medium)

Dx ¼ phantom voxel size (lm)

a ¼ significance level

b0, b1 ¼ intercept and slope of the log-log scale

regression model, respectively.

r ¼ scaling coefficient for dense tissue

modeling

s, si ¼ virtual time of region growing

Ki ¼ eigenvalues of a positive definite matrix

specifying shape functions and region

growing

R�1
i ¼ positive definite matrix specifying a

shape function and a local ellipsoid at

region growing algorithm

I. INTRODUCTION

Breast tissue simulation is of importance for developing

anthropomorphic phantoms used for preclinical testing or

optimization of imaging systems or image analysis methods.

Preclinical validation is of particular interest in development

of systems for early breast cancer screening. Due to the low

prevalence of disease, clinical trials of screening systems

require very large numbers of volunteer patients and repeated

imaging using different acquisition conditions. This results in

prohibitive duration, cost, and radiation risk (in the case of

imaging systems utilizing ionizing radiation). Preclinical sim-

ulation is a viable alternative aimed at identifying the most

promising systems or system parameters for further clinical

validation. Anthropomorphic software breast phantoms offer

distinct advantages to preclinical testing in terms of flexibility

to simulate wide anatomical variations and availability of

ground truth, which can be used for quantitative validation.

There have been several efforts to develop realistic soft-

ware breast phantoms by simulating the 3D anatomy of the

breast. These simulation methods can be divided into two

major categories: (i) methods based upon rules for generat-

ing anatomical structures in the breast1–8 and (ii) methods

based upon individual clinical 3D breast images.9–11 These

two categories of methods are complementary; while the

second category offers an increased level of realism due to

the use of clinical data, the first category offers more flexibil-

ity to cover clinically observed variations in breast anatomy.

The common characteristic of both simulation methods is

that they are designed to produce synthetic breast images,

which can be used for preclinical validation of systems for

breast image acquisition or image analysis.

The clinical use of multimodality imaging of the breast

has been reinforced by the recent recommendations for

breast cancer screening from the Society of Breast Imaging

(SBI) and the American College of Radiology (ACR).12 In

addition to annual mammographic examinations for women

aged older than 40 years (or earlier for women at increased

risk for breast cancer), the SBI and ACR recommend an an-

nual MRI examination for women at increased risk over age

30 years and for contralateral breast imaging at the time of a

newly diagnosed cancer. Ultrasound imaging is recom-

mended as adjunct to mammography in women with dense

breasts and as an alternative in women at increased risk but

contraindicated for MRI. Our simulation of breast anatomy

can be used in the assessment of multimodality breast imag-

ing. Multimodality phantom images can be synthesized by

applying image acquisition models corresponding to individ-

ual imaging modalities (including the simulation of appro-

priate breast positioning and compression), with appropriate

physical properties (i.e., linear x-ray attenuation coefficient

or MRI relaxation times) associated with each simulated tis-

sue type. Synthetic images of the same phantom obtained by

simulation of different imaging systems or different acquisi-

tion parameters can be compared either by presenting them

to radiologists or using mathematical observer models

designed to mimic the clinical decision process.

Our anthropomorphic software breast phantoms simulate

the spatial arrangement of anatomical structures as visual-

ized by clinical radiologic and subgross histology images. In

the previous phantom design,2,13 we divided the breast into a

region composed predominantly of adipose tissue (AT

region) and a region composed predominantly of fibrogland-

ular tissue (FGT region). Medium scale structures, namely,

adipose compartments and Cooper’s ligaments, are simu-

lated based upon a region growing algorithm.2,13 These

phantoms have been used for validation and optimization of

digital breast tomosynthesis (DBT) reconstruction meth-

ods14,15 and ultrasound tomography (UST) reconstruction

methods,16 analysis of power spectra descriptors in simu-

lated phantom DBT images,17,18 analysis of texture proper-

ties in phantom digital mammography (DM) and DBT

images,19 analysis of tumor detectability in DBT,20 as well

as for the design and fabrication of a first prototype physical

version of our 3D anthropomorphic software phantom.21–23

These applications emphasize the need for generating a

large number of phantoms of various resolutions in order to

support virtual clinical trials for different modalities. Simu-

lating a large number of patients at high spatial resolution

requires a new, more efficient phantom generation algo-

rithm. This paper describes a novel method for efficient sim-

ulation of breast tissue anatomy with small voxel size. Small

voxel size is of importance as detector elements in mammo-

graphic detectors can be as small as 50 lm. The choice of

phantom voxel size and image pixel size is related to both

the scale of the simulated breast anatomy and the image
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modality. The optimal scale of the simulated anatomical

details depends upon the intended use. Ideally, both the

voxel size and the detector element size should be chosen to

avoid aliasing artifacts. The use of a large voxel size for gen-

eration of high resolution images results in stair-step quanti-

zation artifacts, which reduce image quality and can impair

visibility of clinically significant features with small size,

such as microcalcifications. Our previous implementation of

the phantom generation requires a prohibitively long time to

produce phantoms with a small voxel size; for example, it

would take 131 days (on a computer with two Intel Xeon

5650 Processors using 64 bit MATLAB, see Sec. II.B) to gener-

ate a 450 ml phantom with voxel size of 50 lm.

In the described method, positions of adipose compart-

ment borders are calculated directly, based upon compart-

ment shape functions, which define the number, distribution,

and intended shape and orientation of the compartments. Re-

cursive partitioning24 is used to achieve computational effi-

ciency and to make the simulation scalable. A phantom at a

given scale may be used to generate a higher scale version

with the same distribution of compartments, thus saving sim-

ulation time and increasing efficiency.

II. MATERIALS AND METHODS

II.A. Simulation of breast tissue structures

The proposed approach utilizes octrees25–27 to split the

phantom volume V recursively. The octree-based approach

is motivated by a desire to optimize the performance in

terms of speed and computational complexity. The phantom

outline S is defined by the simulated skin and chest wall

(approximated by a plane). The phantom volume V consists

of the simulated adipose compartments Ci, i¼ 1, …, K, and

the fibrous Cooper’s ligaments Q, which separate the com-

partments from each other. The flowchart of the algorithm is

presented in Fig. 1. The distribution of dense fibroglandular

tissue in the phantom is then simulated by replacing the adi-

pose with dense tissue in selected compartments.

Each node of the octree is associated with a corresponding

rectangular subvolume of interest B, a label indicating the

simulated type of tissue or material, and a flag indicating

whether the node is to be split in the next level of the tree. The

recursive partitioning procedure begins with the root node,

which is always flagged for splitting. The algorithm proceeds

in a breadth-first fashion.28 The maximal level of the tree L is

determined based upon the size of the phantom volume V and

the target voxel size Dx in the phantom (i.e., the target voxel

size at the end of the simulation). For each level of the tree, we

generate the nodes at the next level by recursively splitting

those nodes flagged for splitting. For each node at the next

level, we determine whether it belongs to only one material

type: the air (A), skin (S), Cooper’s ligaments (Q), or an adipose

compartment (Ci). If a node belongs to a single type, it is

labeled as the corresponding material type and is not split fur-

ther. If, however, a node belongs to multiple types, the node is

flagged for splitting. It is still necessary to label nodes that are

flagged for splitting, so that the recursive partitioning process

could be stopped at any selected maximal level of the tree (and

restarted later if needed). If the node contains skin, it is labeled

as S; otherwise, it is labeled as Q (since, in that case, a Cooper’s

ligament is included among the materials in the node). The re-

cursive partitioning procedure continues until an individual

node of the tree belongs to a single type or until the maximal

tree level is reached.

II.A.1. Simulation of the breast outline and skin

The phantom volume V and the phantom outline S are

specified by the outline shape functions fm(x), fM(x),

fm(x)� fM(x). Specifically,

V ¼ xjfmðxÞ � 1f g; S ¼ fxjfmðxÞ > 1; fMðxÞ � 1g (1)

The breast outline is simulated with ellipsoidal surfaces, cor-

responding to the phantom volume vertically above and

below the nipple level:

fmðxÞ ¼ fmðx; y; zÞ

¼

1; x < 0

x2

a� dð Þ2
þ y2

b0 � dð Þ2
þ z2

c� dð Þ2
; x > 0; y � 0

x2

a� dð Þ2
þ y2

b00 � dð Þ2
þ z2

c� dð Þ2
; x > 0; y < 0

8>>>>><
>>>>>:

;

(2)

fMðxÞ ¼ fMðx; y; zÞ ¼

1; x < 0
x2

a2
þ y2

b02
þ z2

c2
; x > 0; y � 0

x2

a2
þ y2

b002
þ z2

c2
; x > 0; y < 0

8>>><
>>>:

; (3)

where the x-axis corresponds to the chest wall—nipple direc-

tion, the y-axis corresponds to the craniocaudal direction (i.e.,

vertical direction, assuming a patient in the standing position),

and the z-axis corresponds to the lateral direction; (a, b0, c) and

(a, b00, c) represent the semiaxes of the ellipsoidal outline,

above and below the simulated nipple point (coordinates x¼ a,

y¼ 0, z¼ 0); and d is the thickness of the skin. The phantom

exterior A, corresponding to the air (or another exterior me-

dium depending on the simulated imaging modality), is defined

as A¼fxj fM(x)>1g. Subvolumes of interest B1–B5 (see Fig.

2) belong to different regions or their unions: B1�V;

B2�(V|S); B3�S; B4�(S|A); B5�A. To determine whether

the subvolume B (corresponding to an octree node) contains air

and=or skin, we compute minima and maxima of functions

fm(x), fM(x) in the subvolume (see Fig. 2). For example, if min

fm(x; x[B)> 1, max fM(x; x[B)� 1, the node belongs to the

skin. If a subvolume spans more than one type of material (e.g.,

A and S), the node is flagged for further splitting.

In Fig. 2, octree nodes corresponding to subvolumes B3
and B5 are leaf nodes and are labeled as S and A,
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respectively. The nodes corresponding to B2 and B4 are la-

beled as S and are subject to further splitting. The node cor-

responding to subvolume B1 may or may not be split further,

depending on its position relative to compartment boundary

(for more details see Fig. 5).

II.A.2. Simulation of breast adipose compartments
and Cooper’s ligaments

The simulated adipose compartments are specified by

shape functions fi(x), i¼ 1, …, K, defined for x[V. In the

method proposed here, we have utilized compartment shape

FIG. 1. Simplified flow-chart of the octree based algorithm for breast phantom generation.
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functions consistent with the quadratic decision boundaries

described by a maximum a posteriori (MAP) classifier:29

fi xð Þ ¼ 1

2
x� sið ÞTR�1

i x� sið Þ

� log qi �
1

2
log det R�1

i

� �
: (4)

Each shape function fi(x) is determined by a compartment

seed vector si (sxi, syi, szi), a positive definite matrix R�1
i , and

parameters 0� qi �1 analog to distribution priors in MAP.

Note that Eq. (4) represents a modified Mahalanobis dis-

tance29 of a point from the seed. Such defined anatomy simu-

lation results in a variant of the 3D Voronoi diagram,30 with

distances specified by Eq. (4).

Each node of the octree is associated with a subset of

shape functions fi(x). The root of the octree, in particular, is

associated with all K compartment shape functions. As the

algorithm proceeds, the number of shape functions associ-

ated to a node is reduced. We define the difference of the

shape functions Fij(x)¼ fi(x)� fj(x), i= j. Figure 3 illus-

trates isocontours and gradient vectors of Fij(x), for a choice

of shape functions fi(x) and fj(x), (i= j).31

A point x[B (i.e., within the subvolume corresponding to

an octree node) belongs to the ith adipose compartment Ci if

9ið Þð9j 6¼ iÞ 8k 6¼ i; jð Þ fiðxÞ < fjðxÞ < fkðxÞ (5)

and if the distance of x from Fij(x)¼ 0 is at least D=2. Other-

wise, a point x[B belongs to the Cooper’s ligament Q sepa-

rating compartments Ci and Cj. This criterion assures that

the targeted thickness of the simulated Cooper’s ligament is

equal to D. Note that if D is smaller than or equal to the tar-

get voxel size Dx, the thickness control is not active and a

region growing method is equivalent to a special case of the

proposed method (see the Appendix).

To reduce the computational complexity of the algorithm,

instead of evaluating Eq. (5) directly, we evaluate the fol-

lowing sufficient condition. A subvolume B belongs to the

ith adipose compartment Ci if the distance (defined by the

corresponding shape function) of the farthest point in subvo-

lume B to the seed of the ith compartment is smaller than the

shortest distance of any point in B to a seed of any other

compartment. Namely, we test whether:

maxx2B fi xð Þ < minj;j6¼i minx2B fj xð Þ: (6)

To evaluate Eq. (6), we construct intervals [min fi(x; x[B),

max fi(x; x[B)] for the shape functions corresponding to a vol-

ume B and identify the interval corresponding to the function

with the smallest minimum value (referred to as the minimum
interval). If the minimum interval overlaps with any other

interval, the subvolume B may contain more than one tissue

type and the corresponding node is flagged for splitting. The

level of the octree is incremented, and the procedure is

repeated for the flagged nodes. Each child of the considered

node is associated with those shape functions corresponding

to the minimum interval and the interval(s) overlapping with

the minimum interval [e.g., intervals #4 and #2 in Fig. 4(a)].

When the minimum interval does not overlap with any

other interval, Eq. (5) is satisfied [see Fig. 4(b)]. In this case,

the current subvolume B may include part of the compartment

boundary (i.e., Cooper’s ligaments) and=or portions of at

FIG. 2. Two-dimensional illustration showing a cross-section of the phantom

interior volume V, the outline S, and the exterior (air) A. B1–B5 represent

various types of subvolumes, which are assigned to different tissue types

during the recursive partitioning.

FIG. 3. (a) Isosurfaces and gradient vectors (arrows) of the difference Fij(x)

of shape functions inside subvolume B. The subvolume includes the midsur-

face between the corresponding seeds (Fij(x)¼ 0 [gray]); (b) Isocontours

(black) and gradient vectors (arrows) of the same function at plane z¼�3.1.

2294 Pokrajac, Maidment, and Bakic: Generation of high resolution breast software phantoms 2294

Medical Physics, Vol. 39, No. 4, April 2012



most two compartments, see Fig. 5. If the maximal distance

of a subvolume from the median surface of the Cooper’s liga-

ment is not larger than D=2 the corresponding node is a leaf

of the tree and is labeled as Q. If the minimal distance of a

subvolume from the median surface is larger than D=2, the

corresponding node is also a leaf. The node is labeled as Ci or

Cj depending on the sign of Fij(x), x[B. Otherwise, the subvo-

lume includes portion of a Cooper’s ligament and a portion of

compartmental tissue. The node corresponding to the subvo-

lume is flagged for further splitting and assigned a label Q.

II.A.3. Simulation of fibroglandular tissue distribution

We have simulated the distribution of fibroglandular (dense)

tissue in the phantom by assigning some of the simulated com-

partments to contain dense tissue. We specify the probability pi

that the ith compartment contains dense tissue, where the prob-

ability depends on the position of the compartmental seed. This

is a modification from our previous simulation algorithm,2

which had a large scale ellipsoidal region with predominately

fibroglandular tissue. The proposed algorithm does not create

such an ellipsoidal region, thus reducing phantom’s geometric

appearance and improving the realism of the simulation.

In this paper, we illustrate this approach by selecting the

compartments to be filled with simulated dense tissue ran-

domly based upon the distance of the compartmental seed to

the nipple. Specifically, the probability pi is calculated as:

pi ¼
exp �r � fMðsxi � a; syi; sziÞ
� �

Z
; (7)

where fMð:Þ is defined in Eq. (3), a is the x coordinate of a

simulated nipple point (y¼ z¼ 0), sxi, syi, szi are coordinates

of compartment seed vectors, r is a scaling coefficient. Z is a

normalization constant chosen based upon a user-specified

volumetric breast density (VBD) of the phantom. (VBD is

defined as the volumetric fraction of all nonadipose tissue,

including the skin and Cooper’s ligaments.) We compute the

volume of simulated skin and Cooper’s ligaments and deter-

mine the total needed volume of dense compartments to

achieve the specified VBD. Assuming compartments of sim-

ilar size, we compute the target number of dense tissue com-

partments by dividing the total volume of dense

compartments with the average compartment volume. The

normalization coefficient Z is then chosen such that the

expected number of dense compartments,
PK
i¼1

pi, is equal to

this target number.

II.B. Statistical methods for assessment of the breast
tissue simulation algorithm

To assess the proposed algorithm, we compared the com-

putation time needed for phantom generation between the pro-

posed algorithm and our previously developed region growing

method.2 The simulation time was measured for phantoms

with different voxel sizes. We generated 450 ml phantoms

(approximately a B cup bra size32), with the ellipsoidal outline

semiaxes a¼ b¼ c00 ¼ 5 cm, c0 ¼ 12 cm [see Eqs. (2) and (3)].

The number of compartments was varied from 167 to 500.

We specified the skin thickness d and the target thickness D
of the Cooper’s ligaments (see Sec. II.A). The parameter d
was assigned a value of 1.2 or 1.5 mm, based upon reports in

the literature.33,34 Values of D were varied from 0.1 to

0.8 mm. Note there are no explicit quantitative reports in the

literature on the measured thickness of Cooper’s ligaments in

clinical data. We assumed the thickness was smaller than

1 mm, as observed from subgross breast histological sections

(e.g., the sections shown in Ref. 2).

For comparison, we generated phantoms with the same

parameters using the region growing simulation method.2

FIG. 4. Illustration of intervals of the shape function values fi(x) in a subvo-

lume (B) of a phantom with 5 simulated compartments; x-axis corresponds

to values of shape functions; y-axis corresponds to the indices of shape func-

tions. (a) The minimum interval (#4) overlaps with #2 and the corresponding

node is flagged for splitting. (b) The minimum interval does not overlap

with others. The thickness criterion is evaluated based on distances of the

points from B to the median surface F41(x)¼ 0 (since the shape function #1

has the second smallest minimum). The corresponding node is flagged for

splitting if and only if the thickness criterion is not satisfied.

FIG. 5. Two-dimensional illustration of compartments Ci and Cj separated

by a Cooper’s ligament of thickness D. Subvolumes B1.1 and B1.3 corre-

spond to the leaf nodes of the octree (the thickness criterion satisfied),

B1.1�Q, B1.3�Cj. Subvolume B1.2 is labeled with Q and is flagged for

splitting.
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All the simulations were implemented using MATLAB (64-bit,

MathWorks, Natick, MA). Phantoms with voxel size down

to 50 lm were simulated on a computer with two Intel Xeon

5650 Six Core Processors (Intel, Inc., Santa Clara, CA)

working at 2.53 GHz with 128 GB RAM (1333 MHz DDR

III ECC) and utilizing one core per phantom. We used MAT-

LAB version v7.13 (R2011b).

In addition, we generated phantoms with 25 lm voxel

size using a workstation with two AMD Opteron 2354 quad

processors (Advanced Micro Devices, Inc., Sunnyvale, CA)

working at 2.2 GHz with 64 GB RAM (667 MHz DDR II

ECC), with one core per phantom, and MATLAB R2008a.

To estimate the dependence of the simulation time on the

voxel size, we calculate a regression model (here referred to

as a power law regression35):

log t ¼ b0 þ b1 log Dx; (8)

where t represents the simulation time (in minutes), Dx the

voxel size (in micrometers), b0 represents the intercept and

b1 the slope in the log-log scale. Values of the slope b1 were

used for comparison between the proposed and the region

growing algorithm. The regression model excluded the

25 lm phantoms.

II.C. Imaging simulations

Mammographic images of the phantom are simulated using

(i) a finite-element model of mammographic breast compres-

sion and (ii) simulation of the x-ray projections through the

compressed phantom. The deformation model is implemented

using ABAQUS (version 6.6, DS Simulia, Corp., Providence, RI)

and is based upon a finite element model of breast compression

proposed by Ruiter et al.36 The deformation model assumes the

volume preservation of the simulated breast tissue. With that

assumption, a 450 ml phantom described in Sec. II.B corre-

sponds to a compressed phantom with the size of 20 cm in the

vertical direction, 5 cm in the lateral direction, and approxi-

mately 6.5 cm in the chest wall-nipple direction. Mammo-

graphic projections of the compressed phantom are simulated

assuming a monoenergetic x-ray acquisition model without

scatter. The quantum noise was simulated by a random Poisson

process, corresponding to the standard radiation dose of a clini-

cal mammographic projection. The linear x-ray attenuation

coefficients of the simulated tissues were selected assuming an

x-ray energy of 20 keV. The simulated acquisition geometry

uses a source–detector distance of 70 cm, a detector element

size of 70 lm, and a 24� 30 cm field-of-view, corresponding

to the Hologic Selenia Dimensions full-field digital mammog-

raphy system (Hologic, Bedford, MA).

III. EXPERIMENTAL RESULTS

III.A. Anthropomorphic software breast phantoms
with different voxel size

Figure 6 illustrates the effect of increasing phantom reso-

lution for an identical distribution of simulated compart-

ments with skin thickness d¼ 1.5 mm and target thicknesses

of Cooper’s ligaments D¼ 0.6 mm. The scaling coefficient

in Eq. (7) was set to r¼ 5. We simulated the distribution of

fibroglandular (dense) tissue such that 5% of the simulated

compartments contain dense tissue (which approximately

corresponds to a phantom VBD of 20%).

III.B. Comparison with the previous region growing
algorithm

We evaluated the similarity of the results of the proposed

algorithm with the previous region growing algorithm.2

Phantoms containing K¼ 333 compartments were simulated

with 200 lm voxel size and skin thickness of d¼ 1.5 mm.

Since the two methods differ in simulating the distribution

of dense tissue, the following comparison excludes the

region growing simulation of compartments in the FGT

region. The proposed algorithm was run without thickness

control [i.e., the decision whether a subvolume belongs to a

compartment is made solely by Eq. (5)] and parameters qi

satisfied Eq. (A8). Figure 7 contains Cooper’s ligaments gen-

erated using the region growing algorithm with no FGT

region (black) superimposed upon the results of the proposed

algorithm (white) in a horizontal phantom section. Synthetic

mammographic projections through the compressed phan-

toms corresponding to Fig. 7 are shown in Fig. 8.

We have compared the execution time of the proposed

algorithm with our previous implementation of the region

growing algorithm.2 Figure 9 shows the time needed to simu-

late phantoms with specific resolutions (i.e., voxel sizes). The

simulation was performed for phantoms generated with a tar-

get Cooper’s ligament thickness of D¼ 0.8 mm, skin thick-

ness of d¼ 1.2 mm, and K¼ 167, 333, or 500 compartments.

The voxel size was varied in the range of 50–500 lm for the

proposed method. Figure 9 also shows the simulation times

for the phantoms generated using the previous region growing

algorithm with voxel sizes in the range of 100–500 lm. Using

the region growing algorithm, it was not practical to simulate

phantoms with voxel sizes below 100 lm, due to limitations

of available computational power. We generated three phan-

toms for each combination of voxel size and the number of

compartments, with random initialization of seed points. Fig-

ure 9 shows the estimated power regression trend lines as well

as one standard deviation intervals, for measured simulation

times. The regression models are computed for total of n¼ 45

phantoms generated by region growing and n¼ 54 phantoms

generated using the octree approach. The figure also shows p-

values for the estimated models. All displayed times are nor-

malized by the average time achieved for 200 lm region

growing phantoms.

When target Cooper’s ligament thicknesses was varied,

the power law regression coefficients for the proposed

method and the region growing method, Eq. (8), are shown

in Table I for simulated phantoms with K¼ 333 compart-

ments. (Note that the remaining simulation parameters are

the same as in Fig. 9.) The number n of samples per each

regression was 18 for octree phantoms (6 voxel sizes and 3

random phantoms per voxel size) and 15 for region growing

phantoms (3 random phantoms per each of 5 voxel sizes).
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The table also shows p-values and the values of the coeffi-

cient of determination R2 per each regression.

III.C. Phantom mammographic projections

Figure 10 shows examples of synthetic phantom images. We

simulated mammographic projections through the compressed

phantoms generated with the same distribution of simulated adi-

pose compartments while controlling the thickness of Cooper’s

ligaments. Shown are projections through phantoms with voxel

size of 200 lm and target Cooper’s ligament thickness simu-

lated in the range of 400–1200 lm. The number and distribution

of simulated compartments are the same as in Sec. III.B.

IV. DISCUSSION

We have developed a novel method for generating soft-

ware breast phantoms. Based upon the use of recursive

FIG. 7. Cooper’s ligaments generated using the region growing algorithm

(black) superimposed upon the results of the proposed algorithm (white) in a

horizontal phantom section. The simulated phantom contained 333 compart-

ments and had 200 lm voxel size. (1), (2), and (3) indicate various degrees

of matching between the two methods.

FIG. 6. Cross-sections (upper row) and details (middle row) of three phantoms simulated using the identical positions of compartment seeds with voxel size of

(a) 400 lm, (b) 100 lm, and (c) 25 lm.
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partitioning and octrees, the method provides a very efficient

way for generating phantom with high spatial resolution. As

illustrated in Fig. 5(c) with the current computational power

available, the novel method allows simulation of breast ana-

tomical details down to a size of 25 lm=voxel.

IV.A. Time complexity

Our experimental results, Fig. 9, indicate that the elapsed

time of the proposed method increases approximately as

1=Dx2. Using the t-test,35 we cannot reject hypothesis

jb1j ¼ 2 (at significance level a¼ 0.05), and there is strong

statistical evidence that jb1j< 3 (a¼ 1� 10�6). By contrast,

for the region growing method, the t-test indicated that the

elapsed time increases significantly faster than 1=Dx3

(a¼ 1� 10�6). Hence, there is strong statistical evidence

that the asymptotical time complexity37 of the proposed

method is lower than the complexity of region growing

method.

Note that the regressions in Fig. 9 were performed for

phantoms with different numbers of compartments K. The

dependence of the elapsed time on the number of compart-

ments will be more thoroughly examined in our future work.

The results in Fig. 9 were shown for a single target thick-

ness (0.8 mm). In Table I, we explore the influence of the

target thickness on elapsed simulation time. All the esti-

mated models were statistically significant (p-value< 0.02).

Results from Table I indicate that the slope b̂1 of the power

regression model was not influenced by the specified target

thickness of simulated Cooper’s ligaments for a particular

number of compartments (K¼ 333) (the test for comparison

of slopes of regression lines38 resulted in p-value¼ 0.7218).

The results from Table I on region growing, estimated on

phantoms with 333 compartments, were consistent with the

results from Fig. 9 (that are estimated on phantoms with 167,

333, and 500 compartments).

Figure 9 shows that the proposed method is faster than

our previous method (based upon region growing), for phan-

tom voxel size smaller than 200 lm. For example, the region

growing takes about 4–8 days to generate a 450 ml phantom

with voxel size of 100 lm. The proposed method can gener-

ate 50 lm voxel size phantom within a comparable time (of

3–5 days) on the same platform. In addition, the proposed

method makes the simulation of very high resolution phan-

toms tractable. As a demonstration of this, we simulated one

phantom with Dx¼ 25 lm, which took 12.5 days (on a work-

station with two AMD Opteron 2354 quad processors). The

region growing algorithm would require in excess of 1000

CPU days on the same platform (based on extrapolating the

regression results from Fig. 9).

The proposed method provides tractable simulation at the

voxel size comparable to the adipocyte size.39 This opens

possibilities for novel applications of the software phantoms,

e.g., simulation of histological specimen of the breast tissue,

simulation of breast tissue physiological processes at the cel-

lular level, etc. Although affordable, such a level of simu-

lated detail currently requires considerable memory size. To

alleviate this issue, further efficiency gains are possible by

increasing the resolution only within selected phantom sub-

volumes of interest (e.g., for simulated lesions). Namely, the

maximal level L of the octrees does not need be constant but

may depend on the spatial location of nodes. Hence, the pro-

posed methods can be utilized to simulate finer details in

particular regions of phantom that may be of special interest

for analysis. Since the nodes of the subtrees corresponding

to children of a particular octree node can be processed inde-

pendently, the algorithm is suitable for parallelization by

implementation on platforms with multiple processors=cores

and=or on clusters. Also, additional acceleration is achieva-

ble by using a graphical processing unit (GPU) based

implementation.40–42

IV.B. Thickness control of Cooper’s ligaments

Figure 10 shows synthetic mammographic projections

through phantoms with the same composition but three dif-

ferent thicknesses of simulated Cooper’s ligaments; the

changes in ligament thickness are visible in the synthetic

images. An advantage of the proposed method is that a phan-

tom with a smaller voxel size can be generated using a larger

voxel size phantom, instead of starting the simulations all

over again. When the phantom voxel size was 300 lm or

smaller, we observed that thickness of Cooper ligaments

remained practically constant, indicating that the thickness

FIG. 8. Synthetic mammographic projections through the compressed phan-

toms with voxel size of 200 lm and 333 compartments simulated (a) using

the proposed algorithm or (b) using the region growing algorithm.
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control was achieved. Further increase of resolution led to

smoother boundaries of the Cooper ligaments.

Thickness control depends on our ability to determine dis-

tance. Although the proposed method is demonstrated to be

useful for simulating Cooper’s ligaments of a desired thick-

ness, it could be further improved. Namely, Fig. 6 illustrates

“indentations” in the simulated ligaments’ boundaries that

are, albeit to a lesser extent, present even at the finest simu-

lated resolution (25 lm). Further modifications of the algo-

rithm that approximate the distance between the median

surface of the Cooper’s ligaments and the subvolumes may

improve the shape of ligaments by avoiding the indentations.

IV.C. Trade-off between time complexity and model
precision

When deciding whether to continue with subvolume split-

ting, we test a sufficient condition Eq. (6); this approach is

computationally simple, thereby contributing to the overall

efficiency of the algorithm. However, the tested condition is

sufficient but not necessary. Hence, each node that needs to

be split will be identified as such, but some nodes that may

not require splitting will nevertheless be split as well. Hypo-

thetically, it could be possible to introduce more selective

and specific conditions in the splitting criterion. This could

lead to fewer unnecessary splits; but, in turn, the time for

each particular splitting would be larger. Achieving a good

trade-off between the simplicity and selectivity=specificity

of the node splitting criterion is part of our work in progress.

IV.D. Additional control of simulated anatomical
features

In Sec. II.A.3, we described a method for simulation of

dense tissue regions in the phantom (as illustrated in Fig. 10).

More realistic distributions of fibroglandular tissue can be

achieved by modifying the choice of the probability pi that the

ith compartment contains dense tissue, instead of using Eq. (7).

The described simulation method provides for skin thickness

control, as described by Eqs. (2) and (3). These equations, how-

ever, do not guarantee a constant skin thickness over the whole

phantom surface. This issue can be corrected by modifying

function fM from Eq. (3) to represent a surface at a prespecified

distance from the inner surface specified by function fm,

Eq. (2). Alternatively, thickness control mechanisms, similar to

those adopted in Sec. II.A.2 can be used. However, these modi-

fications would reduce the efficiency of the algorithm.

IV.E. Qualitative comparison with region growing
algorithm

The underlying mathematics of the region growing method

and the proposed algorithm is similar, as shown in the Appen-

dix. As a consequence, the region growing method and the

proposed method give similar results. Large overlap of liga-

ments simulated using the two methods [denoted by (1)] is

evident in Fig. 7. The simulated phantoms are, however, not

identical. The thickness of Cooper’s ligaments differs between

the two methods. In addition, the region-growing algorithm

can result in a characteristic zigzag pattern [denoted by (2) in

Fig. 7], and there are slight shifts between Cooper’s ligaments

generated using the two methods [denoted by (3) in Fig. 7].

A visual comparison of mammographic projections syn-

thesized using the phantoms generated with the two methods

(Fig. 8) indicates very similar appearance of simulated

parenchymal pattern. The observed differences include more

prominent linear features in the image synthesized using the

proposed method and a more noisy appearance of the images

generated by the region growing.

These differences can be explained by the fact that the

region growing is based on determining positions of voxels

FIG. 9. Comparison of the experimental time complexity of the proposed

algorithm and previous region growing method. Shown are the values of the

simulation time for phantoms at different voxel sizes. Times are normalized

by the average time achieved for 200 lm region growing phantoms. Power

law regression trend lines are displayed in solid (the proposed octree algo-

rithm) and dashed (the region growing method).

TABLE I. The power law regression coefficients model estimated from Eq. (8) (with confidence intervals at a¼ 0.05) for the proposed method and for region

growing, for phantoms with K¼ 333 compartments.

Proposed method Region growing

Ligament thickness D (mm) 0.1 0.2 0.4 0.8 N=A

n 18 18 18 18 15

b̂0 4.71 6 0.34 4.53 6 0.29 4.63 6 0.31 4.61 6 0.19 10.54 6 0.53

b̂1 �2.04 6 0.15 �1.96 6 0.13 �2.01 6 0.13 �1.96 6 0.08 �4.59 6 0.22

R̂2 0.982 0.9854 0.9845 0.9940 0.9939

P-value 0.011 0.008 0.009 0.003 0.009
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belonging to compartments, with Cooper’s ligaments formed

at the boundary of neighboring compartments. The octree

approach simulates Cooper’s ligaments directly, while the

compartment labels are assigned as side products of the pro-

cess. Due to the nature of region growing, Cooper’s liga-

ments in the AT region are always one voxel thick. In

contrast, the ligament thickness in the proposed algorithm is

controlled. As a consequence, the thickness of Cooper’s liga-

ments simulated using the proposed method is effectively

larger as compared to region growing.

The zigzag pattern in phantoms generated by region grow-

ing [denoted by (2) in Fig. 7] stems from sequential character

of voxel labeling. Such a sequential labeling cannot accurately

render a smooth surface of Cooper’s ligaments. This zigzag

pattern also introduces additional noise artifacts in synthetic

phantom projections [Fig. 8(a)]. The octree method effec-

tively eliminates this noise, thus yielding an improved realism

of synthetic images. The sequential labeling also prevents effi-

cient parallelization of region growing. On the other hand, the

parallelization of the proposed algorithm is straightforward, as

discussed in Sec. IV.A.

Slight mismatch between Cooper’s ligaments [denoted

by (3) in Fig. 7] can be explained by implementation

details of the region growing algorithm. Namely, the

equivalence between the two methods derived in the Ap-

pendix holds only if the virtual time (s) in the region

growing algorithm is continuous. Practically, this time is

discretized resulting in the quantized positions of calcu-

lated boundaries between compartments, causing the

observed mismatch.

V. CONCLUSIONS

A novel algorithm for computing anthropomorphic soft-

ware breast phantoms has been described, providing substan-

tial improvement in the efficiency of generating phantoms

with a small voxel size. This design feature is of particular

importance in virtual clinical trials requiring large number of

phantoms. The proposed methodology also allows for scal-

ability in phantom generation and better quality of the simu-

lated phantom images. These improvements are especially

important for the use of phantom images generated using re-

alistic detector resolutions.
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APPENDIX I: REGION GROWING ALGORITHM AS A
SPECIAL CASE OF THE PROPOSED APPROACH

In the region growing algorithm,2 each compartment of

adipose tissue in the AT region is assigned an ellipsoid.

The ellipsoid is centered at a randomly chosen seed point

and its semiaxes grow proportional to a virtual time s� 0.

Each voxel is labeled corresponding to a seed of the ellip-

soid that first reaches the voxel during the growing proce-

dure. More formally, an ellipsoid centered at the point

specified by a seed vector si ¼[sxi, syi, szi]
T has semiaxes

kais, kbis, kcis, determined by the growing speeds spi and

the axis ratios r1,i, r2,i:

kai ¼ spi

kbi ¼ spi � r1;i

kci ¼ spi � r2;i (A1)

The orientations of the ellipsoid semiaxes are specified by

column vectors n̂; û; v̂ defined as follows. Consider an ellip-

soid ei centered at the origin O(0,0,0) and containing point si

and a nipple N(a,0,0). The ellipsoid is specified by:

ðx� sxiÞ2

a2
þ ðy� syiÞ2

ðkbÞ2
þ ðz� sziÞ2

ðkcÞ2
¼ 1; (A2)

where k is the shrinkage coefficient defined as:

FIG. 10. Synthetic mammographic projections through the compressed

phantoms with voxel size of 200 lm and thicknesses of simulated Cooper’s

ligaments of (a) 1200 lm, (b) 800 lm, and (c) 400 lm.
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k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

yi

b2
þ s2

zi

c2

1� s2
xi

a2

vuuuuut : (A3)

We define vector n̂ as a unit normal vector on the ellip-

soid ei at si. Vector û is a normal unit vector of the plane

ONsi, while v̂ ¼ n̂� û, see Fig. 11.

Following this formalism, points x at an ellipsoid cen-

tered at si at a specific virtual time si satisfy

s2
i ¼ x� sið ÞT

X�1

i
x� sið Þ; (A4)

where R�1
i is a positive definite matrix with eigenvalues

1=kai
2; 1=kbi

2; 1=kci
2 and column eigenvectors n̂, û, v̂ such

that:

R�1
i 	 Ri � Ki � RT

i

Ki ¼

1

k2
ai

0 0

0
1

k2
bi

0

0 0
1

k2
ci

2
66666664

3
77777775

Ri ¼ ½n̂ û v̂
 (A5)

Since, in the region growing algorithm, the voxel is la-

beled according to the ellipsoid that reaches the voxel first,

the compartment label j generated by the region growing

algorithm satisfies

j ¼ arg mini si ¼ arg mini x� sið ÞT
X�1

i
x� sið Þ: (A6)

Due to Eq. (A6), compartment boundaries in the region

growing represent Voronoi diagrams30 with respect to the

Mahalanobis distance.28 On the other hand, it is easy to dem-

onstrate that:

arg mini x� sið ÞT
X�1

i
x� sið Þ ¼ arg mini fi xð Þ; (A7)

where functions fi(x) are defined by Eq. (4), R�1
i are defined

by Eq. (A5) and

qi ¼
1ffiffiffiffiffiffiffiffiffiffiffi
R�1

i

�� ��q minj

ffiffiffiffiffiffiffiffiffiffiffi
R�1

i

�� ��
q

: (A8)

Note that arg mini fi(x) implies Eq. (5). Hence, the region

assignment in the region growing algorithm reduces to com-

partment assignment. In the region growing algorithm, there

is no explicit thickness control of Cooper’s ligaments (i.e.,

the thickness of the ligaments depends only on the target

voxel size). Hence, the result of a theoretic region growing

algorithm is equivalent to a special case of the proposed

algorithm when thickness control is not applied (e.g., when a

minimal thickness is smaller than a target voxel size Dx).

Note that in the actual implementation of region growing,2

the virtual time is discrete, which may lead to slight discrep-

ancy of labeling w.r.t. Eq. (A6).
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