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Purpose: Digital breast tomosynthesis (DBT) is a 3D x-ray imaging modality in which tomographic
sections of the breast are generated from a limited range of tube angles. Because oblique x-ray in-
cidence shifts the image of an object in subpixel detector element increments with each increasing
projection angle, it is demonstrated that DBT is capable of super-resolution (i.e., subpixel resolution).
Methods: By convention, DBT reconstructions are performed on planes parallel to the breast sup-
port at various depths of the breast volume. In order for resolution in each reconstructed slice to
be comparable to the detector, the pixel size should match that of the detector elements; hence, the
highest frequency that can be resolved in the plane of reconstruction is the alias frequency of the
detector. This study considers reconstruction grids with much smaller pixelation to visualize higher
frequencies. For analytical proof of super-resolution, a theoretical framework is developed in which
the reconstruction of a high frequency sinusoidal input is calculated using both simple backprojec-
tion (SBP) and filtered backprojection. To study the frequency spectrum of the reconstruction, its
Fourier transform is also determined. The experimental feasibility of super-resolution was investi-
gated by acquiring images of a bar pattern phantom with frequencies higher than the detector alias
frequency.
Results: Using analytical modeling, it is shown that the central projection cannot resolve frequencies
exceeding the detector alias frequency. The Fourier transform of the central projection is maximized
at a lower frequency than the input as evidence of aliasing. By contrast, SBP reconstruction can re-
solve the input, and its Fourier transform is correctly maximized at the input frequency. Incorporating
filters into the reconstruction smoothens pixelation artifacts in the spatial domain and reduces spectral
leakage in the Fourier domain. It is also demonstrated that the existence of super-resolution is depen-
dent on position in the reconstruction and on the directionality of the input frequency. Consistent
with the analytical results, experimental reconstructions of bar patterns showed visibility of frequen-
cies greater than the detector alias frequency. Super-resolution was present at positions predicted from
analytical modeling.
Conclusions: This work demonstrates the existence of super-resolution in DBT. Super-resolution has
the potential to impact the visualization of fine structural details in the breast, such as microcalci-
fications and other subtle signs of cancer. © 2012 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4757583]

Key words: digital breast tomosynthesis (DBT), super-resolution, bar pattern phantom,
microcalcifications, filtered backprojection (FBP)

I. INTRODUCTION

Digital breast tomosynthesis (DBT) is a 3D imaging modal-
ity in which low dose x-ray projections are acquired over a
limited angular range about the breast. Using digital image
reconstruction techniques, tomographic sections at all depths
of the breast volume are subsequently generated. Unlike 2D
digital mammography (DM), DBT can filter out overlapping
anatomical structures which may hide a tumor. Preliminary
studies indicate that DBT has greater sensitivity and speci-
ficity for cancer detection relative to DM.1, 2

In conventional practice, the reconstructed slices are
generated on planes parallel to the breast support. In order
to have the same in-plane resolution in the reconstruction as
the detector, the pixel size in each reconstructed slice should
match that of the detector elements. Using this approach,
the highest frequency that can be resolved in the plane of

reconstruction is the alias frequency of the detector. This
study considers the possibility for reconstruction grids with
much smaller pixelation so that higher frequencies can be
visualized. Because non-normal x-ray incidence causes the
image of an object to be translated in subpixel detector
element increments with each increasing projection angle,
it is demonstrated in this work that DBT is capable of
super-resolution (i.e., subpixel resolution).

Super-resolution has been well-described in a number
of applications involving reconstruction from projections,3

including forensics, satellite imaging, computed tomography
(CT), and magnetic resonance imaging (MRI); however, to
our knowledge, its potential in DBT has not yet been demon-
strated. An understanding of super-resolution and an analysis
of how to optimize its presence may prove to be useful for de-
signing the highest quality DBT systems. Although it is possi-
ble to improve spatial resolution simply by reducing the pixel
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size of the detector, there are practical lower limits on the
sizes that can be manufactured. In addition, one drawback of
reducing the pixel size is decreasing the mean number of pho-
tons incident on each detector element and hence decreasing
the signal-to-noise ratio (SNR) per pixel according to Poisson
statistics4 for x-ray distributions. Clinically, super-resolution
should be beneficial to diagnostic radiologists by improving
the visibility of microcalcifications and other subtle signs
of breast cancer with no increased radiation dose to the
patient.

In this study, a theoretical framework for investigating
super-resolution in DBT is developed by calculating the re-
construction of a sine input whose frequency is greater than
the alias frequency of the detector. For optimal visualization
of high frequencies in the 3D image, an infinitesimally fine
(i.e., non-pixelated) reconstruction grid is considered. The re-
construction techniques include both simple backprojection
(SBP) and filtered backprojection (FBP). In order to investi-
gate the experimental feasibility of super-resolution using a
commercial DBT system, images of a bar pattern phantom
with frequencies higher than the alias frequency of the detec-
tor were acquired and subsequently reconstructed.

II. METHODS

II.A. Input object and acquisition geometry

An analytical framework for investigating the potential
for super-resolution in DBT is now developed by calculating
the reconstruction of a high frequency sinusoidal input.

Accordingly, suppose that a rectangular prism with infinite
extent in the x and y directions has a linear attenuation
coefficient μ(x, y, z) which varies sinusoidally along the x
direction with frequency f0. Throughout the remainder of this
paper, the input object will be termed a “sine plate.” With
the xz plane defining the chest wall, the frequency vector is
therefore oriented parallel to the chest wall side of the breast
support. Figure 1 illustrates a cross section of the sine plate
in the xz plane. As shown, the rectangular prism is positioned
between z = z0 + ε/2 and z = z0 − ε/2, where z0 is the central
height of the prism and ε is the prism’s thickness. Defining
the origin O as the midpoint of the chest wall side of the
detector, the attenuation coefficient may be written as

μ(x, y, z) = C · cos[2πf0(x − x0)] · rect

(
z − z0

ε

)
, (1)

where C is a constant denoting the amplitude of the wave-
form, x0 is a translational shift in the waveform relative to the
origin, and the rect function is defined by the expression

rect(u) ≡
{

1, |u| ≤ 1/2

0, |u| > 1/2
. (2)

By setting the amplitude C to 1/ε, μ(x, y, z) may be
normalized5 so that the total attenuation found by integrating
along the z direction is simply cos[2π f0(x − x0)] for all ε.
Provided that |z − z0| ≤ ε, the 1D Fourier transform (F1)
of Eq. (1) along the x direction peaks at the frequencies
fx = ±f0, and vanishes at all other frequencies6

F1μ(fx, y, z) =
∫ ∞

−∞
μ(x, y, z) · e−2πifxxdx, (3)

FIG. 1. The 3D input object is a rectangular prism whose linear attenuation coefficient varies sinusoidally with position x parallel to the chest wall side of the
breast support. A 2D cross section of the input object through the plane of the chest wall is shown (figure not to scale). In acquiring projection images, the x-ray
tube rotates within the xz plane about point B, and the detector simultaneously rotates about the y axis. The primed unit vectors i′n and j′n define the coordinate
axes of the plane of the detector for the nth projection.
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= C

2
[e−2πif0x0δ(fx − f0) + e2πif0x0δ(fx + f0)]

· rect

(
z − z0

ε

)
. (4)

Typically, only the positive frequency fx = +f0 is of interest in
a physical measurement. Thus, although it is nonphysical for
an attenuation coefficient to vary between negative and pos-
itive values, formulating μ(x, y, z) by Eq. (1) is helpful for
a thought experiment in interrogating the reconstruction of
a single input frequency. An analysis of the case for which
the input frequency is oriented along the y direction (i.e.,
perpendicular to the chest wall) is considered separately in
Appendix A.

The most general DBT acquisition geometry with a diver-
gent x-ray beam and a rotating detector is now modeled. In
acquiring the nth projection, the focal spot emits x-rays at the
nominal projection angle ψn relative to the center-of-rotation
(COR) of the DBT system. The COR and the focal spot lie
in the plane of the chest wall. In addition, the detector rotates
about the y axis at the angle γ n relative to the x direction.
The two parameters ψn and γ n are determined from the
nominal angular spacing �ψ and the detector gear ratio g by

the relations

ψn = n · �ψ, (5)

γn = ψn

g
. (6)

For an odd number of N total projections, the index n varies
between −(N − 1)/2 and (N − 1)/2, and the special case
n = 0 defines the central projection.

As a final step in this section, it is useful to calculate the
incident angle at each point on the detector. Following Fig. 2,
the vector from O to an arbitrary point C on the detector for
the nth projection is

−→
OC = u1i′n + u2 j′n, (7)

= (u1 cos γn)i + u2 j + (u1 sin γn)k. (8)

The matrix transformation between the primed and unprimed
coordinate systems supports the transition from Eq. (7) to
Eq. (8)

FIG. 2. A schematic diagram of the DBT acquisition geometry is shown (figure not to scale). The x-ray beam strikes point C at the angle θn relative to the
normal to the detector. In FBP reconstruction, signal at C is backprojected to an arbitrary point E along the incident ray. Within the plane of the detector,
backprojection is directed toward point F along the angle 	n relative to the i′n axis.
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⎛
⎜⎝

i′n
j′n
k′

n

⎞
⎟⎠ =

⎛
⎜⎝

cos γn 0 sin γn

0 1 0

− sin γn 0 cos γn

⎞
⎟⎠

⎛
⎜⎝

i

j

k

⎞
⎟⎠ . (9)

Additional vectors from O to the COR at point B and from the
COR to the focal spot at point A are

−→
OB = lk, (10)
−→
BA = (−h sin ψn)i + (h cos ψn)k, (11)

where l is the COR-to-origin distance and where h is the
source-to-COR distance. In Eq. (11), it is assumed that for
positive values of ψn, the x coordinate of the focal spot at A
is negative. This sign convention is chosen so that positive
values of ψn cause the x component of the trajectory from A

to C to be positive for positive values of u1 (Fig. 2). By the
summation rules for vectors, the net vector from point C on
the detector to the focal spot at A is

−→
CA = −

−→
OC +

−→
OB +

−→
BA, (12)

= −(u1 cos γn + h sin ψn)i − u2 j

+ (l + h cos ψn − u1 sin γn)k. (13)

Thus, the angle of incidence is found from the expression

cos θn =
−→
CA • k′

n∣∣−→
CA

∣∣|k′
n|

, (14)

giving

θn = arccos

⎡
⎣ h cos(ψn − γn) + l cos γn√

(u1 cos γn + h sin ψn)2 + u2
2 + (l + h cos ψn − u1 sin γn)2

⎤
⎦ . (15)

The dot product in Eq. (14) has been computed using Eq. (9)
to write k′

n in terms of the unprimed unit vectors.

II.B. Detector signal

To calculate the detector signal for each projection, it is
useful to perform ray tracing through the input object. We be-
gin by defining the line from the focal spot at A to the incident
point on the detector at C for the nth projection. This line can
be expressed as the parametric equation⎛
⎝ x

y

z

⎞
⎠ = w

⎛
⎜⎝

u1 cos γn + h sin ψn

u2

u1 sin γn − l − h cos ψn

⎞
⎟⎠ +

⎛
⎜⎝

−h sin ψn

0

l + h cos ψn

⎞
⎟⎠,

(16)

where (x, y, z) is a point in R3 and w is a free parameter. The
focal spot at A has been defined to correspond with w = 0,
while the incident point at C has been defined to correspond
with w = 1. The x-ray path length Ln through the input object
for the nth projection image is determined from the intersec-
tion of Eq. (16) with the planes z = z0 + ε/2 and z = z0 − ε/2.
The values of w for these two points are

w+
n = z0 + (ε/2) − l − h cos ψn

u1 sin γn − l − h cos ψn

, (17)

w−
n = z0 − (ε/2) − l − h cos ψn

u1 sin γn − l − h cos ψn

, (18)

where w+
n and w−

n correspond to the entrance and exit points
of the x-ray beam through the input, respectively. For the nth
projection image, total x-ray attenuation Aμ(n) is now found
by integrating μ(x, y, z) along Ln

Aμ(n) =
∫
Ln

μds. (19)

The differential arc length ds along Ln is

ds =
√(

dx

dw

)2

+
(

dy

dw

)2

+
(

dz

dw

)2

dw, (20)

=
√

(u1 cos γn+hsinψn)2+u2
2+(l+h cos ψn−u1sinγn)2dw,

(21)

= [h cos(ψn − γn) + l cos γn] sec(θn) · dw. (22)

Equation (22) follows from Eq. (15). Substituting Eq. (22)
into Eq. (19) yields the total x-ray attenuation

Aμ(n) = κn

∫ w−
n

w+
n

cos[2πf0(u1 cos γn + h sin ψn)w + λn]dw, (23)

= κn

(
sin

[
2πf0(u1 cos γn + h sin ψn)w−

n + λn

] − sin
[
2πf0(u1 cos γn + h sin ψn)w+

n + λn

])
2πf0(u1 cos γn + h sin ψn)

, (24)
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where

κn = C[h cos(ψn − γn) + l cos γn] sec θn, (25)

λn = −2πf0(h sin ψn + x0). (26)

Using a sum-to-product trigonometric identity for real numbers b1 and b2

sin(b1) − sin(b2) = 2 cos

(
b1 + b2

2

)
sin

(
b1 − b2

2

)
, (27)

one may rewrite Eq. (24) as

Aμ(n) = κn(w−
n − w+

n ) cos
[
πf0(u1 cos γn + h sin ψn)(w+

n + w−
n ) + λn

]
sinc

[
f0(u1 cos γn + h sin ψn)(w−

n − w+
n )

]
, (28)

=
εκn cos

[
2πf0(l + h cos ψn − z0)(u1 cos γn + h sin ψn)

l + h cos ψn − u1 sin γn

+ λn

]
sinc

[
εf0(u1 cos γn + h sin ψn)

l + h cos ψn − u1 sin γn

]
l + h cos ψn − u1 sin γn

, (29)

where

sinc(u) ≡ sin(πu)

πu
. (30)

The transition from Eq. (28) to (29) follows from Eqs. (17)
and (18). Equation (29) possesses a singularity at
u1 = (l + h cos ψn) csc γn, the point at which the de-
nominator vanishes. For typical acquisition geometries, this
singularity is not expected to correspond to a position on the
detector, since neither the attenuation coefficient μ(x, y, z)
nor the path length Ln should have an infinity.

Equation (29) provides an expression for signal intensity
versus position along the detector, assuming that the detector
is non-pixelated and possesses an x-ray converter whose mod-
ulation transfer function (MTF) is unity at all frequencies. An
amorphous selenium (a-Se) photoconductor operated in drift
mode is a good approximation for an x-ray converter with
these properties.7 In a clinical setting, a-Se is placed in con-
tact with a plate of amorphous silicon (a-Si) in which a thin-
film transistor (TFT) array samples detector signal in pixels
(i.e., detector elements).8–10 The logarithmically transformed
signal in the mth detector element for the nth projection is

Dμ(m, n) =
∫ ay (my+1)

aymy

∫ ax (mx+1/2)

ax (mx−1/2)
Aμ(n) · du1

ax

du2

ay

.

(31)

In Eq. (31), mx and my are integers used for labeling detec-
tor elements, and ax and ay denote detector element lengths
in the directions parallel and perpendicular to the chest wall,
respectively. In the special case of square detector elements,
it is assumed that ax = ay = a. Detector elements are cen-
tered on u1 = mxax and u2 = (my + 1/2)ay, where mx ∈ Z and
my ∈ Z*.

It is important to note that the integrand in Eq. (31) is
dependent on both u1 and u2 due to the dependency of κn

[Eq. (25)] on the incident angle θn [Eq. (15)]. However, be-
cause θn should vary minimally within the area of a single

detector element, total attenuation can be well approximated
by the expression

Ãμ(n) = Aμ(n)|θn=θmn
, (32)

where θmn is the evaluation of θn at the centroid of the mth
detector element

θmn ≡ θn|(u1,u2)=(mxax,[my+1/2]ay) , (33)

so that

Dμ(m, n) ∼=
∫ ax (mx+1/2)

ax (mx−1/2)
Ãμ(n) · du1

ax

. (34)

Because it would be difficult to evaluate Eq. (34) in closed
form, it is appropriate to apply approximate integration tech-
niques. One such method is the midpoint formula11

Dμ(m, n) ∼= lim
Jx→∞

1

Jx

Jx∑
jx=1

Ãμ(jx, n), (35)

where

Ãμ(jx, n) ≡ Ãμ(n)
∣∣
u1=ax

(
jx−1/2

Jx
+mx− 1

2

) . (36)

The raw signal Sμ(u1, u2) across the detector can now be de-
termined for the nth projection as

Sμ(u1, u2) =
∑

m

Dμ(m, n) · rect

(
u1 − mxax

ax

)

· rect

(
u2 − (my + 1/2)ay

ay

)
. (37)

Using this expression for raw signal, it is now possible to cal-
culate the x-ray transform12 Xμ(t1, t2)

Xμ(t1, t2) =
∑

m

Dμ(m, n) · rect

(
t1 sec θmn − mxax

ax

)

· rect

(
t2 sec θmn − (my + 1/2)ay

ay

)
. (38)

To justify the transition from Eq. (37) to Eq. (38), one must
determine the affine parameters t1 and t2 in terms of u1 and u2
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by considering a line segment OD which is orthogonal to AC
and which connects the origin with the x-ray beam (Fig. 2).

From trigonometry, the length |t| =
√

t2
1 + t2

2 of OD is

|t| = |u| cos θn. (39)

By generalizing Eq. (39) to components, one finds
t1 = u1cosθn and t2 = u2cosθn. In Eq. (38), the incident angle
across the area of the mth detector element for the nth projec-
tion has been approximated by its value at the centroid.

II.C. Filtered backprojection reconstruction
from the projections

The reconstructed attenuation coefficient can now be de-
termined by filtering the x-ray transform with the func-

tion φ(t1, t2) and backprojecting the result along the ray of
incidence.13 It is customary to apply filtering exclusively to
frequencies within the plane of the x-ray tube motion, so that
the filter’s 2D Fourier transform F2φ(f1, f2) is independent
of f2

F2φ(f1, f2) = F1φ(f1), (40)

and hence

φ(t1, t2) = φ(t1)δ(t2). (41)

The specific formula for φ(t1) will be addressed in Sec II.D.
Assuming that the reconstruction grid is infinitesimally fine
(i.e., non-pixelated), the FBP reconstruction is

μFBP =
∑
m,n

Dμ(m, n)

N
·
[
φ(t1) ∗ rect

(
t1 sec θmn − mxax

ax

)]∣∣∣∣
t1=x ′

n cos θmn+z′
n cos(	mn) sin(θmn)

·
[

rect

(
t2 sec θmn − (my + 1/2)ay

ay

)]∣∣∣∣
t2=y ′

n cos θmn+z′
n sin(	mn) sin(θmn)

, (42)

where μFBP is the reconstructed attenuation coefficient and
* is the convolution operator. Within the plane of the detec-
tor, backprojection of signal in the mth detector element for
the nth projection is directed azimuthally along the angle 	mn

relative to the i′n axis (Fig. 2). As shown in Eq. (42), backpro-
jection may be performed for each of the N projections us-
ing the primed coordinate system. To evaluate Eq. (42) at the
point (x, y, z) in the unprimed coordinate system, one applies
the matrix transformation given in Eq. (9).

It is now important to illustrate how the azimuthal back-
projection angle 	mn is calculated. Begin by considering an
arbitrary point E along the x-ray beam at which signal is back-
projected from the incident point C (Fig. 2). A line segment
along the k′

n direction may then be drawn from E to the point
F on the detector for the nth projection. As a result, within
the plane of the detector, backprojection is directed from C
to F at the angle 	n relative to the i′n axis. Point G may now
be defined as the position at the chest wall side of the detec-
tor which is collinear with points C and F. A derivation of the
formula for 	n requires knowledge of the distance dn between
G and O, which is now calculated

−→
GO = dni′n, (43)

= (dn cos γn)i + (dn sin γn)k. (44)

Since ACG and ECF are similar triangles,
−→
GA is parallel to

−→
FE

and is in turn parallel to k′
n. Denoting × as the cross product

operator, it follows that:
−→
GA × k′

n = 0, (45)

where
−→
GA =

−→
GO +

−→
OA, (46)

= (dn cos γn − h sin ψn)i + (dn sin γn + l + h cos ψn)k.

(47)

To calculate
−→
OA in Eq. (46), Eqs. (10) and (11) have been

summed. Substituting Eqs. (9) and (47) into the cross product
of Eq. (45) gives
−→
GA × k′

n

=

∣∣∣∣∣∣∣
i j k

dn cos γn − h sin ψn 0 dn sin γn + l + h cos ψn

− sin γn 0 cos γn

∣∣∣∣∣∣∣ ,
(48)

= −[dn + l sin γn − h sin(ψn − γn)] j. (49)

By combining Eqs. (45) and (49), one can solve for dn

dn = h sin(ψn − γn) − l sin γn. (50)

Using this result, it follows from trigonometry that

cos 	n = u1 + dn√
(u1 + dn)2 + u2

2

, (51)

sin 	n = u2√
(u1 + dn)2 + u2

2

. (52)
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Substituting the coordinates of the detector element centroid
into Eqs. (51) and (52), one finds that the azimuthal backpro-
jection angle for the mth detector element in the nth projec-
tion satisfies the properties

cos 	mn = mxax + dn√
(mxax + dn)2 + (my + 1/2)2a2

y

, (53)

sin 	mn = (my + 1/2)ay√
(mxax + dn)2 + (my + 1/2)2a2

y

. (54)

These relations are the expressions needed for FBP recon-
struction in Eq. (42). One special case of Eq. (42) is SBP
reconstruction

B(Xμ) =
∑
m,n

Dμ(m, n)

N

· rect

(
x ′

n + z′
n cos(	mn) tan(θmn) − mxax

ax

)

· rect

(
y ′

n+z′
n sin(	mn) tan(θmn)−(my+1/2)ay

ay

)
,

(55)

where B denotes the backprojection operator. With SBP,
the filter φ(t1, t2) effectively becomes the product δ(t1)δ(t2).

According to Eq. (55), backprojection in the primed co-
ordinate system occurs by translating x′

n and y′
n by

−z′
ncos (	mn)tan (θmn) and −z′

nsin (	mn)tan (θmn), respec-
tively, where z′

n is the height of the backprojected point (E)
above the plane of the detector. These translational shifts are
illustrated in Fig. 2.

II.D. Formulation of the reconstruction filter

Following Zhao’s linear systems theory for DBT,14 a ramp
(RA) filter should be applied to the x-ray transform of each
projection to reduce the low frequency detector response.15

The filter is truncated at the spatial frequencies f1 = −ξ and
f1 = +ξ in the Fourier domain

F1φRA(f1) =
{ |f1| , |f1| ≤ ξ

0, |f1| > ξ
. (56)

The spatial representation φRA(t1) of the RA filter is deter-
mined by its inverse Fourier transform6

φRA(t1) =
∫ ∞

−∞
F1φRA(f1) · e2πit1f1df1, (57)

= ξ 2 [2sinc(2ξ t1) − sinc2(ξ t1)
]
. (58)

Using this result, the convolution in Eq. (42) can be
calculated

φRA(t1) ∗ rect

(
t1 sec θmn − mxax

ax

)
=

[
ax cos(θmn) [cos(πaxξ cos θmn) cos [2πξ (t1 − mxax cos θmn)] − 1]

+2(t1 − mxax cos θmn) sin(πaxξ cos θmn) sin [2πξ (t1 − mxax cos θmn)]

]
2π2

[
t1 − (mx − 1/2)ax cos θmn

] [
t1 − (mx + 1/2)ax cos θmn

] . (59)

Since noise tends to occur at high frequencies, a spectrum apodization (SA) filter is often applied in addition to the RA filter in
order to reduce the high frequency detector response. Following Zhao’s approach, a Hanning window function is the SA filter

F1φSA(f1) =

⎧⎪⎨
⎪⎩

1

2

[
1 + cos

(
πf1

ξ

)]
, |f1| ≤ ξ

0, |f1| > ξ

, (60)

φSA(t1) = ξsinc(2ξ t1)

1 − 4ξ 2t2
1

. (61)

According to the convolution theorem,6 the net filter is thus

φSA(t1) ∗ φRA(t1) = ξ 2
[
π2(12ξ 2t2

1 − 1)sinc2(ξ t1) − 2π2(4ξ 2t2
1 − 1)sinc(2ξ t1) − 4(4ξ 2t2

1 + 1)
]

2π2(4ξ 2t2
1 − 1)2

. (62)

The convolution of the net filter in Eq. (62) with the rect function in Eq. (42) can be performed in closed form similar to
Eq. (59). This expression is omitted as it is lengthy.

II.E. Fourier transform of the DBT images

According to Eq. (4), the Fourier transform of the input
along the x direction peaks at the frequencies fx = ±f0. To
determine whether the frequency spectra of the DBT im-
ages possess this expected dependency on f0, their continuous
Fourier transforms may be considered. Within the plane of the

detector, the 2D Fourier transform of the nth projection is

F2(Sμ)(f1, f2)

=
∫ ∞

−∞

∫ ∞

−∞
Sμ(u1, u2)

· e−2πi(f1u1+f2u2)du1du2, (63)
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= axay · sinc(axf1)sinc(ayf2) ·
∑

m

Dμ(m, n)

· e−2πi[mxaxf1+(my+1/2)ayf2]. (64)

The 2D Fourier transform of the reconstruction along the x
and y directions may now be calculated by considering a fixed
height z. Because this study only considers input frequencies
parallel to the xy plane, it is unnecessary to transform along
the z direction. Although filtered backprojection reconstruc-
tion in Eq. (42) is performed in the primed coordinate system,
it is important to take the Fourier transform in the unprimed
coordinate system. As such, the reconstructed attenuation co-
efficient can be written in the form

μFBP(x, y, z) =
∑
m,n

Dμ(m, n)

N
· [ρ1(t1)]|t1=σ1mnx+σ2mnz

· [ρ2(t2)]|t2=σ3mnx+σ4mny+σ5mnz
, (65)

where

ρ1(t1) = φ(t1) ∗ rect

(
t1 sec θmn − mxax

ax

)
, (66)

ρ2(t2) = rect

(
t2 sec θmn − (my + 1/2)ay

ay

)
, (67)

and

σ1mn = cos(γn) cos(θmn) − cos(	mn) sin(γn) sin(θmn),

(68)

σ2mn = sin(γn) cos(θmn) + cos(	mn) cos(γn) sin(θmn),

(69)

σ3mn = − sin(	mn) sin(γn) sin(θmn), (70)

σ4mn = cos θmn, (71)

σ5mn = sin(	mn) cos(γn) sin(θmn). (72)

According to the convolution theorem, the Fourier transform
of Eq. (66) under the frequency variable f1 is

F1ρ1(f1) = F1φ(f1) · ax cos(θmn)sinc(axf1 cos θmn)

· e−2πimxaxf1 cos θmn . (73)

In the special case of SBP reconstruction, the filter in
Eq. (73) is unity. In a similar fashion, the Fourier transform
of Eq. (67) may be written

F1ρ2(f2) = ay cos(θmn)sinc(ayf2 cos θmn)

· e−2πi(my+1/2)ayf2 cos θmn . (74)

The 2D Fourier transform of Eq. (65) at the fixed depth z is
now determined from the expression

F2μFBP(fx, fy, z) =
∑
m,n

Dμ(m, n)

N

·
∫ ∞

−∞
ρ1(σ1mnx + σ2mnz)

· Iymn(x) · e−2πifxxdx, (75)

where Iymn(x) is given by the integral

Iymn(x) =
∫ ∞

−∞
ρ2(σ3mnx + σ4mny + σ5mnz) · e−2πifyydy.

(76)

To evaluate Eq. (76), one can make the change of variables
ηymn = σ 3mnx + σ 4mny + σ 5mnz. Since σ 4mn > 0, it follows
that:

Iymn(x) =
∫ ∞

−∞
ρ2(ηymn)e

−2πify (ηymn−σ3mnx−σ5mnz)
σ4mn

dηymn

σ4mn

, (77)

= e
2πify (σ3mnx+σ5mnz)

σ4mn

σ4mn

∫ ∞

−∞
ρ2(ηymn)

· e−2πi
(

fy

σ4mn

)
ηymn

dηymn, (78)

= e
2πify (σ3mnx+σ5mnz)

σ4mn

σ4mn

F1ρ2

(
fy

σ4mn

)
, (79)

where F1ρ2 has been previously calculated in Eq. (74). Using
Eq. (79), Eq. (75) can now be rewritten as

F2μFBP(fx, fy, z)

=
∑
m,n

Dμ(m, n)

N

e
2πify σ5mnz

σ4mn Ixmn

σ4mn

F1ρ2

(
fy

σ4mn

)
, (80)

where

Ixmn =
∫ ∞

−∞
ρ1(σ1mnx + σ2mnz)e

−2πi
(
fx− σ3mnfy

σ4mn

)
x
dx. (81)

To evaluate Eq. (81), it is helpful to perform the substitution
ηxmn = σ 1mnx + σ 2mnz,

Ixmn =
∫ ∞

−∞
ρ1(ηxmn)e

−2πi
(
fx− σ3mnfy

σ4mn

)(
ηxmn−σ2mnz

σ1mn

)
dηxmn

|σ1mn| ,

(82)

= e
2πiσ2mnz(σ4mnfx−σ3mnfy )

σ1mnσ4mn

|σ1mn|
∫ ∞

−∞
ρ1(ηxmn)

· e−2πi
(

σ4mnfx−σ3mnfy

σ1mnσ4mn

)
ηxmn

dηxmn, (83)

= e
2πiσ2mnz(σ4mnfx−σ3mnfy )

σ1mnσ4mn

|σ1mn| F1ρ1

(
σ4mnfx − σ3mnfy

σ1mnσ4mn

)
,

(84)

where F1ρ1 is given by Eq. (73). The final expression for the
2D Fourier transform of the reconstruction can now be de-
rived by combining Eqs. (80) and (84)
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F2μFBP(fx, fy, z) =
∑
m,n

Dμ(m, n)

N

e
2πiz

σ1mnσ4mn
[σ2mnσ4mnfx+(σ1mnσ5mn−σ2mnσ3mn)fy]

|σ1mn| σ4mn

F1ρ1

(
σ4mnfx − σ3mnfy

σ1mnσ4mn

)
F1ρ2

(
fy

σ4mn

)
. (85)

A special case of this result is important to consider

F2μFBP(fx, 0, z)

=
∑
m,n

Dμ(m, n)

N

e
2πiσ2mnzfx

σ1mn ay cos θmn

|σ1mn| σ4mn

F1ρ1

(
fx

σ1mn

)
.

(86)

Equation (86) is useful for analyzing the reconstruction of an
input frequency oriented along the x direction; that is, fy = 0.

III. THEORETICAL RESULTS

III.A. Input frequency directed parallel to the chest
wall side of the breast support

Image acquisition is now simulated for a Selenia
Dimensions integrated multimode mammography and to-
mosynthesis x-ray system (Hologic Inc., Bedford, MA)
having 15 projections, an angular spacing (�ψ) of 1.07◦ be-
tween projections, a source-to-COR distance (h) of 70.0 cm,
a COR-to-origin distance (l) of 0 cm, and square detector
element length (ax = ay = a) of 140 μm. In addition, the sine
plate has a thickness (ε) of 0.5 mm, a translational shift (x0)
of 0 mm along the direction of the chest wall side of the breast
support, and a frequency (f0) of 0.7a−1 (5.00 lp/mm) parallel
to the x axis. To illustrate the potential for super-resolution
in DBT, the input frequency is chosen to be higher than the
detector alias frequency 0.5a−1 (3.57 lp/mm). The sine plate
is placed at a depth corresponding to the mid-thickness of a
typical breast size (50.0 mm thick) under compression. With
the breast support positioned 25.0 mm above the origin of
the detector, the sine plate is therefore positioned at the depth
z0 = 50.0 mm.

FBP reconstructions are performed with either the RA
filter alone or the RA and SA filters together, assuming a
truncation frequency (ξ ) of 2a−1 (14.3 lp/mm). Although
ξ is typically chosen to be the detector alias frequency
0.5a−1, it is necessary to choose a higher value to achieve
super-resolution. The specified value of ξ corresponds to
the second zero of the MTF of the detector sampling pro-
cess for frequency measurements along the f1 direction
(f2 = 0)16–18

MTF(f1, f2) = sinc(axf1)sinc(ayf2). (87)

Figure 3 shows a plot of the reconstruction filters versus fre-
quency. The two filters almost perfectly match each other at
low frequencies but diverge at high frequencies, since the SA
filter is intended to suppress high frequency noise.

III.A.1. Individual projections

At a fixed distance (u2) of 30.0 mm from the chest wall,
Figs. 4(a) and 4(b) show a cross section of signal versus de-
tector position u1 for the central projection (n = 0) and an
oblique projection (n = 7) of the sine plate. The u2 displace-
ment lies between the chest wall and nipple of a typical breast.
In the recent development of a physical 3D anthropomorphic
phantom for image quality assessment in DM and DBT,19, 20

Carton et al. modeled a distance of 65.0 mm between the
chest wall and nipple for an average breast size of 450 ml.
The u2 displacement considered in Figs. 4(a) and 4(b) thus
corresponds to a position approximately halfway between the
chest wall and nipple of this phantom.

Detector signal is a discrete function [Eq. (31)] due to de-
tector element sampling. To represent this signal graphically,
the presence of each detector element can be modeled by a
rectangle function, so that the projections appear to be step-
like in Figs. 4(a) and 4(b). The width of each step matches the
detector element length (140 μm).

In Figs. 4(c) and 4(d), the modulus of the Fourier transform
of detector signal is plotted versus frequency f1, assuming
f2 = 0 [Eq. (64)]. The central and oblique projections are sim-
ilar in that they both represent a high frequency input as if it
were a lower frequency. The major peak of the Fourier trans-
form of either projection does not occur at the input frequency
5.00 lp/mm but instead occurs at a lower frequency as evi-
dence of aliasing.

The two projections and their frequency spectra are also
plotted in Fig. 4 for an infinite source-to-COR distance (h)
with no other changes in the acquisition parameters. This
limiting case transforms the divergent beam geometry into a
parallel beam geometry. Consequently, the x-ray angle
relative to the normal to the detector does not vary with

FIG. 3. Reconstruction is performed with either the ramp (RA) filter alone
or the RA and spectrum apodization (SA) filters together. The SA filter is a
Hanning window function.
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FIG. 4. At a distance u2 of 30.0 mm from the chest wall, cross sections of detector signal in the central projection (n = 0) and the most oblique projection
(n = 7) are plotted versus position u1. In addition, Fourier transforms are shown versus frequency. The major Fourier peaks do not occur at the input frequency
5.00 lp/mm, illustrating the presence of aliasing. Reducing the source-to-COR distance (h) magnifies the input frequency projected onto the detector.

position (u1, u2) by Eq. (15) but instead is always ψn − γ n

for the nth projection.
In the parallel beam geometry, the central projection rep-

resents the input frequency as if it were a−1 − f0, or 0.3a−1.
As a result, the Fourier transform has a major peak at 0.3a−1

(2.14 lp/mm), and has minor peaks at 0.7a−1 (5.0 lp/mm),
1.3a−1 (9.29 lp/mm), and 1.7a−1 (12.14 lp/mm). Unlike the
parallel beam geometry, the divergent beam geometry magni-
fies the input so that it projects onto the x-ray converter with
the frequency f0/M

M = h

h − z0
, (88)

where M denotes the magnification.21 With a source-to-COR
distance (h) of 70.0 cm and an object-to-detector distance
(z0) of 50.0 mm, M is 1.077. As a result of the magnifica-
tion, the peaks in the Fourier transform of detector signal
occur at different frequencies than the parallel beam geom-
etry. Accordingly, these Fourier peaks occur at a−1 − f0/M
(2.50 lp/mm), f0/M (4.64 lp/mm), 2a−1 − f0/M (9.64 lp/mm),
and a−1 + f0/M (11.78 lp/mm). The Fourier transform of the

most oblique projection peaks at similar frequencies as the
central projection.

III.A.2. SBP reconstruction

Figure 5(a) shows SBP reconstruction versus position (x)
measured parallel to the chest wall side of the breast sup-
port, performed at the distance y = 30.0 mm from the chest
wall and at the height z = z0 = 50.0 mm above the detector.
Unlike an individual projection, SBP reconstruction can re-
solve the input frequency 5.00 lp/mm. This property arises
because the oblique projections give information about the
input which is not present in the central projection alone
[Fig. 4(b)]. Although not explicitly plotted in Fig. 5(a), it can
be shown that super-resolution is present across a broad range
of x and y positions in the reconstructed volume.

The SBP Fourier transform [Eq. (86)] correctly possesses
its major peak at 5.00 lp/mm. The major peak of an individual
projection, occurring at 2.50 lp/mm, is now highly suppressed
in magnitude [Fig. 5(c)].
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FIG. 5. Unlike a single projection (Fig. 4), simple backprojection (SBP) reconstruction can resolve a high frequency input oriented along the x direction.
Applying filters to the reconstruction smoothens pixelation artifacts in the spatial domain and reduces low frequency spectral leakage in the Fourier domain.
Reconstructing with the ramp (RA) filter alone has the benefit of greater modulation than reconstructing with the RA and spectrum apodization (SA) filters
together. The drawback of reconstructing with the RA filter alone is increasing the amplitude of high frequency spectral leakage.

III.A.3. FBP reconstruction

FBP reconstructions are now performed with either the RA
filter alone or the RA and SA filters together. In the spatial
domain, these reconstructions are plotted versus position (x)
parallel to the chest wall side of the breast support, assuming
y = 30.0 mm and z = 50.0 mm [Fig. 5(b)]. Figure 5(b) demon-
strates that reconstruction filters smoothen pixelation artifacts
found in the SBP reconstruction. In addition, Fig. 5(b) shows
that reconstructing with the RA filter alone yields greater
modulation than reconstructing with the RA and SA filters
together. The modulation for reconstruction with the RA fil-
ter alone is 41.0%, yet the modulation for reconstruction with
the RA and SA filters together is 29.8%. It is expected that
reconstruction with the RA filter alone has greater modula-
tion, since the amplitude of this filter exceeds that of the RA
and SA filters together at the input frequency (Fig. 3). Impor-
tantly, the modulation of either FBP reconstruction technique
is well above the limit of resolution for typical imaging sys-
tems, which is often taken to be 5%. In addition, the modu-
lation of either FBP reconstruction technique is greater than
that of SBP reconstruction (18.4%).

Although reconstruction with the RA filter alone has the
benefit of greater modulation than reconstruction with the RA
and SA filters together, the tradeoff is greater spectral leakage
at very high frequencies. In fact, the amplitude of the high
frequency spectral leakage is greater with the RA filter alone
than with SBP. In experimental practice, reconstruction with
the RA filter alone also increases the presence of noise, which
tends to occur at high frequencies.

III.B. Input frequency directed perpendicular
to the chest wall

It is now demonstrated that the existence of super-
resolution is dependent on the directionality of the input fre-
quency. Super-resolution arises because of subpixel detector
element shifts in the image of an object with each increas-
ing projection angle. In order to investigate the feasibility of
super-resolution for frequencies oriented along the y direc-
tion (i.e., perpendicular to the chest wall), the translational
shift in the u2 position of the incident x-ray is now calcu-
lated. For the nth projection, an x-ray passing from the focal
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FIG. 6. At a reconstruction depth (z) of 50.0 mm, the magnitude of the trans-
lational shift in the u2 coordinate of the image [Eq. (90)] is plotted versus
position y measured perpendicular to the chest wall. In the mid PA/SS plane
(x = 0), translational shifts are minimal comparing the central projection and
an oblique projection (n1 = 0, n2 = 7), and are zero comparing the two most
oblique projections (n1 = −7, n2 = 7). Increasing the magnitude of the dis-
tance x relative to the mid PA/SS plane yields a noticeable change in the
translational shift.

spot through the point (x, y, z) strikes the detector at the u2

coordinate

u2(n) = y
[
l cos γn + h cos(ψn − γn)

]
x sin γn + (l − z) cos γn + h cos(ψn − γn)

. (89)

This expression follows from Eq. (16). The translational shift
in the u2 position of the object comparing projection numbers
n1 and n2 is thus

�u2(n1, n2) = u2(n2) − u2(n1). (90)

Assuming that z = 50.0 mm, Fig. 6 shows the magnitude of
this translational shift versus position y within two planes,
x = 0 and x = −30.0 mm, comparing the central projection
and an oblique projection (n1 = 0, n2 = 7) as well as two
oblique projections (n1 = −7, n2 = 7). Throughout the re-
mainder of this work, a plane defined by a fixed value of x will
be termed a PA/SS plane since it has extent in both the pos-
teroanterior (PA) and source-to-support (SS) directions. Al-
though the SS direction technically varies with position on
the breast support due to the divergence of the x-ray beam, it
is assumed to be equivalent to the z direction for the purpose
of this work. As such, the SS direction lies along the same
axis as the source-to-image distance (SID), or the length be-
tween the focal spot and the origin O for the central projection
(Fig. 1). In a cranial-caudal (CC) view, a PA/SS plane is thus
a sagittal plane through the breast. By contrast, in a medio-
lateral oblique (MLO) view, the same plane is at an approxi-
mately 45◦ angle relative to the sagittal and transverse planes
through the breast.

In the mid PA/SS plane (x = 0), translational shifts be-
tween projections are minimal in a typical sized breast. For
example, with x = 0, y = 30.0 mm, and z = 50.0 mm,
the translational shift between the central projection and an
oblique projection is 0.009 mm (6.52% of detector element
length), and the translational shift between the two most

oblique projections is zero. For this reason, super-resolution
along the y direction is simply not achievable within the mid
PA/SS plane. As illustrated in Fig. 7(a), SBP reconstruction
at x = 0 in the region y ∈ [29.4 mm, 30.6 mm] resembles a
single projection.

In Fig. 6, it is demonstrated that the u2 translational shift
between projections increases as the magnitude of the dis-
tance x increases. For example, with x = −30.0 mm and
y = 30.0 mm, the translational shift between the central
projection and the oblique projection is 0.047 mm (33.4%
of detector element length), and the translational shift be-
tween the two most oblique projections is 0.112 mm (80.0%
of detector element length). Because these translational
shifts are sufficiently large, SBP reconstruction [Fig. 7(c)]
shows super-resolution at x = −30.0 mm over the region
y ∈ [29.4 mm, 30.6 mm]. Unlike SBP reconstruction for an
input frequency oriented along the x direction [Fig. 5(a)], the
amplitudes of the peaks in Fig. 7(c) are noticeably differ-
ent from each other, indicating the presence of reconstruc-
tion artifacts. It can be shown that these artifacts are mini-
mized by increasing the distance y from the chest wall, since
the u2 translational shifts between projections increase with y
(Fig. 6).

The SBP reconstructions in Fig. 7 can be analyzed further
by computing their 1D Fourier transform along the y direc-
tion. To show differences in these Fourier transforms at fixed
values of x, we choose not to transform over both x and y as
given by Eq. (85)

F1 [B(Xμ)] (x, fy, z)

=
∑
m,n

Dμ(m, n)

N

e
2πify (σ3mnx+σ5mnz)

σ4mn

σ4mn

· rect

[
(σ1mnx+σ2mnz) sec θmn−mxax

ax

]
F1ρ2

(
fy

σ4mn

)
.

(91)

For additional proof that super-resolution is not achievable
within the mid PA/SS plane, Fig. 7(b) shows that the ma-
jor Fourier peak at x = 0 occurs well below the input fre-
quency. By contrast, the major Fourier peak at x = −30.0 mm
[Fig. 7(d)] matches the input frequency, 5.00 lp/mm. Al-
though not shown in the plot, it can be demonstrated that
spectral leakage is reduced by increasing the magnitude of
the distance x relative to the mid PA/SS plane.

As a final point in this section, it is important to note that
by applying the filters in Fig. 3 to the SBP reconstructions
of Fig. 7, the modulation effectively vanishes (graph not
shown). This finding arises because filtering is applied
only within the plane of the chest wall [Eq. (40)]. An
input frequency oriented along the y direction contributes a
component of 0 lp/mm within the plane of the chest wall;
since the reconstruction filters vanish at 0 lp/mm (Fig. 3),
FBP reconstructions are expected to have no modulation. For
this reason, future research on filter optimization is merited
as described in the Discussion section.
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FIG. 7. (a) Within the mid PA/SS plane (x = 0), SBP reconstruction resembles a single projection over the region y ∈ [29.4 mm, 30.6 mm] for an input
frequency oriented along the y direction perpendicular to the chest wall. (b) The 1D Fourier transform of the SBP reconstruction is plotted versus frequency
measured along the y direction. Within the mid PA/SS plane of a typical sized breast, the major Fourier peak occurs at a frequency lower than the input frequency,
5.00 lp/mm. (c) With x = −30.0 mm, super-resolution in a SBP reconstruction is indeed achievable over the region y ∈ [29.4 mm, 30.6 mm]. (d) For additional
proof of super-resolution at x = −30.0 mm, the major peak of the corresponding Fourier transform occurs at the input frequency, 5.00 lp/mm.

III.C. Dependency of super-resolution
on reconstruction depth

Using the Fourier transforms calculated in Secs. III.A
and III.B, one can introduce a metric for assessing the quality
of super-resolution in the reconstruction. This metric is the
ratio (r) of the amplitude at the highest Fourier peak less than
the detector alias frequency (3.57 lp/mm) to the amplitude
at the input frequency (5.00 lp/mm). Super-resolution is
present if r < 1 and is absent if r ≥ 1. For high quality
super-resolution, r should be as close to zero as possible.

To investigate anisotropies in super-resolution along the
z direction, r is plotted versus the reconstruction depth (z0)
in Fig. 8(a), assuming an input frequency oriented along the
x direction (Sec. III.A). In the Fourier transforms used for
calculating r [Eq. (86)], the detector field-of-view (FOV) is
56.1 mm × 84.1 mm, and is centered on the plane x = 0.
Detector element indices mx and my thus range from −200
to 200 and 0 to 600, respectively. By centering the FOV on
the region x = 0, anisotropies in super-resolution can be
assessed within the mid PA/SS plane. Super-resolution is

not achievable at depths with sharp peaks in the value of r,
including z0 = 28.7, 35.6, 42.2, 48.8, 55.2, 61.5, 67.6, and
73.7 mm. The depths considered in the plot span a typical
50.0 mm breast thickness. Because the width of each peak in
Fig. 8(a) is very narrow, super-resolution is present at most
depths in the reconstruction. Although only SBP is simulated,
similar anisotropies arise if filters are used.

To illustrate the anisotropy of super-resolution along
the z direction, Fig. 8(b) shows a SBP reconstruction at
a depth (z0 = 42.2 mm) matching one of the peaks in
Fig. 8(a). The reconstruction is performed at the distance
y = 30.0 mm from the chest wall and over a region centered
on the mid PA/SS plane (i.e., x ∈ [−0.6 mm, 0.6 mm]).
Signal varies with position in a step-like manner analogous to
an individual projection [Figs. 4(a) and 4(b)]. Consequently,
super-resolution is not achievable at this depth, position, and
orientation within the mid PA/SS plane.

A necessary condition for super-resolution is the presence
of translational shifts in the image of an object between pro-
jections. This condition is not sufficient for super-resolution;
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FIG. 8. For an input frequency oriented along the x direction, the dependency of super-resolution on depth (z0) is analyzed. The existence of super-resolution
is determined from the ratio (r) of the amplitude at the highest peak in the Fourier transform less than the alias frequency of the detector (3.57 lp/mm) to the
amplitude at the input frequency (5.00 lp/mm). Super-resolution is present if r < 1 and is absent if r ≥ 1. (a) and (b) Within the mid PA/SS plane (x = 0),
super-resolution is not achievable at depths with sharp peaks in the value of r, such as z0 = 42.2 mm. (c) and (d) By contrast, within the plane x = 60.0 mm,
super-resolution is feasible at all depths; r never exceeds unity.

the translational shifts must be in increments that maximize
subpixel sampling gain. If the image of a thin input object
is translated between projections in increments that are ap-
proximately integer multiples of detector element length, the
signal is effectively equivalent in all projections, and super-
resolution cannot be achieved. For this reason, anisotropies in
super-resolution occur at depths where translational shifts be-
tween projections have effectively no subpixel sampling dif-
ferences.

Figure 8(c) investigates whether the depth-dependency
of super-resolution also exists at positions that are dis-
placed from the mid PA/SS plane (x = 0). Similar to
Fig. 8(a), r is plotted versus depth (z0); however, in the
Fourier transforms used for calculating r [Eq. (86)], the
detector FOV (56.1 mm × 84.1 mm) is now centered on
the plane x = 60.0 mm. Detector element indices mx and
my thus range from 229 to 629 and 0 to 600, respec-
tively. In Fig. 8(c), r never exceeds unity, indicating that
super-resolution is feasible at all depths within the plane

x = 60.0 mm. As a result, although Fig. 8(b) shows that
super-resolution is not achievable at the depth z0 = 42.2 mm
within the plane x = 0, Fig. 8(d) demonstrates that super-
resolution is indeed feasible at the same depth within
the plane x = 60.0 mm. The value of r at the depth
z0 = 42.2 mm drops from 1.42 to 0.520 in shifting the cen-
tral axis of the detector FOV from x = 0 to x = 60.0 mm.

Although Figs. 8(b) and 8(d) are plotted for a fixed value
of y (30.0 mm), it can be shown that similar plots hold for all
values of y. To explain this finding, it is useful to calculate the
translational shift in the object position between projections
along the u1 direction; this direction is chosen because of the
orientation of the input frequency in Secs. III.A and III.C

�u1(n1, n2) = u1(n2) − u1(n1), (92)

where

u1(n) = x(l + h cos ψn) + zh sin ψn

x sin γn + (l − z) cos γn + h cos(ψn − γn)
. (93)
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FIG. 9. The central projection of a bar pattern phantom misrepresents frequencies higher than the detector alias frequency, 3.57 lp/mm for 140 μm detector
elements. For example, at 4.0 lp/mm, Moiré patterns are present. At 5.0 lp/mm, fewer than 30 line pairs are observed over a 6.0 mm length.

There is no y dependency in the formula for the translational
shift. Consequently, for an input frequency oriented along
the x direction, the existence of super-resolution is dependent
only on the x and z coordinates in the reconstruction.

IV. EXPERIMENTAL RESULTS

Using a high contrast bar pattern phantom, we have exper-
imentally verified the existence of super-resolution in DBT.
The phantom was taped beneath the compression paddle
(24 cm × 29 cm) of the Selenia Dimensions system, and
placed 2.5 cm above the breast support. With the alternat-
ing light and dark bands of the phantom spanning a 6.0 mm
length, the line pairs ranged in frequency from 1.0 lp/mm to
10.0 lp/mm. To match the simulation of Sec. III.A, the fre-
quency 5.0 lp/mm was oriented along the x direction parallel
to the chest wall side of the breast support. Also, following the
simulation, the bar patterns at 5.0 lp/mm covered the region
x ∈ [−0.6 mm, 0.6 mm], and the edge of the bar patterns near
the numeral “5” (Fig. 9) was positioned slightly greater than
y = 30 mm from the chest wall. Using the large (0.3 mm nom-
inal) focal spot and a CC view, 15 projections were acquired
at 30 kVp and 14 mAs with a W/Al target-filter combination.
The technique for determining the optimal mAs with photo-
timing is described in our previous work.5

Reconstruction was subsequently performed using a back-
projection filtering (BPF) commercial prototype reconstruc-
tion solution (BrionaTM, Real Time Tomography, Villanova,
PA).22 Although it is possible to reconstruct on a non-
pixelated grid using analytical modeling, a pixelated grid was
required for the experimental data. In order to ensure that high
frequencies can be resolved in the plane of the reconstruction,
the pixel size of the reconstruction grid (20.44 μm) was cho-
sen to be significantly smaller than that of the detector ele-
ments (140 μm). Consequently, the alias frequency of the re-
construction grid (24.46 lp/mm) was substantially higher than
the alias frequency of the detector (3.57 lp/mm).

Figure 9 shows that the central projection correctly
resolves frequencies below the detector alias frequency,
3.57 lp/mm. At the next highest frequency (4.0 lp/mm),
one would expect to see 24 line pairs spanning a 6.0 mm
length. Instead, less than 24 line pairs are visible, and Moiré
patterns23 are present. Finally, at 5.0 lp/mm, only 16 line pairs
are evident within a 6.0 mm length, indicating that the pat-
tern is incorrectly represented as a frequency between 2.0 and
3.0 lp/mm.

Unlike the central projection, BPF reconstruction can re-
solve frequencies higher than the detector alias frequency
(Fig. 10). In fact, up to 6.0 lp/mm (36 line pairs spanning
6.0 mm) can be observed at the correct orientation with no
Moiré patterns. At 7.0 lp/mm, the signal becomes too faint to
distinguish bar patterns. This finding arises because the MTF
of the reconstruction is reduced with increasing frequency;
recall from Eq. (87) that the MTF of the detector sampling
process vanishes at the frequency f1 = a−1 (7.14 lp/mm), as-
suming f2 = 0. As expected from the analytical modeling,
it should be noted that super-resolution along the x direction
was observed over many different x-ray acquisitions in which
the bar pattern phantom was placed at various positions in the
imaging volume.

By rotating the bar pattern phantom 90◦, the potential for
super-resolution orthogonal to the chest wall was also ana-
lyzed (Fig. 11). To orient the reader with the positioning of the
phantom, it is important to note that the left edges of the even
numerals “4” and “6” were aligned on the mid PA/SS plane
(x = 0), and that the separation between 4.0 and 5.0 lp/mm
was positioned at a displacement y = 30 mm from the chest
wall. As expected from the analytical modeling (Sec. III.B),
the extreme left regions of the bar patterns show aliasing of
high frequencies due to their proximity to the mid PA/SS
plane. Super-resolution is only present at the extreme right
of the bar patterns (5.0 and 6.0 lp/mm), where the magnitude
of the distance x relative to the mid PA/SS plane is approxi-
mately 30 mm or greater.
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FIG. 10. Unlike the central projection (Fig. 9), BPF reconstruction can clearly resolve high frequencies along the x direction parallel to the chest wall side of
the breast support. Frequencies up to 6.0 lp/mm are resolved with no Moiré patterns or other evidence of aliasing.

FIG. 11. Super-resolution along the y direction is analyzed with bar patterns using a BPF reconstruction. The left edges of the even numerals (“4” and “6”)
were aligned on the mid PA/SS plane (x = 0), and the separation between 4.0 and 5.0 lp/mm was positioned 30 mm from the chest wall. At the extreme left of
the bar patterns, less line pairs are visible than expected, illustrating that super-resolution is not achievable near the plane x = 0. In addition, Moiré patterns at
4.0 lp/mm indicate that super-resolution is not possible too close to the chest wall (y = 0). Super-resolution is evident only at positions sufficiently displaced
from the planes x = 0 and y = 0; see the extreme right of the bar patterns at 5.0 and 6.0 lp/mm.
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FIG. 12. Clinical images of microcalcifications are shown. In (a), BPF reconstruction is performed with pixels matching the detector element size (140 μm),
and the result is magnified fourfold to give the image that is shown. In (b), BPF reconstruction is performed using pixels that are much smaller than the detector
elements. Image (b) supports super-resolution.

It is important to note that the extreme right of the bar pat-
terns at 4.0 lp/mm does not display super-resolution as cleanly
as the extreme right of the bar patterns at 5.0 and 6.0 lp/mm
due to the presence of Moiré patterns. Recall that the phantom
is positioned so that lower frequencies are closer to the chest
wall. Because the u2 translational shift between projections
is minimized with decreasing distance from the chest wall
(Fig. 6), it is expected that super-resolution along the y di-
rection should not be achievable at positions too close to the
chest wall.

In clinical images, super-resolution should improve the
visibility of fine structural details in the breast. This concept is
illustrated in Fig. 12 showing microcalcifications, which are
early indicators of breast cancer in many women.24 In the fig-
ure, the left image [Fig. 12(a)] is created by magnifying a BPF
reconstruction performed with pixels matching the size of the
detector elements (140 μm). The final result has 35 μm pixels
(i.e., a fourfold magnification). By contrast, the right image
[Fig. 12(b)] is generated by performing a BPF reconstruction
using pixels that are much smaller than the detector elements.
As expected from our analysis of bar patterns, the image is
sharper in Fig. 12(b) than in Fig. 12(a), since Fig. 12(b) is ca-
pable of resolving high frequency information exceeding the
detector alias frequency. Quantifying the clinical impact of
this finding is beyond the scope of this work.

V. DISCUSSION

In DBT reconstructions using grids with the same pixel
size as the detector elements, the highest frequency that can
be resolved in each reconstructed slice is the detector alias
frequency. This study demonstrates that reconstruction grids
with much smaller pixelation display super-resolution, or vis-
ibility of higher frequencies. Super-resolution arises because
the image of the object is shifted in subpixel detector element
increments with each increasing projection angle.

Super-resolution was first demonstrated analytically by
calculating the reconstruction of a sinusoidal input whose
frequency was oriented along the x direction parallel to the
chest wall side of the breast support. Using an infinitesimally
fine reconstruction grid, it was shown that both SBP and FBP
can resolve higher frequencies than a single projection. FBP
reconstructions were performed either with the RA filter alone
or with the RA and SA filters together. Although reconstruc-
tion with the RA filter alone has the benefit of greater modula-
tion in the spatial domain, it presents the tradeoff of increased
noise and spectral leakage at high frequencies.

In rotating the sine plate by 90◦, super-resolution was
found to exist at fewer positions in the reconstruction. For
an input frequency oriented along the chest wall-to-nipple
direction, it was shown that positions with super-resolution
must be displaced relative to the chest wall (y = 0) and to
the mid PA/SS plane (x = 0). At these positions, the transla-
tional shifts in the image between projections are sufficiently
large to achieve super-resolution. Because increasing the an-
gular range of the scan inherently increases the translational
shifts between projections, the exact positions at which super-
resolution is feasible are dependent upon the design of the ac-
quisition geometry.

This paper also demonstrates that the existence of super-
resolution is depth-dependent. Considering an input fre-
quency oriented along the x direction for illustration, it was
shown that super-resolution is not feasible at certain depths
(z) within the mid PA/SS plane. By contrast, super-resolution
is achievable at all depths within PA/SS planes that are
sufficiently displaced relative to the mid PA/SS plane. The
anisotropies in super-resolution along the z direction are de-
pendent upon the number of projections and the angular spac-
ing between projections.

We have experimentally observed super-resolution in im-
ages of bar patterns. A single projection showed classical
signs of aliasing, including Moiré patterns and the visibility
of fewer line pairs than expected. By contrast, reconstructions
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using very fine grids resolved frequencies higher than the
alias frequency of the detector. For the two orientations of
the bar patterns, the presence of super-resolution was ver-
ified at positions predicted from analytical modeling. The
effects observed in the experimental images are not neces-
sarily unique attributes of the commercial DBT system or the
commercial reconstruction algorithm used. Super-resolution
should be feasible provided the detector has measurable mod-
ulation above the alias frequency and the reconstruction al-
gorithm supports finer sampling than the detector in each
reconstructed slice.

Super-resolution appears to produce a sharper image of mi-
crocalcifications showing more detail. This finding is com-
plementary to prior work on computer breast phantoms
demonstrating that fiducial markers can be located with
higher precision in a supersampled reconstruction.25 It is im-
portant to determine the effect of super-resolution on noise,
and to evaluate the potential benefits of super-resolution using
a task-based approach. A future clinical study is also merited
to assess the clinical impact of super-resolution in DBT.

Super-resolution is a particularly useful property for
x-ray systems that employ binning when switching from
2D to 3D imaging modes. For example, in the Selenia Di-
mensions system, the DM detector element dimensions are
70 μm × 70 μm, whereas the DBT detector element dimen-
sions are 140 μm × 140 μm. Binning has the benefit of low-
ering the readout time, but presents the drawback of reducing
the alias frequency of the detector. Initially, it would seem
that binning should make DBT less capable of resolving high
frequency information, such as microcalcifications. However,
the existence of super-resolution in the reconstruction may
counter the tradeoffs of binning.

Some of the limitations of this study and directions for fu-
ture modeling are now noted. In calculating detector signal,
this paper assumes that the MTF of a-Se in drift mode is unity.
While this assumption is valid for normal x-ray incidence, it
is less justifiable with oblique x-ray incidence.26–33 Que and
Rowlands proposed the first analytical model of the optical
transfer function (OTF) of a-Se in drift mode for all incident
angles.26 Their work was later validated by Hajdok and Cun-
ningham with Monte Carlo simulations.27 Denoting μSe as
the attenuation coefficient of Se and L as the thickness of the
photoconductor, the OTF at each frequency f is

OTF(f ) =
[
1 − e−(μSeL sec θn+2πif L tan θn)

]
cos θn

1 + 2πif sin θn

μSe

. (94)

The MTF is the normalized modulus of the OTF. For more
thorough modeling, signal in the x-ray converter should be
convolved with the point spread function (PSF) of a-Se be-
fore detector element sampling is performed, where the PSF
is determined from the OTF using Fourier theory. It is im-
portant to model MTF degradation for measurements near the
edge of the detector opposite the chest wall, as the incident
angle deviates considerably from the normal. Upon examin-
ing θn across multiple projections in the Selenia Dimensions
detector, it can be shown that the maximum incident angle is
approximately 25◦. Assuming 200 μm thick a-Se and 20 keV

x-rays34–36 for which μSe is 20.5 mm−1,37 the corresponding
MTF at 5.0 lp/mm is 85.8%.

While it is important to consider MTF degradation at po-
sitions distal to the chest wall, it is less critical for positions
close to the chest wall. For example, in the central projec-
tion at the position u1 = u2 = 30.0 mm, the incident angle
is 3.47◦, and the MTF at 5.0 lp/mm is 99.7%. Consequently,
for the purpose of this work, an x-ray converter with MTF of
unity was assumed.

In addition to modeling the MTF of the x-ray converter,
the analytical model of the sine plate can be refined by
modeling the MTF of the focal spot. Although this paper as-
sumes a point-like focal spot that is stationary during each
projection, future studies should model MTF degradation
with increasing focal spot size38 and increasing focal spot
motion during a continuous scan of the projections.14, 39, 40

Our earlier work has shown that continuous x-ray tube mo-
tion yields a loss of modulation in the reconstruction.41 De-
spite this increase in blurring, super-resolution should still
be achievable in the reconstruction of the sine plate (Figs. 5,
7, and 8). This claim is supported by the presence of super-
resolution in bar pattern images (Figs. 10 and 11), which were
acquired on a DBT system with continuous tube motion.

In future studies, detector lag and ghosting42–44 should also
be simulated, and the presence of shot noise45 should be mod-
eled at various dose levels. Because this work considers a high
contrast input frequency either with the analytical simulation
or with the experimental bar patterns, it was not necessary to
model the presence of noise at different dose levels. Future
studies on super-resolution with low contrast input frequen-
cies will require a noise simulation, as the visibility of the
patterns should be influenced by dose. Finally, because the
linear attenuation coefficient of an input object is energy de-
pendent, polyenergetic x-ray spectra46–48 should also be sim-
ulated in the analytical model. This work implicitly assumes
a monoenergetic x-ray beam.

In CT, the conventional low frequency filter is the RA
filter14, 15 which increases linearly with frequency from zero
(Fig. 3). Assuming that filtering is only applied within the
plane of the x-ray tube motion, this work demonstrates that
the RA filter is not suited for imaging frequencies perpendic-
ular to the chest wall, since the modulation of the reconstruc-
tion vanishes (Sec. III.B). The filters used in the experimen-
tal reconstructions of bar patterns oriented perpendicular to
the chest wall (Fig. 11) have a nonzero offset at 0 lp/mm, un-
like the RA filter used in the analytical modeling. Future work
should consider filters with nonzero offset for analytical mod-
eling of super-resolution, since modulation would not be zero
for any orientation of the input frequency.

Because super-resolution has important clinical applica-
tions in improving the visibility of microcalcifications, fu-
ture work should ultimately transition from modeling a si-
nusoidal input to simulating microcalcifications in a breast
background.49 Using model observers, improvements in the
visibility of microcalcifications should be assessed with im-
age reconstructions at varying grid sizes. It would be use-
ful to determine the coarsest grid size at which the ben-
efits of super-resolution are achieved among observers, as
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reconstructions on coarser grids require less memory for data
storage.

VI. CONCLUSION

This work demonstrates the existence of super-resolution
in DBT. An analytical model of super-resolution was devel-
oped by calculating the reconstruction of a high frequency
sinusoidal input. While a single projection cannot resolve fre-
quencies higher than the alias frequency of the detector, a re-
construction on a very fine grid can resolve these frequencies.
Super-resolution is made possible by the subpixel detector el-
ement shifts in the image of the object between projections.

Using a bar pattern phantom, we have experimentally ver-
ified the existence of super-resolution in DBT. In consider-
ing an input frequency that was oriented either parallel to the
chest wall side of the breast support or perpendicular to the
chest wall, the experimental images confirmed the presence
of super-resolution at positions predicted by analytical mod-
eling. Super-resolution has the potential to impact the visual-
ization of microcalcifications and other subtle signs of breast
cancer.
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APPENDIX A: DETECTOR SIGNAL FOR AN INPUT
FREQUENCY DIRECTED PERPENDICULAR TO THE
CHEST WALL

This appendix calculates detector signal for an input fre-
quency perpendicular to the chest wall. Under this assump-

tion, the input rectangular prism of thickness ε has a linear at-
tenuation coefficient μ(x, y, z) which varies sinusoidally along
the y direction with frequency f0

μ(x, y, z) = C · cos[2πf0(y − y0)]

· rect

(
z − z0

ε

)
, [cf. Eq. (1)], (A1)

where y0 is a translational shift in the waveform relative to the
origin. The amplitude C of the waveform is equivalent to 1/ε
upon normalizing total attenuation along the z direction. The
1D Fourier transform of Eq. (A1) along the y direction peaks
at the frequencies fy = ±f0 and vanishes at all other frequen-
cies, following a formula similar to Eq. (4) with the exchange
of x0 for y0 and fx for fy. Using Eqs. (17)–(19) and Eq. (22),
total x-ray attenuation versus position (u1, u2) along the plane
of the rotated detector is calculated for the nth projection as

Aμ(n) = κn

∫ w−
n

w+
n

cos(2πf0u2w + �)dw, [cf. Eq. (23)] (A2)

= κn

(
sin

[
2πf0u2w

−
n + �

] − sin
[
2πf0u2w

+
n + �

])
2πf0u2

,

[cf. Eq. (24)] (A3)

where

� = −2πf0y0, [cf. Eq. (26)]. (A4)

Following the sum-to-product trigonometric identity given in
Eq. (27), one may rewrite Eq. (A3) as

Aμ(n) = κn(w−
n − w+

n ) cos[πf0u2(w+
n + w−

n ) + �]

· sinc[f0u2(w−
n − w+

n )], [cf. Eq. (28)] (A5)

=
εκn cos

[
2πf0u2(l+h cos ψn−z0)
l+h cos ψn−u1 sin γn

+�
]
sinc

[
εf0u2

l+h cos ψn−u1 sin γn

]
l + h cos ψn − u1 sin γn

,

[cf. Eq. (29)]. (A6)

The logarithmically transformed signal in the mth detec-
tor element for the nth projection is now determined from
Eq. (31). The midpoint formula50 for approximating this dou-
ble integral is

Dμ(m, n)

= lim
Jy→∞

Jy∑
jy=1

1

Jy

⎡
⎣ lim

Jx→∞

Jx∑
jx=1

Aμ(jx, jy, n)

Jx

⎤
⎦,

[cf. Eq. (35)] (A7)

where

Aμ(jx, jy, n)

≡ Aμ(n)|
(u1,u2)=

(
ax

[
jx−1/2

Jx
+mx− 1

2

]
,ay

[
jy−1/2

Jy
+my

]) , [cf. Eq. (36)].

(A8)

FBP reconstruction now follows from Eq. (42).
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APPENDIX B: NOMENCLATURE
Symbol Meaning
• Dot product operator.
* Convolution operator.
× Cross product operator.
∈ Set membership.
Aμ(n) Total attenuation for the nth projection.
Ãμ(n) A useful approximation for total attenuation

[Eqs. (32) and (33)].
B Backprojection operator.
Dμ(m, n) Signal in the mth detector element for the nth

projection.
F Fourier transform operator (subscript denotes

dimension).
Ln Path length through the input for the nth pro-

jection.
R3 Euclidean three-space.
Sμ(u1, u2) Raw signal at coordinate (u1, u2) on the rotated

detector.
X X-ray transform operator.
Z Set of integers.
Z* Set of non-negative integers.
γ n Angle of rotation of the detector relative to the

x axis for the nth projection.
	mn Angle of backprojection within the plane of

the detector [Eqs. (53) and (54)].
δ Delta function.
�ψ Angular spacing between projections.
�uj(n1, n2) Translational shift in uj coordinate of incident

ray comparing projection numbers n1 and n2,
where j varies between 1 and 2.

ε Thickness of sine plate (Fig. 1).
θn Angle of x-ray incidence relative to the normal

to the detector (θmn denotes the special case at
the centroid of the mth detector element for the
nth projection).

κn A quantity defined by Eq. (25).
λn A quantity defined by Eq. (26).
� A quantity defined by Eq. (A4).
μ X-ray linear attenuation coefficient of input

object (sine plate).
μSe X-ray linear attenuation coefficient of a-Se

photoconductor.
ξ Truncation frequency of reconstruction filter.
ρ1,ρ2 Quantities defined by Eqs. (66) and (67).
σ jmn Terms defined by Eqs. (68)–(72) used to sim-

plify intermediate calculations, where j varies
from 1 to 5.

φ Reconstruction filter.
ψn Nominal projection angle.
ax, ay Detector element dimensions in the x and y di-

rections; if the x and y subscripts are removed,
the detector element is square (ax = ay = a).

b1, b2 Real numbers used to illustrate a sum-to-
product trigonometric identity [Eq. (27)].

BPF Backprojection filtering.
C Amplitude of attenuation coefficient of sine

plate [Eq. (1)] taken to be 1/ε.

CC Cranial-caudal.
COR Center-of-rotation of x-ray tube motion.
CT Computed tomography.
dn Distance between points G and O (Fig. 2).
DBT Digital breast tomosynthesis.
DM Digital mammography.
f Spatial frequency (f0 denotes the input fre-

quency).
FBP Filtered backprojection.
FOV Field-of-view.
g Gear ratio of detector.
h Source-to-COR distance for rotating x-ray

tube.
i Imaginary unit given as

√−1.
Ixmn An integral defined by Eq. (81).
Iymn(x) An integral defined by Eq. (76).
l Distance between the COR and the midpoint

of the chest wall side of the detector.
L Thickness of a-Se photoconductor in Eq. (94)
lp Line pairs.
m A doublet with coordinates (mx, my) used for

labeling detector elements.
M Magnification.
MLO Mediolateral oblique.
MRI Magnetic resonance imaging.
MTF Modulation transfer function.
n Projection number.
N Total number of projections.
OTF Optical transfer function.
PA Posteroanterior (in breast x-ray imaging, the

direction perpendicular to the chest wall).
PA/SS Descriptive acronym for a plane with extent

along the posteroanterior (PA) and source-to-
support (SS) directions.

r Ratio of the amplitude at the highest Fourier
peak less than the detector alias frequency
(0.5a−1) to the amplitude at the input fre-
quency (e.g., 5.00 lp/mm) in reconstructing a
high frequency sine plate (Fig. 1).

RA Ramp filter.
SA Spectrum apodization filter.
SBP Simple backprojection.
SID Source-to-image distance (commonly mea-

sured between the focal spot and the midpoint
of the chest wall side of the detector in the cen-
tral projection).

SNR Signal-to-noise ratio.
SS Source-to-support (defined to be synonymous

with the z direction).
t1,t2 Affine parameters of the x-ray transform.
TFT Thin-film transistor.
u1,u2 Position in the plane of the rotated detector

(parallel and perpendicular to the chest wall,
respectively).

w Parameter ranging between 0 and 1 in the
equation of the x-ray beam between the fo-
cal spot and the incident point on the detector
[Eq. (16)].
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w±
n Value of w at the entrance (w+

n ) and exit (w−
n )

points of the x-ray beam through the sine plate
(Fig. 1) for the nth projection.

x Position parallel to the chest wall side of the
breast support; rotation by the angle γ n about
the y axis yields x′

n.
x0 Translational shift in the input waveform along

the x direction [Eq. (1)].
y Position perpendicular to the chest wall; it is

equivalent to y′
n.

y0 Translational shift in the input waveform along
the y direction [Eq. (A1)].

z Position relative to the origin O (Fig. 1) mea-
sured perpendicular to the plane of the breast
support; rotation by the angle γ n about the y
axis yields z′

n.
z0 Central height of the input object relative to the

midpoint of the chest wall side of the detector.
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