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ABSTRACT 
 
A roadmap has been proposed to optimize the simulation of breast anatomy by parallel implementation, in order to 
reduce the time needed to generate software breast phantoms.  The rapid generation of high resolution phantoms is 
needed to support virtual clinical trials of breast imaging systems.  We have recently developed an octree-based 
recursive partitioning algorithm for breast anatomy simulation.  The algorithm has good asymptotic complexity; 
however, its current MATLAB implementation cannot provide optimal execution times.  The proposed roadmap for 
efficient parallelization includes the following steps:  (i) migrate the current code to a C/C++ platform and optimize it 
for single-threaded implementation; (ii) modify the code to allow for multi-threaded CPU implementation; (iii) identify 
and migrate the code to a platform designed for multithreaded GPU implementation.  In this paper, we describe our 
results in optimizing the C/C++ code for single-threaded and multi-threaded CPU implementations.   As the first step of 
the proposed roadmap we have identified a bottleneck component in the MATLAB implementation using MATLAB’s  
profiling tool, and created a single threaded CPU implementation of the algorithm using C/C++'s overloaded operators 
and standard template library.  The C/C++ implementation has been compared to the MATLAB version in terms of 
accuracy and simulation time.  A 520-fold reduction of the execution time was observed in a test of phantoms with 50-
400 μm voxels.  In addition, we have identified several places in the code which will be modified to allow for the next 
roadmap milestone of the multithreaded CPU implementation. 

 
Keywords: Digital mammography, anthropomorphic breast phantom, validation.  

1. INTRODUCTION 
Anthropomorphic breast phantom simulation is important for pre-clinical testing and image system analysis. Recently, a 
new algorithm using an octree data structure and recursive partitioning has been proposed to simulate breast anatomy 
[1]. In this algorithm, ellipsoids of different locations, orientations, and relative sizes are modeled inside the simulated 
breast. Octrees are then constructed to represent the phantom spatially while the volumes are being voxelized.  
 
Computing devices with multiple processing cores have become mainstream and more accessible. Many of these 
hardware configurations consist of various multiple-core Computer Processing Units (CPU) and massively parallel 
processors such as Graphics Processing Units (GPU). Several studies [2] [3] using the implementations of concurrent or 
even parallel algorithms targeted on these hardware platforms have demonstrated the performance benefits of these 
processing cores. To utilize multiple processing cores to full extent, programmers are often required to explicitly create 
multiple threads in the software to process the data concurrently. Careful insertions of synchronization constructs are 
also needed to allow programmers to guard against race conditions. The proposed octree-based algorithm has shown 
good asymptotic complexity; performance can potentially be improved by utilizing these multiple processing cores 
effectively. 
 
To maximize programming flexibility, it is necessary to migrate our implementation of the octree-based breast anatomy 
simulation algorithm to a software platform that is designed for data parallelism. An appropriate software platform 
should allow the algorithm implementation to run on hardware equipped with massively parallel processors, such as 
GPUs. On the other hand, implementing algorithms on these massively parallel processors is often more difficult than 
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implementing a single-threaded version; as a result, it is important to have a reference implementation that programmers 
can test their concurrent implementation against it. Instead of directly migrating the MATLAB implementation into a 
parallel implementation, we propose a migration roadmap with well-defined milestones. In this paper, the proposed 
migration roadmap is defined. The roadmap is used to develop specific milestones, and strategies for achieving these 
milestones are reviewed. The use of the roadmap by its application to the octree modeling problem is also illustrated. 

2. METHODS 
2.1. Migration Roadmap 
 
We propose a roadmap for migrating the octree algorithm into a fully parallelizable platform. Figure 1 shows a 
flowchart of the roadmap with well-defined milestones. In the proposed roadmap, the algorithm implemented in 
MATLAB will be first migrated into single threaded C++. Multiple threads of execution would then be injected into the 
algorithm to allow the octree nodes to be processed concurrently. Finally, the software would be migrated onto a 
platform that allows fine-grained control of parallelization and synchronization.  

 
Figure 1. Migration roadmap of the octree-based algorithm implementations. With the initial implementation done in MATLAB, the 
roadmap defines several implementation milestones leading to a massively parallel implementation. 
 
Regression tests are performed on each implementation before moving on to the next milestone. At each step, octrees of 
different resolutions constructed by the new implementation are compared against previously tested implementations to 
make sure the new implementation is correct. Software profiling is performed on each tested implementation to identify 
bottlenecks. The analysis of results is used to drive the design of the next milestone.   
 

2.2. MATLAB Implementation to Single-threaded C++ Implementation 
 
Figure 2 shows a flowchart of the sequential version of octree-based algorithm. At each level of the octree, an iterator 
processes each individual octree node to determine its tissue types.  
 
The initial MATLAB implementation of the algorithm was optimized with respect to execution time and memory 
footprint. The code extensively uses global variables to store data from octree nodes, shape functions and the final 
voxelized phantom. To enhance speed, the matrices and vectors that depend on the parameters of shape functions but 
not of a particular octree node are pre-computed and stored as static global variables. The implementation does not use 
structures. The usage of structures, although a natural way to group variables similar in function, would impose 
significant performance and memory overhead. We experimented with single and double precision versions of the code: 
the double precision code resulted in better performance, presumably since double precision is the native way 
MATLAB performs computations.  
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Figure 2. A flowchart of the octree algorithm. 
 
 
The major functions in the implementation include: 

• recursive_partition_simulation_nostr : main function, execute simulation and store the resulting phantom in 
voxel format. 

• init_oct_tree_empty_nostr : initializes octree 
• recursive_data_split_nostr : processes nodes from a particular level of the octree 
• split_criterion_distr_thickness_nostr/split_criterion_distr_thickness_nostr1: determine whether a node needs 

be split 
• voxel_contains_boundary_thickness_nostr/ voxel_contains_boundary_thickness_nostr1: determine whether a 

subvolume corresponding to the node contains only compartmental tissue, or only Cooper’s ligament tissue, or 
both 

• -distr_max_box7: computes the minimal and the maximal value of a shape function (that defines the position, 
initial orientation, and a relative size of each simulated tissue compartment. ) in a given sub-volume 

 
The profiler results, as shown in Table 1, indicate that the majority of self time (more than 882 million calls!) of the 
MATLAB implementation spent on a bottleneck routine dist_max_box_7.m, that evaluates the minimum and maximum 
of the shape functions (that define fat/dense compartments) in a voxel.  Also, significant time in the MATLAB 
implementation is spent on initialization of global variables and assignment of cell-array elements.  
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Table 1. Profiling result of MATLAB implementation for the top hotspots. It indicates distr_max_box7 and 
voxel_contains_boundary_thickness_nostr/voxel_contains_boundary_thickness_nostr are the major bottlenecks of the 
implementation. 
 

Function Name Calls
Self Time 
(seconds) % CPU Time 

recursive_partition_simulation_nostr 1 8.792 0.01% 
init_oct_tree_empty_nostr 8 11.877 0.02% 
recursive_data_split_nostr 8 1762.056 2.62% 

split_criterion_distr_thickness_nostr/ 
split_criterion_disrt_thickness_nostr1 92234064 10639.869 15.81% 

voxel_contains_boundary_thickness_nostr/  
voxel_contains_boundary_thickness_nostr1 76500278 24063.767 35.75% 
distr_max_box7 882510190 29867.397 44.38% 
Others 950.34 1.41% 

2.2.1 Overloaded Operators  
 
MATLAB’s arrays and matrices and their operators are heavily used in our MATLAB implementation. To reduce 
human errors during migration, C++ classes such as vector and matrix were created to abstract these mathematical 
notations.      
 
Figure 3 shows a snippet of MATLAB code migrated into C++ code.   
 
function [int_min,int_max]=distr_max_bo
x7(mu,R,logSqrtDetSigmalogprior,bb,A1in
v,A2inv,A3inv,xlow,ylow,xhigh,yhigh,zlo
w,zhigh,H,U,deltax,deltaxsquared,x) 

 
 
 
 

 
xcmu=xc-mu;                        
fc=-0.5*sum((xcmu*R).^2,2)+  

logSqrtDetSigmalogprior;  
boundary_values=fc+deltax*U*(xcmu)'+ 

deltaxsquared*H;  
int_min=min(boundary_values); 
 
boundary_max=max(boundary_values); 
if xlow<=mu(1) && xhigh>=mu(1) && 
ylow<=mu(2) && yhigh>=mu(2) && 
zlow<=mu(3) && zhigh>=mu(3) 
   
  int_max=logSqrtDetSigmalogprior;  
else 
    [...] 
end 

return 

void distr_max_box7(rowVector mu, matrix 
R,float logSqrtDetSigmalogprior, 
columnVector bb, matrix A1inv, matrix A2inv, 
matrix A3inv, float xlow, float ylow, float 
xhigh, float yhigh, float zlow, float zhigh, 
columnVector8 H, matrix8x3 U, float deltax, 
float deltaxsquared, rowVector xc, float 
&int_min, float &int_max) 
{ 

rowVector xcmu=xc-mu; 
float fc=0.5f*rowVector::sum((xcmu * 
R)^(xcmu*R))+logSqrtDetSigmalogprior;  
columnVector8 boundary_values= fc +     
       deltax *(U*xcmu.transpose()) + 
       deltaxsquared*H;  
int_min=boundary_values.min(); 
float boundary_max=boundary_values.max(); 
if (xlow<=mu[0] && xhigh>=mu[0] &&   

ylow<=mu[1] && yhigh>=mu[1] &&  
zlow<=mu[2] && zhigh>=mu[2]) 

    { 
int_max=logSqrtDetSigmalogprior;  

    }else 
   [...] 

 
Figure 3. A snippet of MATLAB code migrated into C/C++ code. The codes are aligned to illustrate the line to line conversion of the 
each line of code from MATLAB into C++. 
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Because C++ is a typed language, the data types such as float and rowVector have to be declared explicitly. MATLAB 
operators were mapped to the same overloaded operators if they are allowed in C++, otherwise, they were mapped to 
their respective methods, such as transpose(). For the indexing, while it was possible to simulate one-based indexing in 
C++, manual one-based to zero-based conversion is performed because it provides better consistency with the 
conventions in future milestones.    
 

2.2.2 STL Containers 
 
In the MATLAB implementation, arrays are frequently used to store arrays of data, such as the octree nodes at each 
level. Because their sizes change dynamically during the computation, the containers used in the C++ implementation 
are also required to resize during run time. Instead of implementing our own container class, Standard Template 
Library’s (STL) vector<> class [4] is used in the C++ implementations to replace MATLAB’s arrays. STL is part of 
C++ Standard Library which consists of a number of commonly used classes and functions. STL defines a collection of 
container templates which abstract and encapsulate common data structures such as arrays and linked lists. STL’s 
vector<> is preferred to other STL container classes because of similar time complexity as MATLAB’s arrays, better 
memory locality, and smaller memory footprint. 
 
MATLAB’s cellarrays are used for the octree-based algorithm to store arrays of arrays of homogenous data. The size of 
the arrays of homogenous data are dynamic during run time and also different (ie. jagged) even if they belong to the 
same array. In the C++ implementations, they are mapped to STL’s vector<vector<>> class for the same reasons that 
the STL vector<> class is used.      
 

2.3. Single-threaded Implementation to Multithreaded C++ Implementation 
 
In order to utilize multiple processing cores effectively, it is necessary to identify in the algorithm where data can be 
processed concurrently. As shown in Figure 2, an inner loop iterator is used to walk through each node and determine 
its tissue type. Since the determination of each node’s tissue is independent of other nodes at the same tree level, it is 
clear that this loop is a good candidate for data parallelism. Figure 4 shows the activity diagram of the algorithm with 
multiple worker threads processing the nodes concurrently: 
 
The multithreaded C++ implementation creates a pre-defined number of worker threads in advance. Instead of creating 
a shared thread-safe queue for each thread to acquire nodes for it to process, the proposed algorithm assigns a pre-
defined collection of nodes to each worker thread before invoking the worker threads. Because vector<> is thread-safe 
for reading; multiple threads can read the vector elements safely without synchronization until they finish processing 
their assigned collection of nodes.    
 
Two node assignment schemes are tested in this study: 1) interleaved and 2) contiguous. In the interleaved scheme, each 
node in the array is alternately assigned to each thread in order. The n-th octree node is assigned to the (n mod T)-th 
thread, where T is number of worker threads.  In contiguous scheme, each thread is assigned one contiguous block of 
nodes of equal size. In our experiment, the n-th octree node is assigned to (n/T)-th thread where T is the number of 
worker threads. 
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Figure 4. Flowchart of a concurrency version of the octree algorithm. Multiple concurrent flows are forked to process pre-defined 
sets of the octree nodes. The concurrent flows are joined after every thread finishes processing their assigned nodes.  

2.4. Quantitative comparison of implementations. 
 
The performances of the different implementations are compared by their duration times to construct an octree and 
voxelize a volume of tissue types. A total of 160 phantoms are simulated with various: 
 

• Voxel sizes:  50, 100, 200, and 400 microns 
• Software platforms:  MATLAB, C++ 
• Number of threads: 1 - 8 
• Octree node assignment schemes (Interleaved vs. Contiguous) 

 
All phantoms are simulated as 450ml breasts with random distributions of 333 adipose compartments. The duration 
times are measured on a Windows 7 64-bit PC, with Intel Core i7 - 2600K (Quad core and Hyper-Threading enabled) 
and 16.0 GB of RAM. MATLAB R2011b and Microsoft Visual Studio 2010 are used to execute or compile different 
implementations. 
 
The implementation at each milestone is tested against the implementation of the previous milestone. The octrees 
generated with the same inputs are compared to make sure the new implementations generate the same octrees as the 
previously tested implementations.  
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3. RESULTS 
3.1. Synthetic images 

 
Breast phantoms of different resolutions are created by using different implementations of the octrees-based algorithm. 
Figure 5 shows the orthogonal sections of a phantom with 400 μm and 50 μm voxel resolutions. With the same inputs, 
same octrees are constructed by the different implementations.  
 

  
(a)   (b) 

 
Figure 5. Orthogonal sections of a simulated breast phantom of (a) 400μm and (b) 50μm resolutions  
 

3.2. Performance Results of MATLAB, single threaded C++ and multithreaded C++ implementations.  

The performance of the various implementations was assessed by comparing the duration times for generating phantoms 
of different voxel sizes. The duration time of each configuration is measured by the averaged duration time of 5 
independent samples; each sample is generated from different set of ellipsoids modeled randomly inside the simulated 
breast. The empirical time complexity of the each implementation was measured by curve fitting the duration times of 
different voxel sizes. Figure 6 is a graph showing the duration times of different implementations at different voxel 
resolutions.  
 
All implementations show a consistent quadratic time complexity against the inverse of voxel size. On average, the 
single-threaded C++ shows an average of 240 fold of duration time improvement over MATLAB implementation, while 
the multi-threaded C++ implementation shows an average of 520 fold of improvement.   
 

3.3 Number of threads 
 
To assess the influence of worker thread counts for different node assignment schemes, the average duration times of 5 
samples was collected on simulations using up to 8 worker threads. Figure 7 shows the duration times of the 
multithreaded C++ implementation for different thread counts and assignment schemes.   
 
Performance is improved by as much as 218% when the thread count is increased from 1 to 8 when testing it on a PC 
equipped with single quad core CPU. The duration times start to converge once the worker thread count is more than 
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four, because the number of software threads exceeds the number of processing cores on the CPU.  On each thread 
count we tested, the interleaved scheme out-performed the contiguous scheme as much as 14%. In all cases, the 
interleaved scheme is at least as fast as contiguous scheme.  

 
 
Figure 6. Average duration times of different implementations of the octree-based algorithm for various voxel sizes (50, 100, 200 
and 400 microns).  The times of each implementation are fitted with a line with the slope as the empirical time complexity against the 
voxel size.  

 
 

Figure 7.  Average duration times of the multi-threaded C++ implementation with different numbers of worker threads forked to 
process the nodes concurrently. Two octree node assignment schemes: Interleaved (Blue) vs. Contiguous (Red) are compared.  
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3.3. Profiling C++ implementations 
 
After the C++ implementation had been tested, software profiling was performed using Intel VTune™ Amplifier XE 
2011. Table 2 shows the profiling result of simulation of 100μm phantom using multi-threaded C++ implementation (8 
threads).  
 
Table 2. Profiler result of C++ implementation executed with 8 threads. The functions marked with asterisk are ones executed on 
worker threads. The self-times are the times normalized as if they are executed on a single thread. These are the same functions with 
the profiler results shown in Table 1.  
 

Function Name Self Time(seconds) % Time 
recursive_partition_simulation_nostr 0.661 0.74% 
init_oct_tree_empty_nostr 3.164 3.52% 
recursive_data_split_nostr 30.213 33.65% 

split_criterion_distr_thickness_nostr/ 
split_criterion_disrt_thickness_nostr1* 1.969229207 2.19% 

voxel_contains_boundary_thickness_nostr/  
voxel_contains_boundary_thickness_nostr1* 29.23030282 32.55% 
distr_max_box7* 21.66346798 24.13% 
Others 2.889 3.22% 

 
 
On the multi-threaded C++ implementation, the functions executed on worker threads account for 58.87 percent of total 
duration time, while they account for 95.95 percent of total duration time on MATLAB implementation.   
 

4. DISCUSSION 
 

We have successfully completed the milestones of single-threaded and multi-threaded C++ implementation. Not only 
do these new implementations construct the same phantoms as the MATLAB implementation, the time performance has 
been improved significantly. On the single threaded C++ implementation, we observe a 240 fold improvement from the 
MATLAB implementation. We believe this is mainly the result of better optimization in C++ compiler and the fact that 
bound checking is disabled in STL containers in the released build. On the multithreaded C++ implementation, a 520 
fold improvement from MATLAB implementation is observed. On a machine with a single quad-core CPU, the 
performance improved with the number of threads used to process the octree nodes concurrently. The improvement is 
not proportional to the number of threads as the bottleneck shifted to the steps where instructions were executed on the 
main thread.  
 
The function, recursive_data_split_nostr, which runs on main thread, consumes about 33.65% of time in the 
multithreaded implementation, compared to 2.6% in MATLAB implementation. It indicates that the computational 
bottleneck is no longer dominated by numerical intensive computations, but rather it is shared by other operations such 
as node splitting and memory allocation and initialization. Performance improvements on these currently single 
threaded steps using parallelization are being investigated.   
 
A comparison between MATLAB (double precision) and C/C++ implementations (single precision) indicate that the 
obtained results are similar. Note that in the C/C++ implementation the matrices utilized to compute the minimal and 
maximal values of the shape functions are computed as double and then stored as single precision static variables. This 
way we avoid any numerical instability i.e., due to performing matrix inversions. The remaining numerical operations 
performed on single precision variables involve simple matrix multiplications and are not sensitive to numerical error 
amplification. 
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The observed acceleration is of importance for phantom applications requiring a large number of phantoms, e.g., model 
observer studies or statistical classifiers [5].  In addition, rapid phantom generation may reduce the need for storing and 
exchange of pre-fabricated phantoms; if the simulation is sufficiently fast, only the phantom parameters need to be 
stored, as the specific phantoms could be generated in near real-time.  

5. CONCLUSION 
 
We have created a roadmap of migrating a MATLAB implementation of the breast phantom simulation algorithm into a 
software platform that allows fine grained control of synchronization and parallelization. Based on the results in the 
multiple threaded C++implementation, real-time simulation of 3D breast anatomy using mainstream computer hardware 
can be realized by parallelizing our octree generalization method. The resultant multi-threaded C++ implementation is 
now being migrated to a platform that supports massively parallel processers such as GPUs.    
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