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Abstract. Prior studies have shown that temporal compensation of medical dis-
plays improve the performance in detecting lesions for digital breast tomosyn-
thesis (DBT). This has been proven both by using computer simulations as well 
as clinical experiments. This paper, by using computer simulations, studies (i) 
the effect of the maximum luminance (Lmax) and contrast (Lmax/Lmin) of the 
medical display on lesion detection performance, and (ii) the effect of temporal 
compensation of the display (by comparing displays with and without this fea-
ture) on lesion detection performance, with several slice browsing speeds using 
a fractional frame repeat (FFR) scheme to model displays' behavior when the 
refresh rate is not an integer multiple of the browsing speed. 
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1 Introduction 

Digital Breast Tomosynthesis (DBT) is a three-dimensional imaging technology that 
involves acquiring images of a stationary compressed breast at multiple angles during 
a short scan. The individual images are then reconstructed into a series of thin high-
resolution slices that can be displayed individually or in a dynamic mode. Because 
reviewing images for this modality typically is done in a dynamic mode, which was 
not the case with full field digital mammography, and because breast cancer screening 
requires the best image display quality, a display optimized for DBT modality was 
developed (BARCO MDMG 5221). This display was optimized with improved intrin-
sic key characteristics such as contrast, luminance and temporal response. This article 
presents the result of a follow up study reported in [1]. Additional browsing speeds 
and display parameters such as contrast and luminance are considered and reported. In 
addition, input generated by a voxelized breast model [2] is also used. This is part of 
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virtual clinical trial (VCT) platform that is under development, with the objective to 
compare real DBT images in which artificial lesions were introduced and fully simu-
lated DBT images. For fully managing a VCT, every step in the chain should be con-
trollable. Hence, using a phantom generator in VCT simulations to provide a custo-
mized input is necessary. 

1.1 Prior Work 

In [1], DBT reconstructed slices were used in which single micro calcifications were 
inserted.  We have available to us a compiled version of a commercially used DBT 
reconstruction engine along with anonymized and pre-processed projection data (P) 
from real patients and geometry information necessary to reconstruct those projec-
tions using the DBT reconstruction engine. By pre-processed projections, we mean 
that any vendor/device specific projection processing such as bad pixel correction and 
beam hardening correction have already been performed on the raw projection data 
and that projection data can be now used as input to a known reconstruction algo-
rithm. The DBT reconstructed images we reviewed consist of about 50 slices, each on 
a 1200 x 2400 matrix. The DBT voxel size was approximately 0.1 mm x 0.1 mm x 1.0 
mm. A display with improved features such as temporal response compensation was 
clinically evaluated with the use of a numerical observer described in [3]. The numer-
ical observer is an extension of a Channelized Hotelling Observer (CHO) for multiple 
slices that can be applied for quantifying the effect of the browsing speed of a system 
on lesion detection performance. A multi-reader multi-case (MRMC) analysis [4] was 
performed with 5 readers, each trained with 500 image pairs, and all reading the same 
500 test image pairs. Only integer frame repeats (FR) were used that correspond to 
slice browsing speeds of Frefresh/FR (50, 25, 50/3, 12.5, 10 slice per second, for Frefresh 
of 50 frames per second) which is very limiting as on real displays that browsing 
speed is desired to be changed continuously. A sample slice and a 1-D plot (central 
pixel luminance over slice number) are shown in Figure 1. 
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Fig. 1. Example of cropped (64 x 64 pixels) DBT slices from a 41-slice stack with a 0.4 mm 
lesion inserted in the center and a 1-D plot central pixels through 11 slices in cd/m² for tempor-
al-response compensated and uncompensated displays. The signal is inserted in slice 21. 
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2 Methods 

A key prerequisite of excellent system design in imaging systems is the control of the 
interplay of all its elements. Typical elements are the technology of image capture, the 
representation of the images as digital data, processing or enhancing of these data for 
a specific image display, the nature of the display technology (print or softcopy), and 
the psychometric judgment of the images through a human visual observer model [5]. 
An integrated approach, which combines a complete system model for a given imag-
ing technology and a human visual observer model in one computational workbench, 
does therefore represent a great improvement for systematic image system design, 
optimization and even simulation of technology feasibility prior to prototypes. Engel-
drum proposed a methodology named the Image Quality Circle [6], which shows the 
different phases to control and simulate a complete chain in the domain of vision. It 
also shows the links and relations between technology variables that we control from 
a product to the physical image parameters that we get from system modeling. The 
resulting image quality should be correlated to and optimized for the human percep-
tion or customer perceived preferences. From technology variables to user’s prefe-
rences, the circle covers the complete chain. This methodology was used to develop 
and optimize a medical display for the digital breast tomosynthesis modality. A C++ 
simulation platform called MEVIC (Medical Virtual Imaging Chain) was used for 
simulating the complete chain from the image capture until the visualization of the 
images [7]. The virtual medical imaging chain starts with simulation of the image 
acquisition, over a hardware and software image processing pipeline and ends with 
the visualization by the medical specialist on the image display. The aforementioned 
chain is modeled as a cascade of three main modules: the virtual image capture, the 
virtual display and the virtual observer. 

The key techniques that are used in MEVIC simulations for the current study are 
briefly described in the remainder of this section. 

2.1 Simulation of DBT Images 

As described in the prior work, reconstructed DBT slices from a real acquisition de-
vice were used as input images to the virtual imaging chain. In total, 6000 cropped 
64x64-pixel 41-slice stacks were used. The pixel values are coded in 10 bits. This 
dataset have two categories: healthy and diseased. The synthesized 3D mass breast or 
micro calcification lesion of a given density is inserted in the reconstructed back-
ground volume. In comparison with the original images in [1], the input images are 
modified to have the maximum possible contrast (covering the full span of [0, 1023]) 
with a single offset/gain transform in each stack. This corresponds with clinical prac-
tice to use contrast-enhancement and window-level settings to maximally make use of 
the available grayscales of the medical display. 

As the second objective to this study, we want to use the artificial backgrounds 
generated by anthropomorphic software breast phantom developed at the University 
of Pennsylvania [8]. It simulates the breast anatomy based upon the detailed analysis 
of histological and radiological images. The arrangement of breast tissues at the large 
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and medium spatial scales is realistically simulated using a region growing approach. 
Synthetic x-ray images of the phantom are generated by simulating the breast defor-
mation during the mammographic compression using a finite element model proposed 
in [9], followed by a model of the x-ray projections of the compressed phantom, as-
suming mono-energetic x-rays without scatter. 1648 stacks, each consisting of 32 
64x64-pixel slices of phantom were used. The lesions are inserted using the procedure 
described in [1] to make the diseased stacks. The stacks are then randomly re-ordered 
to make it less likely that corresponding healthy and diseased images fall into the 
same training or test sets. 

2.2 Display Simulation Chain 

2.2.1 Contrast and Luminance 
The native curve of the display is used for factoring in the effect of contrast and lu-
minance of the display in MEVIC. Native curve value for a certain digital drive level 
(DDL) is the measured luminance of the display when a certain DDL is applied at the 
input for a long time. Lmax, the maximum luminance of the display, is reached when 
the largest DDL (e.g. 1023, for a 10-bit display) is applied. Lmax / Lmin is the contrast 
with Lmin being the minimum luminance of the display, reached for DDL of 0 
(Lmin=1.05cd/m² and Lmax=1000cd/m²). The luminance values correspond to a 
BARCO MDMG 5221 medical display. 

2.2.2 Temporal Compensation of Display 
The temporal response improvement is a proprietary solution from Barco (US Patent 
Application No: 2010/0207,960, ‘devices and methods for reducing artifacts in dis-
play devices by the use of overdrive’). This solution allows the display to reach gray 
intensity values within one frame time without enhancing temporal noise or introduc-
ing artifacts. This technology was integrated in a FDA approved display optimized for 
digital breast tomosynthesis. 

2.2.3 Fractional Frame Repeat (FFR) 
The ability to continuously adjust the browsing speed is a desirable feature. Using 
integer frame repeats, simulations will be limited as described below. Let Fbrowse show 
the slice browsing speed, Frefresh show the frame refresh rate (a display property in 
Hz), and FR show frame repeat. Fbrowse = Frefresh/FR. For example, at Frefresh of 50 
frame per second (fps), if each slice is fed twice to the display at consecutive refresh-
es (FR = 2), the apparent slice browsing speed is 50/2 = 25 slice per second (sps). In 
other words, FR = Frefresh/Fbrowse = 50/25 = 2. Hence, the browsing speeds that can be 
simulated with integer FRs are very limited. 

By allowing a fractional frame repeat, one can have arbitrary browsing speeds as 
follows. As an example, Fbrowse of 40 sps can be achieved if we make 5 frames out of 
every 4 slices. In this case FR = Frefresh/Fbrowse = 50/40 = 5/4. To that end, we use an 
error accumulation method to find out which slices should be repeated: starting from 
the beginning of the stack (the residue is initially set to zero), each slice is copied 
floor(FR+residue) times, generating that many frames, and the residue is updated to 
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FR+residue-floor(FR+residue). This way, when the residue goes above one, an extra 
frame with a copy of the current slice is inserted. To have a slice browsing speed of 
40 sps, on a 41-slice stack (comprised of slices 1, 2, ..., 41), when Frefresh is 50 fps, the 
following slices are written to the frame buffer: 1  2  3  4  4  5  6  7  8  8  9  10  11  12  
12  13  14  15  16  16  17  18  19  20  20  21  22  23  24  24  25  26  27  28  28  29  30  
31  32  32  33  34   35  36  36  37  38  39  40  40  41. In this example, slice n is copied 
twice if mod(n, 4) = 0, and all other slices are copied only once. 

2.3 Multi-slice Channelized Hotelling Observer (msCHO) 

The multi-slice Channelized Hotelling model Observer (msCHO) described in [1, 3] 
is used with 10 LG channels of spread 15 for both real and artificial background data. 
The msCHO performance is computed for the pixel values achieved at the end of each 
refresh cycle during the Tbrowse. For example, when the frame repeat FR = 3 (see 
Tables 1 and 2), the detection performance is computed for image content at the end 
of each 1 × Trefresh, 2 × Trefresh and 3 × Trefresh. Our observer only uses the three central 
slices of each stack as the other slices are lesion-free. 

3 Results 

3.1 Results on Real DBT Reconstructed Slices 

The results on real DBT background slices are reported in Table 1. They show that 
FFR is working as expected since the AUCs for the FFR-generated browsing speed are 
similar to AUCs for speeds generated by regular (integer) frame repeating. Table 2, 
reports the same for a display without temporal compensation. 

Table 1. Detection performance on real DBT reconstructed slices for 2 FFRs (30 & 40 sps) and 
three integer frame repeats (16.67, 25 & 50 sps) for a temporally compensated display on 
contrast-stretched data. The computations are performed in an MRMC study with Nrd = 5 
readers, each trained with an independent subset of Ntr = 500 image pairs and all reading the 
same test set of Nts = 500 test image pairs. The size of the ROI is 3. The AUCs and standard 
deviations are calculated using the one-shot method [4]. 

 Which after 
LCD frame is 
used to train 
2D-CHO? 

FR=1 FR= 
50/40 

FR= 
50/30 

FR=2 FR=3 

AUC 
± std 

Frame 1 0.800 
±0.014 

0.801 
±0.014 

0.800 
±0.014 

0.800 
±0.014 

0.800 
±0.014 

Frame 2 N/A N/A  N/A 0.801 
±0.014 

0.801 
±0.014 

Frame 3 N/A N/A N/A N/A 0.801 
±0.014 

Average 0.800 
±0.014 

0.800 
±0.014 

0.800 
±0.014 

0.801 
±0.014 

0.801 
±0.014 
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To study the effect of luminance and contrast on detection performance, we simu-
lated two displays: (i) a low-contrast (LC) display with the same Lmax as that of 
MDMG 5221 but a 50% lower contrast, and (ii) a low-luminance (LL) display with 
the same Lmax/Lmin as that of MDMG 5221 but a 50% lower Lmax. The simulated de-
tection performance of these displays at FR=1 are both less than 1% different than 
MDMG 5221. 

Table 2. Detection performance on real DBT reconstructed slices for 2 FFRs (30 & 40 sps) and 
three integer frame repeats (16.67, 25 & 50 sps) for a display without temporal compensation. 
The settings are given in Table 1 caption. 

 Which after 
LCD frame is 
used to train 
2D-CHO? 

FR=1 FR= 
50/40 

FR= 
50/30 

FR=2 FR=3 

AUC 
± std 

Frame 1 0.607 
±0.026 

0.607 
±0.026 

0.656 
±0.022 

0.608 
±0.026 

0.607 
±0.026 

Frame 2 N/A N/A  N/A 0.800±
0.014 

0.801 
± 0.014 

Frame 3 N/A N/A N/A N/A 0.801 
± 0.014 

Average 0.607 
±0.026 

0.607 
±0.026 

0.656 
±0.022 

0.704 
±0.020 

0.736 
±0.018 

3.2 Results on Artificial DBT Reconstructed Slices 

In Table 3, results of our preliminary experiments with the dataset generated from a sam-
ple simulated breast phantom [8] are presented: the detection performance with its stan-
dard deviation is listed for a temporally compensated display at four browsing speeds. 

When a small (3%) subset of stacks with non-stationary background is added to the 
dataset, the AUCs drop by about 2%. 

Table 3. Detection performance on artificial DBT reconstructed slices for 2 FFRs (30 & 35 
sps) and two integer frame repeats (25 & 50 sps) for a temporally compensated display. The 
computations are performed in an MRMC study with Nrd = 3 readers [4], each trained with an 
independent subset of Ntr = 412 image pairs and all reading the same test set of Nts = 412 test 
image pairs. The size of the ROI is 3. The AUCs and standard deviations are calculated using 
the one-shot method. 

 Which afterLCD 
frame is used to 
train 2D-CHO? 

FR=1 FR=50/35 FR=50/30 FR=2 

AUC 
± std 

Frame 1 0.833 
±0.014 

0.827 
±0.015 

0.854 
±0.013 

0.835 
±0.023 

Frame 2 N/A 
 

N/A N/A 0.853 
±0.013 
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4 Discussion 

The insertion of single micro calcifications lesions is not completely accurate. Mi-
micking the x-ray absorption and generating anisotropic 3D shapes is, however, more 
realistic than simply inserting a simple 3D Gaussian sphere as a signal such as it is 
done in numerous model observer studies. The former was successfully used several 
times in past studies [1]. In future, within the VCT framework, lesions will be gener-
ated during the creation of the phantom. 

The display MDMG 5221 used in this study features temporal response compensa-
tion. The target luminance values are reached within one frame whereas for a display 
without this feature, such as MDMG 5121, two to three frames are needed for final 
luminance values to be reached. This can be also observed in Table 1: the detection 
performance remains the same (within the double standard deviation range) no matter 
which refresh is fed to the observer. On the other hand, for an uncompensated display 
(Table 2), when the first frame of the slice is fed to the observer the detection perfor-
mance is significantly lower. Also, as observed in Table 1 and Table 2, with the cur-
rent model observer, one cannot achieve a higher AUC just by increasing the frame 
repeat. That is because the frames fed to the observer become almost the same after 
the second refresh in the display with or without temporal compensation. 

In this paper and in [1], a multi slice CHO is used by computing scores for image 
content at the end of each 1 × Trefresh, 2 × Trefresh and 3 × Trefresh. An alternative to this 
is feeding all ROI frames (those that may have part of lesion in them) to the model 
observer. This approach will generate results that are less consistent with those re-
ported in [1]. Nevertheless, the average of AUCs from different refresh values mim-
ics, in a sense, the visualization of the different frames by the observer. Further inves-
tigation will take into account the continuous light transition instead of discrete lu-
minance values that are currently used, as well as properties of the human visual sys-
tem (e.g., temporal contrast sensitivity function) in the observer model. 

Detection must be performed in JND domain rather than luminance. Typically, the 
AUCs calculated in luminance domain are slightly lower (about 1%) than the results 
reported in Section 3-table 3. 

Larger fluctuations in the AUC values for the experiment with the artificial dataset 
(Section 3.2, Table 3), as compared to the corresponding results for real data (Table 
1), may be attributed to the facts that (i) fewer images are used in the experiment 
and/or (ii) the source of all images used in the experiment is the same phantom; thus 
the images have less variety. Also note that there is no significance in the fact that 
AUC values in Table 3 are generally larger than those in Table 1 and Table 2. This 
difference is a undesired side effect of the lesion insertion process: the insertion densi-
ty is changed until the AUC becomes around 80%, making the classification of the set 
an average task (not too difficult or too easy). 

We observed that the effect of temporal compensation is considerably higher than 
those of increasing luminance or contrast. This observation is against clinical studies 
with human observers and is another indication that the model observer must be im-
proved to be a better representative of human observers. Such improvements may be 
achieved, as mentioned earlier, by integrating the properties of human visual system 
with the model observer. 
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5 Conclusion 

In this study we gained a better understanding of current capabilities and limitations 
of channelized Hotelling observers to be used in virtual clinical trial framework. 
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