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Abstract. A novel image denoising algorithm has been proposed for quantum 
noise reduction in digital mammography. The method uses the Anscombe trans-
formation to stabilize noise variance and convert the signal-dependent Poisson 
noise into an approximately signal-independent Gaussian additive noise. In the 
Anscombe domain, noise is removed through an adaptive Wiener filter, whose 
parameters are obtained considering local image statistics. Thus, the method 
does not require any a priori knowledge about the original signal, because all 
the necessary parameters are estimated directly from the noisy image. The me-
thod was applied on synthetic mammograms generated based upon an anthro-
pomorphic software breast phantom with different levels of simulated quantum 
noise. The evaluation of the proposed method was performed by calculating the 
peak signal-to-noise ratio (PSNR) and the mean structural similarity index 
(MSSIM) before and after denoising. Results show that the proposed algorithm 
improves image quality by reducing image noise without significantly affecting 
image sharpness. 
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1 Introduction 

Full Field Digital Mammography (FFDM) is currently the standard tool for breast 
imaging and is gradually replacing screen-film mammography as the preferred tool 
for breast cancer screening [1]. However, mammographic interpretation is a complex 
task, preventing radiologists from the ideal of detecting all abnormalities visualized 
on mammograms. Among the lesions evaluated in mammographic reading, special 
attention is given to clustered microcalcifications because they may represent the only 
sign of malignancy [2]. Due to their small size and the confounding effects of image 
noise, the visibility of microcalcifications may sometimes be relatively poor. Image 
quality significantly influences the performance of radiologists in mammography 
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interpretation. Thus, high quality mammograms are required for accurate detection 
and characterization of suspicious lesions in breast cancer screening. 

In this context, image processing algorithms have been utilized to increase the vi-
sibility of microcalcifications, with the hope of improving the performance of radiol-
ogists [3]. However, for proper use of preprocessing techniques in mammographic 
images, some important aspects must be considered. First, use of image processing 
algorithms for the enhancement of high-frequency components, such as microcalcifi-
cations, has the undesirable effect of increasing the image noise [4]. On the other 
hand, image processing for noise suppression typically reduces sharp transitions be-
tween pixel intensities, which results in image blurring. This could impair the detec-
tion of fine detail and small structures in the breast image.  

Denoising techniques are, in general, based on the assumption that noise is additive 
and signal independent (that is, there is no correlation between pixel values and the 
values of noise components) [4]. However, mammography images are acquired using 
the minimum radiation dose consistent with ensuring both adequate image quality and 
patient safety; as such, the quantum noise should be apparent. Quantum noise is non-
additive and signal-dependent (that is, noise components values are correlated with 
respect to the radiation intensity). A recent study has shown that quantum noise is the 
dominant image quality factor in mammography and exerts greater influence than 
spatial resolution for the tasks of detecting microcalcifications and discrimination of 
masses by radiologists. A failure to address noise issues can impede diagnostic per-
formance [5]. 

We propose a novel image denoising algorithm for quantum noise reduction in dig-
ital mammography, aimed at improving image quality, and consequently improving 
radiologists’ performance in clinical interpretation. The method uses the Anscombe 
transformation [6] to stabilize noise variance and convert the signal-dependent quan-
tum noise into an approximately signal-independent Gaussian additive noise. In the 
Anscombe domain, image noise is removed through an adaptive Wiener filter, whose 
parameters are obtained considering local image statistics. Thus, the method does not 
require any a priori knowledge of the original signal, because all the necessary para-
meters are estimated directly from the noisy image. 

2 Methods and Materials 

The following model describes the image degradation process during acquisition [4]: 

 ݃ሺݔ, ሻݕ ൌ ݂ሺݔ, ሻݕ כ ݄ሺݔ, ሻݕ   ݊ሺݔ,  ሻ (1)ݕ

where g(x,y) is the degraded image, f(x,y) is the input image, h(x,y) is the degradation 
function, n(x,y) is the additive noise and the operator “∗” indicates convolution.  

Restoration techniques usually manipulate this equation to obtain an estimate, መ݂ሺݔ,  ሻ, of the input image when h(x,y) and n(x,y) are known. The additive noiseݕ
n(x,y) is incorporated by the digitization process and can be modeled as signal-
independent Gaussian noise. However, f(x,y) cannot be considered a noise-free image 
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because mammographic images are also corrupted by quantum noise, which is a non-
additive noise and is normally modeled by a Poisson statistical distribution. 

The Anscombe transformation is a variance-stabilizing transformation that con-
verts a random variable with a Poisson distribution into a variable with an approx-
imately additive, signal-independent Gaussian distribution with zero mean and unity 
variance [6,7]. Let the degraded image, g(x,y), be the random variable. The Anscombe 
transformation of g(x,y) is given by [6]: 

,ݔሺݖ  ሻݕ ൌ  2ට݃ሺݔ, ሻݕ  ଷ଼
. (2) 

This equation can be represented by the following additive model [7]: 

,ݔሺݖ  ሻݕ ൌ  ቆ2ටݑሺݔ, ሻݕ  ଵ଼ቇ  ,ݔሺݒ  ሻ, (3)ݕ

where u(x,y) is the rate of the Poisson distributed image (i.e., the expected value) and 
v(x,y) is the additive term, which is independent of the signal s(x,y) and has an ap-
proximately Gaussian distribution.  

After the Anscombe transformation, the additive term v(x,y) includes both the 
quantum noise converted into Gaussian noise and the electronic white noise, original-
ly incorporated by the digitization process. Thus, this transformation allows the use of 
any well-known denoising technique to reduce Gaussian additive noise by working on 
the image z(x,y) in the Anscombe domain [7]. 

In this work, we use the adaptive Wiener filter to obtain an estimate, ̂ݏሺݔ,  ሻ, ofݕ
the expected noise-free mammographic image in the Anscombe domain [7]. The 
Wiener filter calculates an estimate of a noise-free image that minimizes the mean 
squared error. Specifically, when z(x,y) is assumed to have a Gaussian additive noise 
with zero mean, the Wiener filter is the optimal filter and has the following expres-
sion: 

,ݔሺݏ̂  ሻݕ ൌ ҧݏ  ఙೞమఙೞమାఙೡమ ሾݖሺݔ, ሻݕ െ  ҧሿ, (4)ݖ

where ݏҧ and ߪ௦ଶ are the mean and variance of the signal, respectively; ݖҧ is the mean 
of the image z(x,y); and ߪ௩ଶ is the variance of the noise.  

In the Anscombe domain, we can assume that ߪ௩ଶ is equal to 1. Moreover, ݖҧ is 
equal to ݏҧ because the mean of the noise, ݒҧ, is equal to zero [7]. Thus, we can rewrite 
the equation (4) as follows: 

,ݔሺݏ̂  ሻݕ ൌ ҧݏ  ఙೞమఙೞమାଵ ሾݖሺݔ, ሻݕ െ  ҧሿ. (5)ݏ

Parameters ݏҧ and ߪ௦ଶ can be estimated by local statistics of a preliminary estimate of 
the signal in the Anscombe domain, ̂ݏመሺݔ,  ሻ. We considered a square neighborhood ofݕ
variable size around the pixel being processed. The preliminary estimate of the signal, ̂ݏመሺݔ,  ሻ, was obtained by blurring the image z(x,y) with an averaging filter mask ofݕ
size 3 × 3 [4]. 
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After the adaptive Wiener filtering procedure, the inverse Anscombe transforma-
tion is applied to obtain the estimate, ݑොሺݔ, -ሻ, of an approximately noise-free mamݕ
mographic image in the spatial domain. The inverse Anscombe transformation is 
given by the following equation [7]: 

,ݔොሺݑ  ሻݕ ൌ ଵସ ,ݔሺݏ̂ ሻଶݕ െ ଵ଼
. (6) 

3 Results 

The assessment of the proposed denoising algorithm was performed considering syn-
thetic mammograms generated based upon an anthropomorphic software breast phan-
tom [8] with a cluster of microcalcifications with 50% and 25% of normal contrast. 
The contrast of the microcalcifications is specified as the relative linear x-ray attenua-
tion coefficient compared to the tabulated attenuation of hydroxyapatite. All mammo-
grams were generated using three different levels of quantum noise, simulating the 
normal clinical dose, half of the normal dose and a quarter of the normal dose. All of 
the images were restored using the proposed filter. 

In order to evaluate the performance of the proposed methodology, we calculated 
two widely used image quality parameters: the peak signal-to-noise ratio (PSNR) [9] 
and the mean structural similarity index (MSSIM) [10]. Ideal mammograms without 
quantum noise were also generated to provide the ground-truth reference. These pa-
rameters were measured in full mammographic images (4096 × 1792 pixels) and two 
regions-of-interest (ROI) of 256 × 256 pixels containing, respectively, microcalcifica-
tion clusters with 50% contrast and 25% contrast.  

Figure 1 shows one example of the results obtained with the denoising algorithm 
on the synthetic images. The image on the left shows a ROI with a cluster of micro-
calcification with 50% of contrast extracted from the mammogram generated with a 
quantum noise correspondent to a quarter of normal clinical dose. In the center is the 
same image after denoising and on the right is the ideal image used as reference.  

 

Fig. 1. ROIs (256 × 256) of a cluster of microcalcifications with 50% of contrast extracted from 
the mammogram generated with a quantum noise correspondent to a quarter of normal clinical 
dose. Left: noisy image; center: restored image; right: ideal image without noise. 



272 M.A.C. Vieira et al. 

 

Table 1 shows the PSNR and MSSIM measurements obtained with the proposed 
denoising algorithm for the synthetic FFDM images before and after denoising. The 
relative improvement of image quality achieved using the denoising methodology 
was also calculated. Figure 2 and Figure 3 show, respectively, the improvement in 
PSNR and MSSIM measurements after denoising as a function of the radiation 
dose. 

Table 1. Results of PSNR and MSSIM measured for the proposed algorithm before and after 
denoising. Synthetic mammograms were generated with quantum noise corresponding to 100%, 
50% and 25% of the normal clinical dose. Parameters were measured in the full mammographic 
images and two ROIs of 256 × 256 pixels containing, respectivelly, microcalcification clusters 
(MC) with 50% and 25% contrast. The relative improvement on image quality after denoising 
was also calculated.  

Phantom Images 
PSNR(dB) MSSIM 

Before After Improve-
ment(dB) Before After Improve-

ment (%) 

10
0%
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rm

al
 

cl
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al
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e 

Full image 51.30 60.84 9.54 0.9921 0.9993 0.73 

ROI with 
50% MC 
contrast 

40.13 44.92 4.79 0.9329 0.9815 5.21 

ROI with 
25% MC 
contrast 

40.02 44.84 4.82 0.9317 0.9814 5.33 

50
%
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no
rm

al
 

cl
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ic
al

 d
os

e 

Full image 48.33 57.98 9.65 0.9845 0.9987 1.44 

ROI with 
50% MC 
contrast 

36.81 42.12 5.31 0.8728 0.9751 11.72 

ROI with 
25% MC 
contrast 

36.93 42.28 5.35 0.8741 0.9755 11.60 

25
%

 o
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th
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no
rm

al
 

cl
in
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al

 d
os

e 

Full image 45.36 54.90 9.54 0.9702 0.9975 2.81 

ROI with 
50% MC 
contrast 

33.50 38.20 4.70 0.7776 0.9640 23.97 

ROI with 
25% MC 
contrast 

33.54 38.31 4.77 0.7771 0.9640 24.05 
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Fig. 2. Improvement in the PSNR measurements after denoising as a function of dose 

 

Fig. 3. Improvement in the MSSIM measurements after denoising as a function of dose 
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4 Discussion 

In this work we investigated the use of the Anscombe transformation and the adaptive 
Wiener filter to reduce the quantum noise of digital mammography images. Im-
provement on mammographic image quality resulting from the proposed denoising 
method was evaluated. First, we compared the noisy and the reference images in 
terms of two widely used signal fidelity index: PSNR and MSSIM. As expected, it 
was found that images acquired at lower dose levels resulted in lower image quality 
index values, as shown in Table 1. This indicates that mammography quantum noise 
is signal-dependent and increases with a reduction in radiation dose, as expected. 

In order to evaluate the proposed denoising methodology, the same image quality 
metrics were measured again after denoising, considering both the restored and the 
reference images. Results showed that the proposed filter improved image quality 
index values, as shown in Table 1. Increases of up to 9.65 dB in the PSNR and up to 
24% in the MSSIM measurements were observed. This indicates that the proposed 
denoising filter produced restored images which accurately preserved the detail seen 
in the noise-free reference images. It was noticed that the relative improvement on 
image quality after denoising, evaluated by means of the MSSIM, was higher for 
images with lower simulated dose (Figure 3). However, little variation on PSNR mea-
surements was observed as a function of the radiation dose (Figure 2). 

Image quality assessment was also performed considering two ROIs of clustered 
microcalcifications extracted from the mammograms: one with 50% of contrast and 
one of 25% of contrast. Results suggested that the proposed methodology produced 
better quality images by reducing noise without noticeably affecting image sharpness, 
as seen at Figure 1. 

In future work we will study the effect of the proposed denoising filter on the per-
formance of microcalcification detection using observer studies and ROC analysis, in 
order to evaluate the clinical use of the proposed methodology in breast-cancer 
screening. 
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