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Abstract. Digital mammography (DM) is commonly used as the breast imaging 
screening modality. For research based on DM datasets with various sources of 
x-ray detectors, it is important to evaluate if different detectors could introduce 
inherent differences in the images analyzed. To determine the extent of such 
effects, we performed a study to compare the effects of two DM detectors, the GE 
2000D and DS, on texture analysis using a validated breast texture phantom 
(Yaffe et. al, University of Toronto). DM images are acquired in Cranio-Caudal 
(CC) view, and texture features are generated for both raw and post-processed 
DM images. Image intensity profiles and texture features are compared between 
the two detector systems. Our results suggest that there are inherent differences 
in the images. For raw and processed images, the image intensity cumulative 
distribution function (CDF) curves reveal that there is a scaling and shifting 
factor respectively between the two detectors. Image normalization with z-score 
can reduce detector differences for grey-level intensity and the histogram-based 
texture features. The differences between co-occurrence and run-length texture 
features persist after intensity normalization, suggesting that simple z-scoring 
cannot alleviate all the detector effects, potentially also due to differences in the 
spatial distribution of the intensity values between the two detectors.  
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1 Introduction 

Breast cancer is considered a major health problem in western countries, as it 
comprises 10.4% of the cancer incidence among women, making it the second most 
common type of cancer. Early screening and proper treatment after diagnosis for 
individual women are both important aspects of current breast cancer research, and 
digital mammography (DM) is the main screening tool for cancer detection [1].  

The Gail Model [2] has been shown be able to estimate breast cancer at the 
population level, however with limited capacity at the individual level. There’s 
intensive research for individual breast cancer risk estimation, and mammographic 
density, estimated as the percent of dense tissue area within the breast, has been shown 
to be the strongest risk factor for breast cancer after age [3, 4]. Studies [5-8] also 
support a relationship between mammographic texture and breast cancer risk, as 
mammographic texture features may be able to quantify the local distribution of the 
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parenchymal pattern, potentially providing complementary information for breast 
cancer risk estimation.  

In the process of developing proper imaging biomarkers for risk estimation, it is 
commonly the case that studies use DM images acquired with different imaging 
systems and different x-ray detectors. It may be important and necessary to treat the 
detector source as an additional parameter in the analysis, as different detectors may 
possibly introduce inherent differences in the DM images [9]. To determine the effects 
of x-ray detectors in mammographic texture analysis, we designed a physical breast 
phantom study. The image intensity and extracted texture features [10-12] from the 
breast phantom are compared between two x-ray detectors for both raw and the vendor 
post-processed (a.k.a., processed) images. The rationale is that since images are 
generated from the same phantom, quantitative imaging features should be consistent 
between the images (e.g., affected only minimally by noise). Instead of limiting to a 
square of region of interest (ROI) behind the nipple as has been done in prior work [6, 
8], the textures of the whole breast region are used for the analysis. The results of this 
comparison study could guide the proper choice of more robust texture features that are 
less sensitive to detector differences. Our study can be potentially helpful for any 
studies utilizing texture analysis in digital mammography, including breast cancer risk 
assessment, breast tissue classification and computed aided lesion detection, as a 
method for assessing potential detector differences.  

2 Methods 

The Gammex 169 “Rachel” breast phantom was used in our experiments (Yaffe. et al, 
University of Toronto) [13]. Image acquisition was performed on GE Healthcare 
2000D and DS FFDM system at 0.1mm/pixel resolution, 14 bit gray-levels. On each 
machine, the clinically optimized phototimed setting of (kVp, mAs) was chosen, which 
was 29 kVp, 71 mAs for the 2000D; and 29 kVp, 90 mAs for the DS system. The image 
acquisition process was repeated 5 times for both machines. The average of the 5 
images was used to reduce the effects of noise in the imaging process. 

In the original phantom image, the outer bounding case appeared in the image (Figure. 
1). Therefore, as an additional preprocessing step, in order to avoid the operational 
artifacts (e.g. the phantom may not be centered perfectly on the two detectors and the 
outer case artifacts), we cropped a region of interest (ROI) corresponding to the breast 
area, as shown in the middle of Figure 1, and used a synchronic threshold scheme to 
generate the breast masks for the two detectors. Based on the assumption that the breast 
area in the image is the same using the two detectors, we optimize the thresholds of 
post-processed image intensity by solving the optimization problem: 
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here breast area is denoted as BA, t1, t2 as the intensity threshold for the post-processed 
images from the two detectors. BA(detector, t) = the cardinal of the set {p| the pixel p is 
in the ROI and the post-processed image intensity at p >=t}. 
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Fig. 1. Processed DM image acquired on the 2000D system; Left: original phantom image, 
Middle: manually cropped ROI, Right: the final breast region mask 

Multiple texture features are extracted using an automated breast image analysis 
software pipeline [14], including 1) grey-level histogram features, 2) co-occurrence 
texture features, and 3) run-length features. These features have been shown in 
previous studies to have value in breast cancer risk estimation [5-7]. The texture images 
are generated by calculating texture features within a series of adjacent square regions 
covering the original breast region, with the side length of the square equals to 16 
pixels. A total of 26 texture features were computed. A summary of these texture 
features is shown in Table 1. 

Table 1. Texture descriptors included in parenchymal texture analysis 

Grey-Level 
Histogram 

5th /5thmean/95th/95thmean/ max/mean/min/sum 
entropy/kurtosis/sigma/skewness 

Co-occurrence 
cluster shade/ inverse difference moment 

correlation/energy/entropy/inertia 
Haralick correlation 

Run-Length 

grey level nonuniformity/ run length nonuniformity 
high grey level run emphasis/ long run emphasis 
low grey level run emphasis/short run emphasis 

run percentage 

Our comparison study is based on comparing the image intensity and texture feature 
profiles of both the raw and processed DM phantom images, where the cumulative 
distribution function (CDF) curves of each image feature are computed and compared 
between the two x-ray detectors. All features in Table 1 are generated for both original 
images and the z-scored images, and the effects of z-scoring on detector differences are 
also evaluated. The Kolmogorov-Smirnov distance, which defined as the maximum 
of the absolute vertical difference between two CDF curves [15, 16], is used as the 
distance between two CDF curves in the result. 
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3 Results   

The size of the ROI is 1842×775 pixels for the images of both detectors, with optimized 
threshold of (t1

*, t2
*) = (1068, 456), with BA(2000D, t1

*) = 939916 (pixels), and BA(DS, 
t2

*)=940598 (pixels). The |breast area difference|/BA(2000D,t1
*) = 0.07%.  

On the 2000D system, for raw and processed images, the standard deviation of the 5 
times of phototimed imaging in terms of the maximum/minimum/standard deviation of 
the image intensity is 2.25/7.29/0.52 and 9.4/4.2/0.0821 respectively. On the DS 
system, the corresponding values are 24.4/5.39/1.1 and 5.1/4.3/0.12. In the following 
analysis, the average of the 5 phototimed images was used for each detector to reduce 
the effects of noise in the imaging process. The cumulative distribution function (CDF) 
of the image intensity within the breast region is shown for the two detectors (Fig. 2).  

   

Fig. 2. The image intensity CDF of the original image. Left: raw, right: processed images. 

The CDF comparison in the raw/processed images indicates that the intensity 
differences between the images from two detectors may be affected by a 
scaling/shifting factor respectively. After z-scoring the image intensity within the 
breast area, the differences in the CDF of the image intensity are alleviated, as shown in 
Figure 3. The distance between CDF curves of the two detectors are reduced from 
0.4730/0.4731 to 0.0249/0.0263 for raw/processed images respectively.  
 

 

Fig. 3. The image intensity CDF of z-scored image. Left: raw, Right: processed image. 
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Comparisons are also done for all the texture features listed in Table 1. Our results 
indicate that texture features can be broadly categorized into three groups, according to 
how they are affected by the detector differences and z-scoring. Certain features are not 
affected by detectors, others are affected but compensated by z-score, and some are 
affected regardless. 

Specifically, the first group of features that is minimally affected by detectors 
includes the grey-level histogram features (e.g., entropy, kurtosis, sigma, skewness). 
The CDF curves of the texture feature kurtosis is shown as an example in Figure 4, for 
which the distance between the CDF curves is 0.0839/0.0732 for the original raw and 
processed images, after z-scoring, the distance remains the same 0.0839/0.0732. 
 

 

Fig. 4. Left: CDF of feature image from original image, right: CDF of feature image from 
z-scored image. (Grey-level histogram feature: kurtosis) 

The second group of features is affected by detectors, but the differences in the CDF 
can be alleviated by z-scoring the original image. This includes the remaining 
grey-level histogram features and the cluster shade co-occurrence feature. As an 
example in Figure 5, for the grey-level histogram feature mean, the distance between 
the CDF curves of the two detectors is 0.4732/0.4728 for raw and processed images, 
after z-scoring, the distance is decreased to 0.0255/0.0328. 
 

 

Fig. 5. Left: CDF of feature image from original image, right: CDF of the feature image from 
z-scored image. (Grey-level histogram feature: mean) 
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The third group of features is affected by detectors; however simple z-scoring cannot 
reduce the observed differences. This group mainly includes the co-occurrence texture 
features (except cluster shade) and run-length features. As an example in Figure 6, for 
the co-occurrence feature inverse difference moment, the distance between the CDF 
curves between two detectors is 0.2331/0.2301 for raw and processed images, however 
after z-scoring, the distance is increased to 0.3229/0.4145. 

 

Fig. 6. Left: CDF of feature image from original image, right: CDF of feature image from 
z-scored image (Co-occurrence texture feature: inverse difference moment) 

4 Discussion and Conclusion 

In this study, we compared the image intensity and texture profiles of two GE DM x-ray 
detectors using a physical breast phantom. The rationale is that since images are 
generated from the same phantom, the resulting image features should remain very 
similar (e.g., effected only minimally by noise). Our results show that the CDF curves 
for processed and raw image intensity values between two detectors reveal a shifting 
and scaling pattern respectively. Comparing the different texture features suggests that 
the texture features can be broadly categorized into three groups. In summary, after 
z-scoring the image intensity of the original phantom images, the differences in the 
intensity values and the grey-level histogram features are alleviated, however the 
differences in texture features may depend not only on absolute gray-level intensity 
values in the image, but also on the spatial distribution of the image intensity values, 
such as most of the co-occurrence and run-length texture features differences between 
the two detectors, which are not reduced by simple intensity normalization z-scoring.  

The CDF curve information studied in this study is used as the first step comparison 
study on how different x-ray detectors may affect the image intensity and texture. 
Further work is underway to fully-investigate such differences, and to develop a 
comprehensive feature standardization scheme that can be potentially used to reduce 
effects introduced by the imaging system on the subsequent image analysis process. 
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