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Rationale and Objectives: Parenchymal texture patterns have been previously associated with breast cancer risk, yet their underlying
biological determinants remain poorly understood. Here, we investigate the potential of mammographic parenchymal texture as a pheno-

typic imaging marker of endogenous hormonal exposure.

Materials and Methods: A retrospective cohort study was performed. Digital mammography (DM) images in the craniocaudal (CC) view
from 297 women, 154 without breast cancer and 143 with unilateral breast cancer, were analyzed. Menopause status was used as a sur-

rogate of cumulative endogenous hormonal exposure. Parenchymal texture features were extracted and mammographic percent density

(MD%) was computed using validated computerized methods. Univariate and multivariable logistic regression analysis was performed to

assess the association between texture features andmenopause status, after adjusting forMD%and hormonally related confounders. The
receiver operating characteristic (ROC) area under the curve (AUC) of each model was estimated to evaluate the degree of association

between the extracted mammographic features and menopause status.

Results: Coarseness, gray-level correlation, and fractal dimension texture features have a significant independent association with men-
opause status in the cancer-affected population; skewness and fractal dimension exhibit a similar association in the cancer-free population

(P < .05). The ROC AUC of the logistic regression model including all texture features was 0.70 (P < .05) for cancer-affected and 0.63

(P < .05) for cancer-free women. Texture features retained significant association with menopause status (P < .05) after adjusting for

MD%, age at menarche, ethnicity, contraception use, hormone replacement therapy, parity, and age at first birth.

Conclusion: Mammographic texture patternsmay reflect the effect of endogenous hormonal exposure on the breast tissue andmay cap-

ture such effects beyondmammographic density. Differences in texture features between pre- and postmenopausal women aremore pro-

nounced in the cancer-affected population, which may be attributed to an increased association to breast cancer risk. Texture features
could ultimately be incorporated in breast cancer risk assessment models as markers of hormonal exposure.
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s new strategies for breast cancer prevention and early population, the Gail model, has only modest discriminatory
A detection become available (1,2), it is essential to

provide accurate, clinically relevant methods, to

identify women at high risk of breast cancer. Although a lot

of progress has been made, current approaches still face

limitations. Most research to date has focused on identifying

women at increased familial risk (ie, BRCA1/2 carriers),

which only account for the 5%–10% of incident breast

cancers (3). On the other hand, the National Cancer Insti-

tute’s breast cancer risk assessment tool for the general
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accuracy at the individual level (4). Studies suggest that risk

prediction could be improved by incorporating mammo-

graphic parenchymal pattern descriptors (5,6). Parenchymal

texture features characterize the spatial distribution and

structure of the breast tissue pattern (7–10) and could

potentially complement the widely used measure of breast

density, which is typically captured using coarse measures of

the overall percent of mammographically dense tissue in the

breast (11). Studies suggest that texture features, particularly

in the low spatial frequencies, are strong predictors of cancer

risk (12), even when breast density is considered (13).

Mammographic breast density, which is currently the most

commonly used parenchymal pattern descriptor, has been

identified as a strong independent risk factor for breast cancer

(11) and is also shown to correlate with certain modifiable risk

factors, such as endogenous cumulative and circulating hor-

mone levels, exogenous hormonal exposure, diet, and body
635
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mass index (14–16). Studies suggest that the biological basis of

these associations can be mediated through a number of

mechanisms that include increased hormonal exposure,

prolactin secretion, or the production of growth factors and

non–growth factor peptides (17), which may lead to tissue

progression from normal growth to hyperplasia to neoplasia

(17,18). Over the past decade, novel parenchymal

descriptors characterizing the texture of the breast tissue

have also emerged as potentially additional breast cancer risk

indicators (7,8,10). Yet, although the biological basis of

breast density as a risk factor is starting to be elucidated, the

biological determinants of parenchymal texture and its

association to breast cancer risk are still not well understood.

We previously reported preliminary evidence that mam-

mographic texture features may be associated with hormonal

exposure by correlating them to menopause status in a small

screening population (19). In this work, we attempt to further

characterize our previously reported observations. Specifi-

cally, we explore the association between parenchymal texture

descriptors and menopause status, which is used here as a sur-

rogate of cumulative endogenous hormonal exposure in two

populations of women: a cancer-free and a cancer-affected

population. The rationale is that by contrasting the results

from these two subpopulations, we may gain further insight

on whether such an association could also be affected, or

potentially mediated, by an inherent predisposition to a higher

risk for breast cancer. In addition, we assess whether paren-

chymal texture retains an independent association to meno-

pause status when further adjusting for mammographic

density as an additional confounder.

As a first step toward understanding the biological basis of

mammographic texture, we hypothesize that mammographic

texture patterns are associated with endogenous hormonal

exposure. Epidemiologic studies provide evidence for the

role of endogenous hormones in the development of breast

cancer (20,21), and specifically for their effect on tissue

aging, as a key breast cancer risk factor (22). For our study,

menopause status was used as a surrogate of endogenous hor-

monal activity, and as withmenopause, there is a drastic reduc-

tion in the amount of sex hormones produced by the body

(23). Identifying differences in parenchymal texture between

pre- and postmenopausal women could serve as a proof of

concept, indicating that mammographic texture features

reflect the effects of cumulative endogenous hormonal expo-

sure on the breast tissue. Our long-term hypothesis is that

mammographic parenchymal features could be incorporated

into breast cancer risk estimation models to improve individ-

ualized breast cancer risk estimation.
MATERIALS AND METHODS

Study Population

Between June 2002 and December 2005, 650 women (age

27–81) had digital mammography imaging as part of a multi-

modality breast imaging clinical trial completed in our institu-
636
tion. The study compared the diagnostic performance of

different digital breast imaging modalities for women with

estimated high risk of breast cancer (>25% lifetime Gail/Claus

risk), women with recently detected abnormalities (Breast

Imaging Reporting and Data System $4 or positive biopsy),

and follow-up of previous cancer patients. Women in this trial

were volunteers and have signed informed consent. As part of

their participation, the women provided demographic and

health and reproductive history information. The number

of first-degree relatives with breast cancer, number of benign

biopsies, age at menarche and age at first live birth, and the

woman’s race were used to calculate lifetime and 5-year Gail

breast cancer risk (4). Exclusion criteria consisted of being

pregnant, having a contraindication for magnetic resonance

imaging, prior history of cancer in the ipsilateral breast within

the last 5 years, being treated with preoperative adjuvant ther-

apy, having a blood sugar level above 200 mg/dL, and having

moderate to severe renal disease.

For our study reported here, 297 women were included. To

be selected for our study, women had to have digital mam-

mography images available with sufficient image quality, be

pre- or postmenopausal, and have no or unilateral breast can-

cer. Of the 650 women originally enrolled in the multimodal-

ity imaging trial, 466 had digital mammography images with

no artifacts (eg, biopsy clips) that could potentially confound

image analysis. Of those, 169 women were further excluded

for one or more of the following: 1) being perimenopausal,

2) having bilateral breast cancer, 3) failing to report: age, estro-

gen therapy use, contraceptive therapy use, or age at

menarche; or 4) having a lesion specifically within the retro-

areolar region. Of the remaining 297 women included in

our study, 143 had unilateral breast cancer (ie, referred here

as our cancer-affected population) and 154 had no diagnosis

of breast cancer (ie, our cancer-free population). Menopause

status was ascertained from completed study questionnaires

where participating clinicians indicated whether the woman

was premenopausal, postmenopausal, perimenopausal, or

had an unknown menopause status. Of the cancer-affected

women, 73 women were premenopausal and 70 were post-

menopausal. Of the cancer-free population, 88 women

were premenopausal and 66 were postmenopausal. Several

factors known to affect hormonal levels were also examined,

including current estrogen therapy use, current oral contra-

ceptive use, age at menarche, parity, and age at first birth. A

summary of the demographic characteristics of the study pop-

ulation is shown in Table 1.
Image Dataset

Bilateral craniocaudal (CC) digital mammography (DM)

images were retrospectively analyzed under the Health

Insurance Portability and Accountability Act and institu-

tional review board approval. DM acquisition was per-

formed with a GE Senographe 2000D full-field DM

system (GE Healthcare, Chalfont St. Giles, UK). The raw

x-ray projections were acquired with a spatial resolution



TABLE 1. Characteristics of Our Study Population

Cancer-Free Women Cancer-Affected Women

Premenopausal Postmenopausal Premenopausal Postmenopausal

Total number 88 66 73 70

Mean age (years) 44.41 � 7.78 52.39 � 18.32 45.43 � 6.02 62.77 � 7.59

Gail 5-year risk (%) 1.51 � 1.28 2.85 � 1.99 1.03 � 0.70 1.81 � 0.96

Gail lifetime risk (%) 17.63 � 8.38 17.62 � 10.89 12.11 � 5.18 10.22 � 4.97

Ethnicity

Caucasian 76 (87%) 51 (77%) 59 (81%) 54 (77%)

African American 7 (8%) 8 (12%) 8 (11%) 13 (20%)

Asian 2 (2%) 2 (3%) 2 (3%) 1 (1%)

Mixed 1 (1%) 1 (2%) 1 (1%) 1 (1%)

Other, not available 2 (2%) 4 (6%) 3 (4%) 1 (1%)

Estrogen therapy

Yes 1 (1%) 3 (5%) 1 (1%) 2 (3%)

No 87 (99%) 63 (95%) 72 (99%) 68 (97%)

Contraceptive use

Yes 2 (2%) 0 (0%) 6 (8%) 0 (0%)

No 86 (98%) 66 (100%) 67 (92%) 70 (100%)

Mean age at menarche (years) 12.57 � 1.71 12.45 � 2.74 12.59 � 1.16 12.33 � 1.49

Mean age at first birth (years) 27.32 � 5.68 25.59 � 6.47 28.40 � 5.09 24.27 � 5.33

Parity

Yes 55 (63%) 56 (85%) 55 (75%) 59 (84%)

No 33 (37%) 10 (15%) 18 (25%) 11 (16%)
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of 0.1 mm/pixel and a 16-bit per pixel gray-level depth.

Image postprocessing was performed with the GE Pre-

miumView algorithm (24). For cancer-affected women,

the unaffected breast was analyzed as a surrogate of inherent

healthy breast tissue properties. For the cancer-free women,

side-matching was performed to select a similar proportion

of left and right breasts as the cancer-affected women.

Based on this, the final dataset included 73% right breasts

and 27% left breasts.
Parenchymal Texture Analysis

In this study, we implemented gray level cooccurrence

matrix–based texture features as well as a number of parenchy-

mal texture descriptors that explore local gray-level patterns in

the mammographic images. To extract these descriptors, ret-

roareolar 2.5-cm2 regions of interest (ROI) were first seg-

mented from the PremiumView postprocessed images using

validated automated software (24,25). Briefly, the software

implements an edge detection algorithm based on the

Hough transform to detect the chest wall in the image (26).

Then, the nipple location is detected as the edge point that

is furthest perpendicularly from the chest wall, and a

2.5-cm2 retroareolar ROI is automatically segmented behind

the detected nipple. The resulting ROI is in the central breast

region and was specifically selected because it typically

includes the most dense and texturally complex region of

the breast as previously described byHuo et al (8) and provides

the most discriminative texture features for differentiating

women at high versus low-risk for breast cancer (24,27).
Representative retroareolar ROIs from pre- and post-

menopausal women are shown in Figure 1.

Texture features of skewness, coarseness, contrast, gray-

level correlation, fractal dimension, homogeneity, and energy

were computed from each ROI. These features have been

previously proposed for general image analysis applications

(28,29) and have also been specifically shown to correlate

with breast cancer risk when computed from

mammographic images (7,8,10,11,24,27,30). Their previous

correlation with breast cancer risk suggests their potential to

capture, even partially, underlying biological processes in

breast tissue. While the exact underlying biologic

phenotypes of these reported patterns are not yet fully

understood, these features essentially quantitatively explore

local patterns in the images based on statistical descriptors.

The detailed mathematical derivations are included in the

Appendix. Briefly, skewness reflects the asymmetry in the

gray-level pixel value distribution, and has been shown to

reflect local parenchymal density properties (31,32).

Coarseness is a measure of smoothness of image texture and

within our context reflects local granularity in parenchymal

pattern; its computation is based on the neighborhood gray

tone difference matrix (31,32). Contrast, energy and

homogeneity, as originally proposed by Haralick (33), reflect

local differences in the distribution of image intensity

and require the computation of the gray-level spatial

co-occurrence matrix. Contrast quantifies variation in image

intensity between neighboring pixels; energy is a measure of

texture uniformity of the gray-level spatial distribution; and

homogeneity reflects the heterogeneity of texture patterns.
637



Figure 1. Representative retroareolar re-

gions of interest (ROI) from craniocaudal

(CC) mammographic images of unaffected
breasts of cancer-affected and cancer-free

women. (a, c, e) Premenopausal cases. (b,
d, f) Postmenopausal cases. (a–f) ROIs

with low skewness (skewness = �1.5677),
high skewness (skewness = 1.5942), high

coarseness (coarseness = 9.1793E-4), low

coarseness (coarseness = 1.2043E-4), high
gray-level correlation (gray-level correla-

tion = 0.9949), and low gray-level correlation

(gray-level correlation = 0.8637) texture fea-

tures, respectively. In general, premeno-
pausal women tend to have denser breast

parenchymawith smoother texture; postme-

nopausal women have less dense paren-

chyma with sharper textures. These
characteristics were quantitatively charac-

terized using the implemented texture fea-

tures. Shown are texture features that
exhibited statistically significant differences

between pre- and postmenopausal women.
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Finally, fractal dimension, computed here using the power

spectrum of the Fourier transform (7), indicates the degree

of intrinsic self-similarity of the parenchymal pattern at differ-

ent image resolutions.
Mammographic Density Estimation

Mammographic percent density (MD%) was estimated using

previously published validated computer software (34,35).
638
In summary, the computer algorithm first identifies the air–

breast boundary via automated thresholding based on edge

detection, and the pectoral muscle region, when present, is

excluded using a straight line Hough transform (34). Adaptive

k-class fuzzy-c-means clustering is then performed within the

segmented breast region to partition the breast area intomulti-

ple clusters of similar grey-level image intensity. A linear clas-

sifier is subsequently applied to label the detected subregions

into dense tissue versus fat and segment the total dense tissue
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area within the breast. MD% is then estimated per standard

practice (11) as the percentage of the total breast area occupied

by the segmented dense tissue.
Data Analysis

Statistical analysis was performed separately for the cancer-

affected and the cancer-free women to account for potential

inherent differences in parenchymal tissue properties. For

each feature and MD%, we report the mean, standard devia-

tion, coefficient of variation, and intraclass correlation. The

intraclass correlation was computed using the left and right

breast features of the same woman within each class. Student’s

t-test was performed to assess differences in the means

between the pre- and postmenopausal women. To assess inter-

feature correlation, the Spearman correlation coefficient rwas

computed between each feature pair. To determine the asso-

ciation between texture features, MD%, and menopause sta-

tus, univariate and multivariate logistic regression analysis

was performed (Stata/IC 12, Stata Corp.).

We first investigated the association between each of the

texture features independently as well as mammographic den-

sity, with menopause status using univariate logistic regression

with menopause status as the outcome variable. These uni-

variate models were further adjusted for mammographic den-

sity and the potential hormonal confounders to assess the

independent contribution of each of the texture feature in

association to menopause status.

To assess the collective association between combinations

of the texture features and menopause status, multivariate

logistic regression was performed using all the computed tex-

ture features as explanatory variables. Similarly to univariate

analysis, we assessed whether texture features were independ-

ently predictive of menopause status after adjusting for mam-

mographic density and the potential hormone-related

confounding factors, age at menarche, ethnicity, contracep-

tion pill use, hormonal replacement therapy (HRT), parity,

and age at first birth. Age at menarche was included as a con-

tinuous variable and ethnicity as a categorical variable with

five categories as summarized in Table 1. Contraceptive use

and HRTuse were treated as binary variables. Parity and age

at first birth were coded as a single, nominal variable in which

0 referred to nulliparity, 1 to having a first birth before age 30,

and 2 referred to having a first birth after age 30.

To alleviate the effect of feature multicolinearity, backward

stepwise feature selection was performed in the multivariable

models, with a feature entry P value of .05 and feature removal

P value of .1. In all models, estimated logistic regression coef-

ficients were computed and the Wald test was performed to

assess significance of the association between each predictor

and menopause as the response variable at a 0.05 significance

level. To determine the degree of the observed associations,

the area under the curve (AUC) of the receiver operating

characteristic (ROC) curve was computed for each model

to evaluate discriminatory capacity between pre- and postme-

nopausal status (Matlab V.2012a, Mathworks, Inc., Precision
Recall Curve Toolbox) (36). The different ROC AUCs

were compared using the bootstrapping test for significance

(37). In all analyses, two levels of significance were considered,

P < .05 as a standard level and P < .001 as a more stringent

criterion, to account for the multiple tests performed.
RESULTS

Fractal dimension and skewness were statistically significantly

different between pre- and postmenopausal women in the

cancer-free population (Table 2). Coarseness, gray-level cor-

relation, and fractal dimension were different between the

two groups in the cancer-affected population. Representative

ROIs illustrating some of these differences are shown in

Figure 1. Mammographic density was statistically significantly

lower in postmenopausal women in both the cancer-free and

cancer-affected populations. Interfeature correlations ranged

from low to high (jrminj = 0.01, jrmaxj = 0.99) for the different

texture features (Table 3). Mammographic density had little to

moderate correlation with the extracted texture features

(jrminj = 0.01, jrmaxj = 0.45).

Univariate logistic regression showed that a number of

texture features as well as mammographic density are signifi-

cantly different between pre- and postmenopausal women

(AUC > 0.50; P < .05) for both cancer-affected and

cancer-free women (Table 4). Skewness and fractal dimen-

sion are significantly associated with menopause status in

cancer-free women (AUC > 0.50, P < .05). Coarseness,

gray-level correlation and fractal dimension are significant

in cancer-affected women (AUC > 0.50, P < .05). After

adjustment for MD% and hormonal confounders, fractal

dimension maintains significant association with menopause

status in the cancer-free population. Coarseness, gray-level

correlation, and fractal dimension maintain significance in

the cancer-affected population. Mammographic density has

the highest univariate AUC of all texture features in both

the cancer-free and cancer-affected women (AUC > 0.70).

ROC curves with AUC > 0.5 and P < .05 were considered

as statistically significant.

Inmultivariate analysis, for the cancer-freewomen, themul-

tivariable logistic regression model that included all the texture

features yielded one significant texture feature coefficient: frac-

tal dimension (P< .05) (Table 5). ROC analysis after backward

feature selection on the model that included only the texture

features yielded an AUC of 0.63 (Fig 2a). The corresponding

logistic regression model for the cancer-affected women

yielded three significant texture features coefficients: contrast,

homogeneity, and skewness (P< .05) (Table 5). Following fea-

ture selection, ROC analysis on the model that included only

the texture feature yielded an AUC of 0.70 (Fig 2b). After

adjustment for MD%, fractal dimension maintained significant

association with menopause status in the cancer-free women

and contrast and homogeneity retained significance in

cancer-affectedwomen (P< .05);MD%was statistically signifi-

cant in all models across populations (P < .05) (Table 5). After

feature selection, ROC curve analysis yielded an AUC of
639



TABLE 2. Summary of Texture Feature Characteristics in Cancer-Free and Cancer-Affected Women

Premenopausal Postmenopausal

Mean SD CV ICC Mean SD CV ICC

Cancer-free population

Coarseness 4.139E-4 1.688E-4 0.40 0.68 4.498E-4 2.898E-4 0.43 0.66

Contrast 3.528E2 107.05 0.31 0.87 3.443E2 89.459 0.26 0.77

Gray level correlation 9.655E-1 3.450E-2 0.03 0.39 9.658E-1 3.470E-2 0.03 0.71

Energy 8.697E-5 3.054E-5 0.36 0.42 7.874E-5 3.327E-5 0.42 0.67

Homogeneity 1.379E-1 1.370E-2 0.07 0.90 1.384E-1 1.280E-2 0.07 0.91

Fractal dimension* 2.556 0.251 0.10 0.71 2.669 0.163 0.06 0.65

Skewness* �1.882E-1 0.527 �2.79 0.52 �1.30E-2 0.559 �55.00 0.27

MD (%)** 43.72 15.36 0.34 0.80 34.57 15.37 0.42 0.66

Cancer-affected population

Coarseness* 4.705E-4 1.617E-4 0.34 0.44 4.085E-4 1.754E-4 0.44 0.63

Contrast 3.266E2 1.609E1 0.49 0.09 3.444E2 1.006E1 0.29 0.68

Gray level correlation* 9.751E-1 2.000E-2 0.02 0.35 9.574E-1 4.200E-2 0.043 0.80

Energy 8.217E-5 3.370E-5 0.41 0.63 9.955E-5 5.575E-5 0.59 0.73

Homogeneity 1.440E-1 1.340E-2 0.07 0.56 1.396E-1 1.220E-2 0.09 0.81

Fractal dimension* 2.658 0.210 0.08 0.59 2.591 0.176 0.07 0.62

Skewness �0.855E-1 1.166 �13.00 0.07 0.0934 0.492 5.56 0.31

MD (%)** 44.61 14.96 0.33 0.76 33.36 14.09 0.46 0.73

CV, coefficient of variation; ICC: intra-class correlation; MD, mammographic density; SD, standard deviation.

*P < .05, **P < .001. P values are from t-test comparing differences in feature means between pre- and postmenopausal women.

TABLE 3. Interfeature Spearman Correlation Coefficients in Cancer-Free and Cancer-Affected Women

Coarseness Contrast

Gray-Level

Correlation Energy Homogeneity

Fractal

Dimension Skewness MD

Cancer-free population

Coarseness 1.00

Contrast �0.44** 1.00

Gray-level correlation 0.91** �0.29** 1.00

Energy �0.73** �0.22* �0.72** 1.00

Homogeneity 0.47** �0.99** 0.32** 0.20* 1.00

Fractal dimension 0.61** �0.41** 0.52** �0.30** 0.41** 1.00

Skewness 0.01 �0.12 �0.15 0.11 0.15 0.12 1.00

MD (%) 0.09 �0.15 0.16* 0.01 0.13 �0.09 �0.34** 1.00

Cancer-affected population

Coarseness 1.00

Contrast �0.35** 1.00

Gray level correlation 0.95** �0.31** 1.00

Energy �0.77** �0.20* �0.76** 1.00

Homogeneity 0.34** �0.93** 0.29** 0.24* 1.00

Fractal dimension 0.58** �0.24* 0.54** �0.42** 0.20* 1.00

Skewness �0.20* 0.01 �0.35** 0.29** 0.05 �0.02 1.00

MD (%) 0.13 �0.18* 0.23* �0.05 0.17* 0.09 �0.45** 1.00

MD, mammographic density.

*P < 0.05, P < .001.
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0.72 for the cancer-free population (Fig 2c) and an AUC of

0.76 (Fig 2d) for the cancer-affected population.

Further adjustment for age at menarche, ethnicity, contra-

ception use, estrogen therapy use, parity, and age at first birth

did not show statistical significant association between any of

these potential hormonal confounders and menopause status,

for either cancer-free or cancer-affected women, whereas the
640
previously selected texture features and MD% retained signifi-

cant independent association with menopause status (P < .05)

(Table 5). All reported models were statistically significant

(model P value < .05) (Table 5). Although the addition of

MD% to the multivariable texture feature models led to a

stronger association with menopause status, as indicated by

an increase in the ROC AUC of all corresponding models



TABLE4. Univariate Logistic Regression andROCCurvePerformance inDistinguishing betweenPre- andPostmenopausalWomen
for Each of the Texture Features Alone and after Adjusting for Density and Hormonal Factors

Texture Feature Texture Feature + Density

Texture Feature + Density

+ Hormonal Factors

Regression

Coefficient AUC

Regression

Coefficient AUC

Regression

Coefficient AUC

Cancer-free population

Coarseness 1200 0.55 1600 0.70** 1700 0.71**

Contrast �0.001 0.50 �0.002 0.71** �0.002 0.72**

Gray level Correlation 1.80 0.51 4.70 0.70** 4.10 0.70**

Energy �5700 0.56 �5200 0.70** �5400 0.70**

Homogeneity 5.20 0.50 13 0.70** 13.10 0.71**

Fractal Dimension 2.30* 0.62* 2.20* 0.71** 2.10* 0.73**

Skewness 0.62* 0.58* 0.24 0.70** 0.27 0.71**

MD (%) — �0.05** 0.70** �0.05** 0.71**

Cancer-affected population

Coarseness �2500* 0.64* �2600* 0.75** �2600* 0.77**

Contrast 0.0010 0.57 0.0004 0.73** 0.0008 0.76**

Gray level Correlation �24.00* 0.66** �23.00* 0.76** �24.00* 0.78**

Energy 7700 0.59 1100* 0.74** 8800 0.77**

Homogeneity �25.00 0.57 �18.00 0.74** �29.00 0.77**

Fractal dimension �1.90* 0.61* �2.40* 0.75** �2.60* 0.78**

Skewness 0.33 0.67 0.05 0.74** 0.03 0.76**

MD (%) — �0.05** 0.72** �0.06** 0.76**

AUC, area under the curve; MD, mammographic density; ROC, receiver operating characteristic.

*P < .05, **P < .001. Asterisk notation on AUC reflects overall P value of regression model.
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for both cancer-free and cancer-affected women, assessment

of those differences with bootstrapping (37), as compared to

the density-only and texture-only models, did not reveal stat-

istical significance (Fig 2).
DISCUSSION

Mammographic parenchymal patterns, traditionally described

by breast density, have been strongly associated with the risk of

breast cancer (6,33). Recent data suggest an increasing role of

additional parenchymal descriptors, such as mammographic

texture features, in breast cancer risk assessment

(7,8,10,11,24,27,30). Li et al have assessed various

computer-extracted mammographic texture features of

BRCA1/BRCA2 carriers and women at lower risk of breast

cancer (8,10,31,32), showing that parenchymal texture

features can identify women at high risk of breast cancer

because of genetic predisposition. When applied to the

general population, studies also support that mammographic

texture analysis could be used in breast cancer risk

assessment (11,12,30). Although this evidence suggests an

association between mammographic texture and breast

cancer risk, the underlying biological basis for this

association is still not well understood.

Endogenous hormonal activity, reflected by both cumula-

tive and circulating hormone levels, is strongly associated

with increased breast cancer risk and is known to affect the

breast tissue (17,22). Mammographic density is heavily

affected by hormonal exposure (15,16,18,38) and it is
shown to increase with HRT (39) and decrease with meno-

pause (40) and Tamoxifen use (41). Although studies have

investigated the effect of hormonal exposure on mammo-

graphic density, there are limited data on the effect of

hormone-related processes on parenchymal tissue texture.

Studies have shown that mammographic texture features are

only moderately correlated with density (12) and may be dif-

ferent within the dense versus fatty areas of the breast tissue

(42). A study by Raundahl et al (43) showed that computer-

extracted mammographic pattern descriptors, including the

heterogeneity of the local breast tissue structure, can capture

the effect of hormone related interventions, such as HRT.

The underlying biological determinants of parenchymal

texture have not been previously explored. Our data suggest

that certain mammographic textures features are different

between pre- and postmenopausal women. These results indi-

cate that hormonal exposure might have a detectable effect on

the texture of the breast tissue, here quantitatively character-

ized using computerized features. Some of these features,

such as fractal dimension, contrast, and homogeneity, maintain

a significant association to menopause status even after adjust-

ing for breast density and hormonally related factors, including

age at menarche, estrogen treatment, ethnicity, contraceptive

use, parity, and age at first birth. In our study, mammographic

density has the strongest univariate association to menopause

status. When considered in conjunction with texture features

in multivariable analysis, the collective association to meno-

pause status is stronger, although not statistically significantly

different. Although it is reasonable to assume that
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TABLE 5. Logistic Regression Results for Each Partial Regression Coefficient before and after the Addition of Density and
Hormonal Variables to the Multivariable Texture Feature Models

Texture Only Texture + Density

Texture + Density +

Hormonal Factors

Regression

Coefficient P Value

Regression

Coefficient P Value

Regression

Coefficient P Value

Cancer-free population

Model constant 20 .15 20 .19 23 .13

Coarseness 920 .65 1400 .50 1600 .48

Contrast �0.01 .28 �0.01 .17 �0.01 .14

Gray-level correlation �15 .18 �8.35 .51 �11 .40

Energy �5700 .73 4200 .98 �2100 .91

Homogeneity �76 .27 �98 .18 �100 .17

Fractal dimension 3.30 <.01 2.68 .04 2.60 .04

Skewness 0.48 .15 0.18 .60 0.19 .59

MD (%) �0.05 <.01 �0.05 <.01

Age at menarche 0.01 .92

Estrogen therapy 0.90 .49

Contraceptive use 0.49 .71

Ethnicity 0.02 .49

Parity/age at first birth 0.45 .104

Model P value .017 <.001 <.001

Cancer-affected population

Model constant 39 .01 37 .02 44 .01

Coarseness 3200 .15 2500 .27 330 .17

Contrast �0.01 <.01 �0.01 .04 �0.01 .04

Gray-level correlation �24 .12 �24 .15 �29 .11

Energy 10,000 .12 10,000 .17 9400 .21

Homogeneity �95 <.01 �65 .04 �78 .03

Fractal dimension �0.62 .61 �1.01 .43 �1.20 .38

Skewness 0.99 .02 0.56 .19 0.56 .22

MD (%) �0.04 <.01 �0.03 <.01

Age at menarche 0.04 .79

Estrogen therapy �1.00 .48

Contraceptive use �1.60 .178

Ethnicity 0.07 .433

Parity/age at first birth �0.46 .142

Model P value <.001 <.001 <.001

MD, mammographic density.

P values are shown for the Wald test for each partial regression coefficient and for overall model significance.
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mammographic texture and density may have some common

biological determinants, the independent significant associa-

tion of certain texture features tomenopause status after adjust-

ing for density suggests that these features may reflect

additional information related to the effect of endogenous hor-

monal activityon the breast tissue. This is also supported by the

low correlation observed betweenmammographic density and

the texture features used in our study. Combined, these results

suggest that parenchymal texture might provide complemen-

tary information in addition to mammographic density in

reflecting the effects of endogenous hormonal exposure of

the breast tissue, a known risk factor of breast cancer.

Our results indicate that, in both univariate and multivari-

ate analysis, the association between texture features and

menopause status may be higher in cancer-affected com-

pared to cancer-free women, suggesting that the potential
642
effect of cumulative endogenous hormonal exposure on

the breast tissue may be more pronounced for women

who ultimately develop breast cancer. This hypothesis is

supported by the initial hypothesis posed by Pike (22) that

endogenous hormonal exposure has an effect on the breast

tissue aging processes and that increased cumulative hormo-

nal exposure is related to a higher risk for developing breast

cancer. These results may be of significance because texture

features could ultimately be used as imaging markers of

endogenous hormonal exposure and therefore as imaging

markers of cancer risk. In our study, this reported effect,

however, could be confounded by the higher mean age of

the postmenopausal women in our cancer-affected popula-

tion compared to the same group in the cancer-free popula-

tion, which in turn could correspond to a longer period of

endogenous hormonal exposure. Also of note, different



Figure 2. Receiver operating characteristic curves for logistic regression analysis for texture features only for the cancer-free (a) and cancer-
affected women (b); and texture features plus mammographic percent density for cancer-free (c) and cancer-affected women (d). AUC, area
under the curve. Data are shown for the models after backward feature selection.
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texture features are associated to menopause status in the

cancer-affected versus cancer-free women, suggesting that

the breast tissue properties might be inherently different

between these two populations. However, because of our

relatively small sample set, these observations will need to

be confirmed with larger clinical studies.

Our study has certain limitations. Designed as a preliminary

evaluation, we chose to use menopause status as a surrogate for

hormonal exposure. Although it is reasonable to assume that

postmenopausal women have lower circulating estrogen levels

when compared to premenopausal women, there is variability

in the hormonal levels between women. A more rigorous

measure of hormonal exposure could be used to more accu-

rately assess hormonal levels in the blood (eg, serum estradiol

levels) and correlate those directly with mammographic tex-

ture descriptors. In addition, our study population mainly

consisted of a high-risk population, and therefore our findings

will ultimately need to be validated in larger screening popu-

lations. Furthermore, texture analysis was confined within the
retroareolar region of the breast. Although this area is thought

to contain the most dense tissue and texturally complex por-

tion of the breast (27), future work will seek to validate these

findings using whole-breast texture analysis. Finally, we

acknowledge that there are several potential additional texture

features that we could have explored in this setting that may

potentially capture additional tissue characteristics. Consider-

ing our sample size and issues of overfitting our models, we

chose to use the most widely used and best validated texture

features previously reported in the literature on breast cancer

risk assessment. Our current study serves as a proof of concept;

the inclusion and validation of additional texture features will

constitute the subject of further investigations.

The research question currently actively investigated is to

which extent parenchymal texture features can complement

breast density in breast cancer risk estimation. To date, reports

in the literature have shown mixed results. A study by Man-

duca et al (12) showed that parenchymal texture features in

the low spatial frequencies are the strongest predictors of
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risk and retain significance when breast density is considered;

however, they do not significantly improve the ability to pre-

dict risk compared to breast density alone. In contrast, a recent

study by Haberle et al (12) in a larger population showed that

mammographic texture features can predict cancer risk with

significant increase in model performance compared to den-

sity. Most studies to date have mainly used retrospective data-

sets from different patient populations and have used digitized

film-screen mammograms (7,8,10,11,24,27,30) in which the

effect of the film digitizer may have affected the predictive

value of the computed image texture features. Studies with

digital mammography offer the opportunity to fully explore

the potential advantages of parenchymal texture analysis in

breast cancer risk estimation by extracting quantitative

features directly from the raw digital images. Larger

prospective clinical studies are warranted to fully investigate

the potential value of parenchymal texture analysis in breast

cancer risk estimation.
CONCLUSION

Parenchymal texture has been previously associated with

breast cancer risk. Yet, the biological basis of this association

remains largely unknown. Here, we performed a study to

assess parenchymal texture features as imaging markers of tis-

sue hormonal exposure. Menopause status was used as a sur-

rogate of endogenous hormonal activity. Our results suggest

that certain mammographic texture features are significantly

associated with menopause status. The observed association

is stronger in cancer-affected women than cancer-free women

and remains significant even when other hormonally related

variables are considered, such as age at menarche, ethnicity,

contraception use, estrogen therapy, parity, and age at first

birth. Texture features may also contribute complementary

information to that of mammographic density in reflecting

tissue hormonal exposure. Parenchymal texture features could

ultimately aid in breast cancer risk assessment as imaging

markers of tissue hormonal exposure.
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APPENDIX

I
n this study, seven texture features were extracted from

each region of interest (ROI). Skewness reflects the asym-

metry of the gray-level histogram and has been used to

assess parenchymal density (31,32). When the image texture

is predominantly composed of fat (ie, the gray-level histogram

is skewed to higher values), the skewness tends to be positive,

whereas when the texture is primarily formed by dense tissue

(ie, the gray-level histogram is skewed to lower values), the

skewness values tend to be negative. Skewness is the third stat-

istical moment, computed as:

skewness ¼ w3

w
3
2
2

where

wk ¼
Xgmax

i¼0

niði� iÞk=N ; N ¼
Xgmax

i¼0

ni; i ¼
Xgmax

i¼0

ðini=NÞ

and ni represents the number of times that gray level value i

takes place in the image region, gmax is the maximum gray-

level value, and N is the total number of image pixels.

Coarseness is a texture feature that reflects the local varia-

tion in image intensity; a small coarseness value for an ROI

indicates fine texture, where the gray levels of neighboring

pixels are different; a high coarseness value indicates coarse

texture, where neighboring pixels have similar gray-level val-

ues. Coarseness computation is based on the Neighborhood

Gray Tone Difference Matrix (NGTDM) (29) of the gray-

level values within the image region.

coarseness ¼
 Xgmax

i¼0

pivðiÞ
!�1

; where

vðiÞ ¼
�Pji� Lij for i ˛fnig if nis0 is the NGTDM

0 otherwise

In the these formulas, gmax is the maximum gray-level value,

pi is the probability that gray level i occurs, ni is the number of

pixels having gray level value equal to i, and Li is given by

Li ¼ 1

S � 1

Xt

k¼�t

Xt

l¼�t

jðxþ k; yþ lÞ;

where j(x,y) is the pixel located at (x,y) with gray level value i,

(k,l)s(0,0) and S = (2d + 1)2, with d specifying the neighbor-

hood size around the pixel located at (x,y).

Contrast, energy, correlation, and homogeneity, as pro-

posed originally by Haralick (28,44), require the

computation of a gray-level cooccurrence matrix, which is

based on the frequency of the spatial cooccurrence of gray-

level intensities in the image. Contrast quantifies overall varia-

tion in image intensity, whereas energy is a measure of image

homogeneity.

contrast ¼
Xg
i

Xg
j

ji� jj2Cði; jÞ;

energy ¼
Xg
i

Xg
j

Cði; jÞ;

correlation ¼

P
i

P
j

ðijÞpði; jÞ � mxmy

sxsy

;

homogeneity ¼
Xgmax
i¼0

Xgmax
j¼0

Cði; jÞ
1þ ji� jj

where g is the total number of gray levels, m and s are the mean

and standard deviation of the partial probability density func-

tion p, and C is the normalized cooccurrence matrix (28,44).

Fractal dimension (FD) was estimated based on the

power spectrum of the Fourier transform of the image

(7,31,45). The two-dimensional (2D) discrete Fourier

transform was performed using the fast Fourier transform

algorithm as:

Fðu; vÞ ¼ PM�1

m¼0

PN�1

n¼0

Iðm; nÞe
�j

�
2p

M

�
um

e
�j

�
2p

N

�
vn

;

u ¼ 0; 1;.;M � 1 v ¼ 0; 1;.;N � 1

where I is the 2D image region of size (M,N), and u and v are

the spatial frequencies in the x and y directions. The power

spectral density P was estimated from F(u,v) as:

Pðu; vÞ ¼ jFðu; vÞj2

To compute the FD, P was averaged over radial slices span-

ning the fast Fourier transform frequency domain. The fre-

quency space was uniformly divided in 24 directions, with

each direction uniformly sampled at 30 points along the radial

component. To calculate the FD, the least-squares-fit of the

log(Pf ) versus log( f ) was estimated, where f ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
denotes the radial frequency.

The FD is related to the slope b of this log-log plot by:

FD ¼ 3DT þ 2� b

2
¼ 8� b

2

whereDT is the topological dimension, and is equal to 2 for a

2D image.
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