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ABSTRACT 

Software breast phantoms have been developed for pre-clinical validation of breast imaging systems.  Realism is of great 
importance for the acceptance and the range of applications of breast phantoms.  In this paper we have assessed the 
phantom realism based upon the analysis of mammographic texture properties.  Texture analysis is of interest since it 
reflects the spatial tissue distribution, which is known to correlate with breast cancer risk.  We compared texture 
properties of synthetic mammograms generated using software breast phantoms with clinical data.  A total of 133 
phantom images were synthesized using software phantoms developed at the University of Pennsylvania.  The phantoms 
were designed using two different anatomy simulation methods:  an octree-based recursive partitioning method and a 
region growing method.  The synthetic images were generated assuming a clinically used acquisition geometry and 
mono-energetic x-ray beam with no scatter.  The clinical data included 60 anonymized mammograms selected 
retrospectively from screening cases at the University of Pennsylvania.  The same postprocessing was applied to clinical 
and phantom images.  The texture analysis was performed using fully automated software which extracts a battery of 
features from analyzed images.  The histograms of texture properties extracted from phantom images were compared 
with those from clinical mammograms, separately for the two anatomy simulation methods.  The histogram agreement 
was quantified using symmetrized Kulback-Leibler divergence.  We observed good agreement for most of the analyzed 
25 features.  In more than a half of the features, the octree-based simulation method yielded better agreement with 
clinical data as compared with the region growing method.   

Keywords: Breast anatomy simulation, software breast phantoms, parenchymal texture analysis, realism assessment, 
histogram comparison.  

1. INTRODUCTION 
Recent years have seen a significant increase in the use of software breast phantoms for pre-clinical validation of breast 
imaging systems.  Our breast anatomy simulation software has been developing since 1996,1-6 and today is in use by 
over 40 industrial, government, and academic research laboratories.  Other approaches to the software breast phantom 
design have been reported.7-11  Fig. 1 shows cross-sections of examples from different generations of software phantoms 
developed at the University of Pennsylvania.  The current phantom design is based upon the use of octrees, which 
provides very fast simulation.12 
 
There are several important motivations for the use of software breast phantoms.  Software phantoms provide direct 
simulation of tissue structures which make up anatomical noise, i.e., the background texture seen in clinical images, 
which affects the ability of observers to detect and characterize breast abnormalities.  Phantoms allow consistent 
simulation of images of the same anatomy while varying the acquisition parameters.  Phantoms also provide ground 
truth about the simulated anatomical structures, which is needed for quantitative validation.  They are also flexible 
enough to cover the wide anatomical variations seen in clinical images.  Lastly, they are suitable for use in virtual 
clinical trials (VCT) of breast imaging systems.  The validation of breast imaging systems is currently based upon 
clinical trials, which are limited by their cost, duration, and necessity for repeated irradiation of volunteer women (in 
case of imaging modalities based upon the ionizing radiation).  The X-ray Physics Laboratory at the University of 
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Pennsylvania is a strong proponent of a preclinical alternative in the form of VCTs based upon the models of anatomy, 
image acquisition (and optionally) image analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                   (a)                                  (b)                                 (c)                                (d)                  
Figure 1:  Illustration of the changes in design of software breast phantoms developed at the University of Pennsylvania.  
Shown are the cross-sections of phantoms from (a) 2002; (b) 2006; (c) 2010; and (d) 2012.  
 

Realism is of great importance for the acceptance and the range of applications of software breast phantoms.  Phantom 
realism may be assessed directly or indirectly.  Direct assessment is performed by comparing phantoms and tissue 
properties using anatomical or pathological slices; this approach is limited by the available clinical material.  In contrast, 
indirect realism assessment includes comparison of clinical and simulated phantom images.   

This work is motivated by a desire to develop an automated tool for testing realism as a part of an open source platform 
for breast imaging simulation.  The automated validation is envisioned to include:  (i) Regression tests aimed to catch 
programming bugs early and (ii) Comparison of phantom vs. clinical images to ensure the highest available level of 
realism.  The image-based features which can be used for the assessment of realism in phantom images include the 
estimates of breast percent density and parenchymal texture descriptors, covariance properties, and power spectral 
descriptors.  

Texture analysis has been used for testing realism in earlier versions of our software breast phantom.  In our 2002 study,2 
we analyzed the similarity between distributions of texture feature values averaged over image regions in synthetic and 
clinical breast images.  Two similarity measures were utilized:  (i) The histogram correlation of phantom and clinical 
texture features averaged over the same tissue regions; this measure was used to validate the distribution of texture 
feature values within individual simulated images; and (ii) the Kolmogorov-Smirnov test between cumulative density 
functions of mean texture features from phantom and clinical data; this measure was used to validate the distribution of 
mean texture features over the simulated population.  Fig. 2 illustrates the use of these measures for the assessment of 
realism in simulated images of our previous software phantoms.   
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Figure 2:  Examples of the texture analysis of synthetic images generated using an earlier version of our software breast 
phantom.  Shown are (a) the correlation of texture histograms and (b) the Kolmogorov-Smirnov test of the difference 
between cumulative distributions of the mean texture values, for regions of retroareolar fibroglandular tissue.  The data 
are presented for three ranges of size of synthetic tissue structures and for the three texture analysis methods. (Modified 
from Ref. #2.) 

 
In this paper, we assessed the agreement between synthetic and clinical images by comparing histograms of various 
texture features.  The histogram comparison was quantified using symmetrized Kulback-Leibler divergence.13, 14  In 
addition, we separately compared the agreement with clinical data for images of software phantoms generated using the 
octree and region growing simulation methods.   
 

2. METHODS 
2.1. Software breast phantoms 
The X-ray Physics Lab at the University of Pennsylvania has over 15 years of experience in developing breast 
anthropomorphic software phantoms.1-6, 12, 15, 16  Phantoms are generated algorithmically using geometric primitives, and 
stored in a 3D voxel array at a spatial resolution selected by the user.  Each voxel belongs to a unique simulated tissue 
structure, characterized by corresponding physical properties (e.g., linear x-ray attenuation, elasticity, etc.).  Particular 
attention is given to the simulation of large- and meso-scale tissue structures, as breast outline, skin, and adipose tissue 
compartments, defined by the matrix of Cooper’s ligaments.  These structures make up the parenchymal pattern, a 
background image texture which can interfere with the detection of breast abnormalities.  The anthropomorphic software 
phantoms used in this study are based upon two different methods for the simulation of breast anatomy: (i) recursive 
partitioning of the simulated breast volume using octrees12 and region growing simulation method. 15, 16 
 
2.1.1 Octree-based method for the simulation of breast anatomy 

The octree-based simulation12 allows for fast generation of phantoms with very small voxel size.  It is an upgrade to the 
previous region growing method, offering important advantages of (i) low computational complexity, (ii) fast, (iii) 
scalable, and (iv) an improved control of simulated anatomical structures (e.g., skin and Cooper’s ligament thickness).  
The improved control of the simulation is provided through selection of input parameters which specify the simulated 
breast size, glandularity, thickness of the skin and Cooper’s ligaments, and the number, distribution, and size and shape 
of adipose compartments.   

2.1.2 Region growing method for the simulation of breast anatomy 

In the region growing method,15, 16 we divided the breast into a region composed predominantly of adipose tissue and a 
region composed predominantly of fibro-glandular tissue.  Each compartment in the predominantly adipose tissue region 
is assigned an ellipsoid, centered at a randomly chosen seed point, with semiaxes which grow proportional to a virtual 
time τ ≥ 0.  Ellipsoid parameters determine the orientation and relative size and shape of the compartments.  Each voxel 
is assigned as belonging to a compartment corresponding to a seed of the ellipsoid that first reaches the voxel during the 
growing procedure.  It can be shown that compartment boundaries generated by the region growing method represent 
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Voronoi diagrams with respect to the Mahalanobis distance.  Fig. 3 shows cross-sections of sample software breast 
phantoms used in this study. 

 

 

  

 

 

 

  

 

 

 

 

 

 

 

 

  

 

 

 

 

2.2. Simulation of mammographic image acquisition 
Synthetic images for this study were generated in a two-step model of mammographic image acquisition. First, software 
phantoms are deformed using a finite-element (FE) model of clinical mammographic compression.  The FE model 
assumed hyper-elastic, almost uncompressible tissue model, with 50% reduction in phantom thickness.  Second, the 
acquisition geometry corresponding to a clinical digital mammography system (Dimensions, HOLOGIC, Bedford, MA) 
was simulated by ray tracing.  We assumed mono-energetic x-ray beam without scatter, and an ideal detector model.  
The quantum noise was added in the form of Poisson random variations to the digital pixel values.  The simulated 
images were post-processed using the proprietary method provided by Hologic (courtesy of B. Ren and A. Smith).  
Fig. 4 shows examples of synthetic mammograms generated using octree and region growing phantoms.  

 

2.3. Materials 
 

2.3.1 Clinical mammograms  

Clinical images used in this paper were selected retrospectively from breast cancer screening cases at the University of 
Pennsylvania, under HIPAA and IRB approval.  We selected 60 clinical mammograms acquired using the HOLOGIC 
Dimensions system; the same system was modeled when generating synthetic images.  None of the selected clinical 
images included confirmed breast abnormalities.  Fig. 5 shows an example of clinical mammograms used in this study. 

(a)   (b) 

Figure 3:  Examples of phantoms used 
in this study.  Shown are cross-sections 
of phantoms generated by (a) octree or 
(b) region growing simulation method.  

(a)   (b) 

Figure 4:  Examples of synthetic 
mammograms used in this study, generated 
from the (a) octree-based phantoms or (b) 
regions growing phantoms.   
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3. RESULTS AND DISCUSSION 
3.1 Texture images 
Fig. 8 shows examples of texture images calculated from synthetic (Fig. 8 (a) and (b)) and clinical (Fig. 8 (c) and (d)) 
mammograms.  Shown are texture maps corresponding to features of Entropy (Fig.8 (a) and (c)) and Grey Level Non-
Uniformity (Fig. 8 (b) and (d)).   

  (a)  (b)     (a)   (b) 
Figure 8:  An Entropy (a) and Grey Level Non-Uniformity (b) texture images, corresponding to the clinical mammogram 
(shown in Fig. 5).  An Entropy (c) and Grey Level Non-Uniformity (d) texture images corresponding to the phantom 
mammogram (shown in Fig. 4). 
 
3.2 Agreement between synthetic and clinical image texture properties 
Fig. 9 shows examples of features in which there is good agreement between the mean histograms of clinical and 
synthetic mammogram texture properties.  Shown are mean histograms of the High Grey Level Run Emphasis (Fig. 
9 (a)) and the 5th Percentile (Fig. 9 (b)) features.  Separate bars are shown for the texture features corresponding to the 
clinical data, octree phantoms and region growing phantoms.  The good agreement is made evident by the high level of 
overlap between clinical and synthetic histograms, and is also supported by low KLdiv

sym values (indicated in figures). 
 

  
KLdiv

sym:  0.031 (octree);  0.035 (reg. grow.)  KLdiv
sym:  0.041 (octree);  0.045 (reg. grow.)  

 
Figure 9:  Examples of a good agreement between mean histograms of clinical and synthetic texture features.   
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Fig. 10 illustrates good agreement between the histograms of mean values calculated from clinical and synthetic 
mammogram texture properties.  Shown are the histograms of mean values of the High Grey Level Run Emphasis (Fig 
10 (a)) and the 5th Percentile (Fig. 10 (b)) texture features.  As compared to the mean histograms from Fig. 9, the 
histograms of mean texture values show higher KLdiv

sym values.   
 
 

  
KLdiv

sym:  0.419 (octree);  0.290 (reg. grow.)  KLdiv
sym:  0.173 (octree);  0.487 (reg. grow.)  

 
Figure 10:  Examples of a good agreement between histograms of mean clinical and synthetic texture features.   
 
 
Figs. 11 and 12 show examples of texture features for which the octree phantoms yielded better agreement with clinical 
data as compared to the region growing method.  Shown are mean histograms (Fig. 11) and the histograms of mean 
values (Fig. 12) of the Correlation and Cluster Shade texture features.  As seen in Fig. 11, the octree mean histogram 
values are slightly closer to the clinical data, as compared to the region growing histograms.  The histograms of mean 
texture features showed very similar performance of the octree and region growing phantoms.  
 
 

 
KLdiv

sym:  0.006 (octree);  0.037 (reg. grow.)  KLdiv
sym:  0.008 (octree);  0.016 (reg. grow.)  

 
Figure 11:  Examples of the mean texture histograms for which octree phantoms yielded better agreement with clinical 
data than region growing phantoms. 
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KLdiv

sym:  0.509 (octree);  0.636 (reg. grow.)  KLdiv
sym:  0.062 (octree);  0.068 (reg. grow.)  

 
Figure 12:  Examples of the histograms of mean texture features for which octree phantoms yielded better agreement 
with clinical data than region growing phantoms. 
 
 
We have also observed several texture features for which the region growing phantoms yielded better agreement with 
clinical data than octree-based simulation, as illustrated in Figs. 13 and 14.  Shown are mean histograms (Fig. 13) and 
the histograms of mean values (Fig. 14) of the Low Gray Level Run Emphasis and Short Run Emphasis texture features.  
The advantage of the region growing phantoms may be caused, again, by mean histogram values being slightly closer to 
the clinical data, as compared to the octree phantoms (Fig. 13 left).  In addition, we observed that for certain features 
there is practically no overlap between the histograms of octree–based and clinical texture properties (Fig. 13 right).   

 
 

  
KLdiv

sym:  0.006 (octree);  0.003 (reg. grow.)  KLdiv
sym:  1.000 (octree);  0.014 (reg. grow.)  

  
Figure 13:  Examples of the mean texture histograms for which region growing phantoms yielded better agreement with 
clinical data than octree phantoms. 
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Table 1:  Percent differences in square root KLdiv
sym values of octree vs. region growing phantom images for all 25 

analyzed features.  Highlighted are features for which octree phantoms showed better agreement with clinical data than 
region growing phantoms. 
 

 
 

4. CONCLUSIONS 
We have evaluated an automated analysis of texture properties in synthetic mammograms generated using software 
breast phantoms.  This work is motivated by the development of an automated tool for realism testing in an open source 
platform for breast imaging simulations.  Texture properties of mammograms synthesized using our software phantoms 
showed relatively good agreement with clinical data.  Better agreement was observed for mean histograms of texture 
features vs. histograms of mean texture features.  Phantoms generated by the octree and region growing methods have 
comparable agreement with clinical data.  The octree based method offers an additional advantage of very fast 
generation of phantoms with small voxel size. 

 
Our future studies will focus on improving our understanding of the texture features that showed lower agreement 
between synthetic and clinical images, in order to inform further modifications of the software phantom design to 
improve realism.  In addition, the effect of simulating small scale tissue variations (e.g., using approaches developed by 
Reiser et al. 21-23 or Bliznakova et al. 7) on texture properties will be analyzed.  We are also interested in extending the 
performed texture analysis to include synthetic breast tomosynthesis images.   
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Index Texture Feature Mean Histogram  Histogram of Mean 
∆ (KL div

sym ) 0.5 [%] ∆ (KL div
sym ) 0.5 [%]

1 5th Percentile ‐4.30 ‐35.14
2 5th Mean ‐14.33 ‐42.50
3 95th Percentile ‐25.96 ‐13.57
4 95th Mean ‐30.63 ‐13.75
5 Gr.Lev. Nonuniformity 73.21 265.64
6 High Gr.Lev. Run Emphasis ‐5.74 20.17
7 Long Run Emphasis 3426.68 *
8 Low Gr.Lev. Run Emphasis 41.42 21.28
9 Run Length Nonuniformity 126.49 16.37
10 Run Percentile 467.92 35.18
11 Short Run Emphasis 757.49 991.09
12 Cluster Shade ‐30.40 ‐73.56
13 Correlation ‐60.57 ‐10.55
14 Energy 47.53 23.74
15 Entropy ‐41.82 89.95
16 Haralick Correlation ‐47.25 ‐41.12
17 Offset 5 Inertia ‐62.47 ‐61.10
18 Inverse Difference Moment ‐52.21 90.87
19 Kurtosis 56.79 53.62
20 Max ‐32.67 ‐12.64
21 Mean 28.81 ‐12.95
22 Min ‐21.58 ‐59.87
23 Sigma ‐52.74 ‐22.79
24 Skewness ‐23.38 ‐8.64
25 Sum 28.81 ‐12.95

Proc. of SPIE Vol. 8668  866824-11

Downloaded From: http://spiedigitallibrary.org/ on 07/15/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



 
 

 
 

REFERENCES 
1. Bakic PR, Albert M, Brzakovic D, Maidment ADA. Mammogram synthesis using a 3D simulation. I. Breast 

tissue model and image acquisition simulation. Medical Physics. 2002;29(9):2131-2139. 
2. Bakic PR, Albert M, Brzakovic D, Maidment ADA. Mammogram synthesis using a 3D simulation. II. 

Evaluation of synthetic mammogram texture. Medical Physics. 2002;29(9):2140-2151. 
3. Bakic PR, Albert M, Brzakovic D, Maidment ADA. Mammogram synthesis using a three-dimensional 

simulation. III. Modeling and evaluation of the breast ductal network. Medical Physics. 2003;30(7):1914-1925. 
4. Bakic PR, Brzakovic D. Simulation of digital mammogram acquisition. Paper presented at: SPIE Medical 

Imaging:  Physics of Medical Imaging, 1999; San Diego, CA. 
5. Bakic PR, Brzakovic D, Brzakovic P, Zhu Z. An Approach to Using a Generalized Breast Model to Segment 

Digital Mammograms. 11th Symposium on Computer-Based Medical Systems. Lubbock, TX; 1998:84-89. 
6. Bakic PR, Brzakovic D, Zhu Z. Anatomic Segmentation of Mammograms via Breast Model. In: Kerssemeijer 

ea, ed. 4th International Workshop on Digital Mammography. Nijmegen, The Netherlands: Kluwer, Dordrecht; 
1998:291-294. 

7. Bliznakova K, Suryanarayanan S, Karellas A, Paiilikarakis N. Evaluation of an improved algorithm for 
producing realistic 3D breast software phantoms:  Application for mammography. Medical Physics. 
2010;37(11):5604-5617. 

8. Hoeschen C, Fill U, Zankl M, Panzer W, Regulla D, Dohring W. A high resolution voxel phantom of the breast 
for dose calculations in mammography. Radiation Protection Dosimetry 2005;114(1-3):406-409. 

9. Li CM, Segars WP, Lo JY, Veress AI, Boone JM, Dobbins III JT. Computerized 3D Breast Phantom with 
Enhanced High-Resolution Detail. In: Samei E, Hsieh J, eds. SPIE Medical Imaging: Physics of Medical 
Imaging  Vol 7258. Lake Buena Vista, FL 2009. 

10. Chen B, Shorey J, Saunders RSJ, et al. An anthropomorphic breast model for breast imaging simulation and 
optimization. Academic Radiology. 2011;18(5):536-546. 

11. O'Connor JM, Das M, Didier C, Mah'D M, Glick SJ. Development of an Ensemble of Digital Breast Object 
Models. In: Marti J, ed. Digital Mammography (IWDM). Vol 6136. Berlin-Heidelberg: Springer-Verlag; 
2010:54-61. 

12. Pokrajac DD, Maidment ADA, Bakic PR. Optimized generation of high resolution breast anthropomorphic 
software phantoms. Medical Physics. 2012;39(4):2290-2302. 

13. Kullback S. Letter to the Editor: The Kullback–Leibler distance. The American Statistician 1987;41(4):340-1. 
14. Lin J. Divergence measures based on the shannon entropy. IEEE Transactions on Information Theory. 

1991;37(1):145-151. 
15. Zhang C, Bakic PR, Maidment ADA. Development of an Anthropomorphic Breast Software Phantom Based on 

Region Growing Algorithm. Paper presented at: SPIE Medical Imaging, 2008; San Diego, CA. 
16. Bakic PR, Zhang C, Maidment ADA. Development and Characterization of an Anthropomorphic Breast 

Software Phantom Based upon Region-Growing Algorithm. Medical Physics. 2011;38(6):3165-3176. 
17. Zheng Y, Keller B, Wang Y, et al. A Fully-Automated Software Pipeline for Parenchymal Pattern Analysis in 

Digital Breast Images: Towards the Translation of Imaging Biomarkers in Routine Breast Cancer Risk 
Assessment. Paper presented at: RSNA, 2011; Chicago, IL. 

18. Zheng Y, Wang Y, Keller BM, Conant EF, Gee JC, Kontos D. A fully-automated software pipeline for 
integrating breast density and parenchymal texture analysis for digital mammograms: Parameter optimization in 
a case-control breast cancer risk assessment study. In: Nishikawa RM, Whiting BR, eds. SPIE Medical 
Imaging. Lake Buena Vista, FL: SPIE; 2013. 

19. Wang Y, Keller BM, Zheng Y, et al. A Phantom Study for Assessing the Effect of Different Digital Detectors 
on Mammographic Texture Features. Digital Mammography. In: Maidment ADA, Bakic PR, Gavenonis SC, 
eds. International Workshop on Breast Imaging (IWDM). Philadelphia, PA: Springer; 2012. 

20. Wang Y, Keller BM, Zheng Y, et al. Texture feature standardization in digital mammography for improving 
generalizability across devices. SPIE Medical Imaging. San Diego, CA; 2012. 

21. Reiser I, Nishikawa RM. Task-based assessment of breast tomosynthesis: Effect of acquisition parameters and 
quantum noise Medical Physics. 2010;37(4):1591-1600. 

22. Lau AB, Reiser I, Nishikawa RM, Bakic PR. A statistically defined anthropomorphic software breast phantom 
Medical Physics. 2012;39(6):3375-3385. 

23. Reiser I, Lau AB, Nishikawa RM, Bakic PR. A directional small-scale tissue model for an anthropomorphic 
breast phantom. International Workshop on Breast Imaging. Philadelphia, PA: Springer; 2012. 

Proc. of SPIE Vol. 8668  866824-12

Downloaded From: http://spiedigitallibrary.org/ on 07/15/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx


