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ABSTRACT   

Growing evidence suggests a relationship between mammographic texture and breast cancer risk. For studies performing 
texture analysis on digital mammography (DM) images from various DM systems, it is important to evaluate if different 
systems could introduce inherent differences in the images analyzed and how to construct a methodological framework 
to identify and standardize such effects, if these differences exist. In this study, we compared two DM systems, the GE 
Senographe 2000D and DS using a validated physical breast phantom (Rachel, Gammex). The GE 2000D and DS 
systems use the same detector, but a different automated exposure control (AEC) system, resulting in differences in dose 
performance. On each system, images of the phantom are acquired five times in the Cranio-Caudal (CC) view with the 
same clinically optimized phototimer setting. Three classes of texture features, namely grey-level histogram, co-
occurrence, and run-length texture features (a total of 26 features), are generated within the breast region from the raw 
DM images and compared between the two imaging systems. To alleviate system effects, a range of standardization 
steps are applied to the feature extraction process: z-score normalization is performed as the initial step to standardize 
image intensities, and the parameters in generating co-occurrence features are varied to decrease system differences 
introduced by detector blurring effects. To identify texture features robust to detectors (i.e. the ones minimally affected 
only by electronic noise), the distribution of each texture feature is compared between the two systems using the 
Kolmogorov-Smirnov (K-S) test at 0.05 significance, where features with p>0.05 are deemed robust to inherent system 
differences. Our approach could provide a basis for texture feature standardization across different DM imaging systems 
and provide a systematic methodology for selecting generalizable texture descriptors in breast cancer risk assessment.   
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1. INTRODUCTION  
Breast cancer is the most common cancer in women worldwide, and about 1 in 8 U.S women will develop invasive 
breast cancer over the course of her lifetime. Early screening and proper treatment after diagnosis for individual women 
are both important aspects of current breast cancer research, and digital mammography (DM) is the main screening tool 
for cancer detection1. In western countries, 89% of women diagnosed with breast cancer are still alive 5 years after their 
diagnosis, which is due both to early detection and treatment. 
 
Currently, the Gail Model2 is one of the commonly used models to calculate a woman’s risk of developing breast cancer 
within the next five years and within her lifetime. This model calculates the population risk for women with the similar 
risk factors, however with limited capacity at the individual level. Currently, there are increasing efforts to improve 
individualized breast cancer risk estimation. Mammographic density3, estimated as the percent of dense tissue area 
within the breast, has been shown to be the strongest risk factor for breast cancer after age. Studies4-7 also support a 
relationship between mammographic texture and breast cancer risk, as mammographic texture features can quantify the 
local distribution of the parenchymal pattern, providing complementary information for breast cancer risk assessment.  
 
In studies of risk assessment based on mammographic texture features, it can be commonly the case that studies use DM 
images that are acquired from different DM systems. In such studies, it should be worthwhile to treat the imaging system  
as an additional parameter introducing potential bias in the analysis, as different imaging systems may possibly introduce 
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different inherent effects to the generated DM images. As a first step towards understanding these effects, in our study, 
the image intensity and extracted texture features from a breast phantom are compared between two DM systems for the 
raw (i.e., “for processing”) images. Using the modulation transfer function (MTF) property of the x-ray detectors, which 
is closely related to the spatial resolution of the acquired DM image, the effects of intensity standardization and related 
parameters in generating texture features, especially for co-occurrence features are considered and analyzed. A texture 
feature standardization scheme based on our previous preliminary studies13 and statistical methodology is proposed to 
identify texture features that are robust to different DM systems. Our study addresses the importance of understanding 
the physics of imaging before extracting texture features. The observations from our experiments and the proposed 
general standardization scheme could be helpful for many studies or applications using texture analysis in digital 
mammography, including breast cancer risk assessment, breast tissue classification, and computed aided diagnosis. 
 
 

2. METHODS 
2.1 Material  

The Gammex 169 “Rachel” anthropomorphic breast phantom was used in our experiments10. Image acquisition was 
performed on both GE Senographe 2000D and DS Full Field Digital Mammography (FFDM) systems, with 0.1mm/pixel 
resolution, 14 bit gray-levels. The GE 2000D/DS systems were introduced in years 2000/2004 respectively, with the 
same size flat panel detector, while the DS system has a smaller tube with stereotactic capabilities. The two systems both 
have indirect-conversion detectors using cesium iodide with TFT, which compared to direct conversion process, blurring 
effects can be introduced by the phosphor and can cause loss of spatial resolution. A study comparing the MTF of the 
two detector systems has shown that the spatial resolution for 50% MTF for the 2000D and DS systems is 3.19/mm and 
3.29/mm respectively, and the corresponding MTF at 5/mm is 0.27 and 0.28. The GE 2000D and DS also have a slightly 
different automated exposure control (AEC) system, resulting in differences in dose performance.  Using the fixed 
Rachel phantom, the clinically optimized phototimer setting of (kVp, mAs) was chosen at 29 kVp, 71 mAs for 2000D 
and 29 kVp, 90 mAs for the DS system. The phantom image acquisition process was repeated 5 times for both machines. 
The mean of these 5 images was used for subsequent analysis to decrease the effect of imaging noise, and these 5 images 
were also used to assess the effect of imaging noise on the texture features within each DM system. 
 
2.2 Image preprocessing  

The breast area is segmented by 1) manually removing the box boundary, and 2) a synchronic thresholding scheme is 
used to generate the breast region mask. The details of these preprocessing steps have been previously explained14.  
 

                         
 

Figure 1. For visual convenience, processed DM image acquired on the 2000D system is shown here; From left to right: 1) original 
phantom image; 2) removal of bounding case;  3) mask for breast region; 4) the lattice for texture image generation; 5) feature image 
(co-occurrence feature  ‘cluster shade’ ). 
 
2.3 Feature extraction  

Three classes of texture features8,9 are extracted (a total of 26 features) using an automated breast image analysis 
software pipeline11, including 1) grey-level histogram features, 2) co-occurrence features, and 3) run-length features. 
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Table 1.  List of texture features used in this study. 

Feature Class Feature Name(:Notation) 

Grey-Level Histogram 

5th  (:5TH)          5thmean(:5THM)           95th (:95TH)            95thmean(:95THM) 

max(:MAX)         min(:MIN)                     sum(:SUM)             mean(:MEAN) 

entropy(:ETP)      kurtosis(:KTS)              sigma(:STD)            skewness(:SKEW) 

Co-occurrence 
cluster shade (:CSD)     energy(:ENG)        entropy(:CETP)        inertia(:INT) 

Correlation(:COR)     haralick correlation(:HCOR)    inverse difference moment (:IDM) 

Run-Length 

grey level nonuniformity(:GLN)  run length nonuniformity(:RLN)  run percentage(:RP) 

high grey level run emphasis(:HGRE)     long run emphasis(:LRE) 

low grey level run emphasis(:LGRE)       short run emphasis(:SRE) 

 

These features have been shown to have values in breast cancer risk estimation4-7. For each DM image, and each texture 
feature in Table 1, the texture image is generated by calculating the feature within a series of adjacent square regions 
(e.g., lattice) covering the original breast region, as shown in the fourth figure in Figure 1. There are several parameters 
involved in generating the texture feature images. Co-occurrence features are a class of features describing the spatial 
relationship between the neighborhood pixels and features in Table 1 are calculated based on a pre-constructed Grey 
Level Co-occurrence Matrix8 (GLCM). This matrix depends on parameters including the number of grey-levels, the 
length and angle of offset, where offset defines the size and direction of the neighborhood region for each pixel. In our 
study, the texture feature images with offset directions 0°,45°,90°, and 135° are averaged such that features are orientation 
independent. The proper choice of offset length can be potentially dependent on the spatial resolution of images, which is 
a property related to the MTF of x-ray detectors. It is well known that in digital mammogram systems, the loss of spatial 
resolution is caused by the blurring introduced by the phosphor. If the offset length is not chosen properly, the blurring 
effect can be enhanced by considering a relatively small neighborhood, and the detector effects on texture can be 
significant. With this consideration, we analyzed the relationship between offset length and effects of system differences 
on the co-occurrence features.  In this study, the offset length was increased from 1 to 10 pixels consecutively.  

2.4 Statistical analysis 

We used the two-sample two-sided Kolmogorov-Smirnov (K-S) test12,13 to compare the texture feature distributions 
between the two DM systems, where only the distributions within the breast region are considered. The two sample K-S 
test is known as one of the most useful non-parametric and distribution free statistical test. As the distribution of texture 
features within the breast region is not normally distributed in general, it makes the K-S test a proper choice for the 
distribution comparisons. The statistic used in the K-S test is called the K-S distance (denoted as D in (1)), defined as the 
maximum of the absolute vertical difference between two cumulative distribution function (CDF) curves from two 
distribution samples. The CDF curve describes the overall distribution of the texture feature. To be more specific, the K-
S distance is calculated as:  

                                                               |),(),(|max)( 21 TSFTSFTD
x

−=                                                                          (1) 

Here, F(S1,T), F(S2,T) is the cumulative distribution function of the texture image for feature T generated for the images 
acquired from S1 and S2 respectively. S1 and S2 stand for GE 2000D, DS in our study, but could also be generalized to 
other systems. This indirect comparison of such a distribution property has the advantage of avoiding biases and artifacts 
for example from pixel shifting, when performing pixel-wise comparisons, and other such slight noise effects. The 
significance level of the K-S test is chosen to be at 0.05. Features with p-value<0.05 in the test will be labeled as 
significantly affected by the different image systems. In addition, the K-S distance is used here as a metric to describe the 
effects of system differences as well as the effects of imaging noise. 

2.5 Robust feature identification and standardization 

Our proposed texture feature standardization process can be divided into four main steps: First, we compare the CDFs of 
the grey-level intensities and the texture feature distributions generated from the original raw images of the two imaging 
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systems. Second, as the two CDFs of the raw image intensities differ by a scale factor, the z-score normalization within 
the breast region is performed to alleviate this scaling effect. Third, for features that the system difference can not simply 
be alleviated by z-scoring, a study of feature extraction parameters is further investigated, including the offset length for 
extracting the co-occurrence features. Finally, the K-S test with significance level 0.05 is applied as a selection scheme 
for texture features considered robust to system differences and potentially best suitable for texture feature analysis. 

3. RESULTS 
3.1 Image intensity comparison  

As the first step study, the distribution of image intensity within the breast region is compared between the two systems 
for both original images and the z-score normalized images.  

   
 
Figure 2.The cumulative distribution function (CDF) curves of the image intensity distribution within the breast region of the 
phantom image for the GE 2000D and DS systems. The left plot is for the original raw images and the right is for the z-scored raw 
images. Here, x-axis is image intensity and y-axis is the cumulative distribution value. The comparisons of CDF curves indicate that 
the image intensity between the two detectors may differ by a scale factor, which can be corrected by z-score normalization. 
 
3.2 Texture feature comparison: system effects and imaging noise effects 

In this section, the differences caused by the two systems and by the imaging noises are compared. In Figure 3(4), the 
texture images are generated from the original (z-score normalized) raw images respectively.  

    

    
 
Figure 3. Initially, 26 texture feature images are generated for each raw phantom image. These 26 features are divided into the three 
sub-figures, left: grey-level (12 features); middle: co-occurrence (7 features, with the default offset length of 1 pixel); right: run-length 
texture features (7 features). The index is ordered as in Table 1, from top to below and from left to right, For each feature, the K-S 
distance between the two CDF curves of the feature distribution within the breast region in each detector is shown (black line). The x-
axis is the index of the feature within each feature group, and the y-axis is the corresponding K-S distance. The black/red/blue curve 
stands for K-S distance due to different image systems, noise (e.g. quantum noise) in 2000D and noise in DS. (Results are based on 
the lattice window size of 63 pixels for texture feature extraction). 
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Figure 4. Compared to Figure 3, the three sub-figures are plotted for the same texture feature generated from the z-score intensity 
normalized raw images. The K-S distance is reduced towards the noise level. In the left plot, for grey-level histogram features, the K-S 
distance is close to the level of noise, which is supported by the observation from Figure 2 that a scale factor may exist in grey level 
intensity between the two detectors. Most of the features in the second and third group remain different from noise levels, implying 
that the detector effects on these features can not be alleviated by a simple z-score intensity transformation.   
(Results are based on the lattice window size of 63 pixels for texture feature extraction) 
 

 
3.3 Effects of offset length as a parameter in generating co-occurrence features 

             
Figure 5. The left figure shows the effect of offset length on the K-S distance for all 7 co-occurrence features, the x-axis is the feature 
index; y-axis is the K-S distance. Color stands for different offset length when estimating gray-level spatial co-occurrence frequencies 
required for the computation of the GLCM, as indicated in the legend of the plot. Choosing two examples, the middle figure shows the 
effect of offset length choice on the co-occurrence feature entropy, and the right figure for feature cluster shade. x-axis is offset length; 
y-axis is the K-S distance. The black/red/blue curve stands for K-S distance between the two systems, noise in 2000D and noise in DS 
respectively. Features that are (possibly) affected by blurring(middle figure), effects of system differences drop as the offset is 
increased from 1-10 pixels; for features that are not affected, increasing offset length doesn’t change the K-S distance too much, as a 
result will not change the statistical test result.  (Results are based on the lattice window size of 63 pixels for texture feature extraction) 
  
3.4 Features selected based on K-S test 

As one example to show the proposed workflow, in Table 2, the K-S distance and K-S test results are shown for  analysis 
based on texture feature generated using window size of 63 pixels. The first column is the feature class, the second is the 
feature notation as explained in Table 1. The third column is the K-S test based on the texture features generated from 
the original raw image; the fourth column is based on features generated from the z-scored raw images. As an additional 
step for studying the effects of parameters, the last column, we generate the co-occurrence features for z-scored images 
using the offset length of 5, 7, 9 pixels. In each cell of the table, the number indicates the K-S distance, features 
considered not significantly different (i.e. p>0.05) are denoted with a ‘*’ . Those are deemed as robust features that can 
be chosen for the texture feature analysis. The notation ‘-’ in the cell means the information is not applicable. 
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Table 2. List of texture features selected for texture feature analysis. 
(Results are based on the lattice window size of 63 pixels for texture feature extraction) 

Feature Class Feature Original Z-score 
Offset (pixel) 

5 7 9 

Grey level histogram 

5TH 0.35 0.03* - 
5THM 0.35 0.03* - 
95TH 0.38 0.02* - 

95THM 0.38 0.02* - 
ETP 0.18 0.18 - 
KTS 0.06* 0.08* - 
MAX 0.40 0.06* - 

MEAN 0.36 0.03* - 
MIN 0.36 0.07* - 
STD 0.31 0.06* - 

SKEW 0.05* 0.09* - 
SUM 0.36 0.03* - 

Co-occurrence 

 

CSD 0.07* 0.06* 0.06* 0.05* 0.05* 
COR 0.15 0.16 0.16 0.14 0.12* 
ENG 0.39 0.33 0.14 0.12* 0.11* 
CETP 0.36 0.32 0.13* 0.09* 0.08* 
HCOR 0.08* 0.10* 0.11* 0.11* 0.11* 

INT 0.32 0.44 0.33 0.21 0.15 
IDM 0.33 0.45 0.36 0.24 0.16 

Run-length 

GLN 0.18 0.09*  
HGLRE  0.11* 0.08* - 

LRE 0.33 0.36 - 
LGLRE 0.10* 0.11* - 

RLN 0.34 0.36 - 
RP 0.33 0.37 - 

SRE 0.34 0.38 - 

4. DISCUSSION 
There are many challenges in the process of the texture feature standardization across different imaging systems.  As a 
preliminary evaluation, our results in this study reveal that it’s important to understand the physics of imaging before 
extracting texture features for analysis, implying that the proper choice of parameter in generating texture features is 
important. The analysis process in this work can be potentially generalized as a way to standardize texture features used 
in mammographic texture analysis across different imaging systems in applications such as breast cancer risk assessment. 
Considering the transition to future clinical applications, one of the limitations of the current work is that the limited 
number of detectors compared. There’s only one breast phantom used in our study, and as GE 2000D, GE DS are 
manufactured from the same vendor, the differences might be relatively smaller when compared across various vendors. 
In order to make the work more promising for broader applications, it would be important to include additional 
commonly used digital mammography systems for comparison, and ideally additional imaging phantoms for analysis.  
 
For our study, results were generated using a window size of 63 pixels. In fact, window size is also one parameter having 
effects on texture feature analysis. Using different window sizes to extract the local texture features of the image 
constructs the multi-resolution description of the parenchymal patter. Part of our ongoing work is to study the optimal 
choice of the window size in texture analysis study. Smaller versus larger window size could potentially capture more 
versus less information of the DM image, however maybe more sensitive to system differences. It will be worthwhile to 
study the balance between the bias introduced by system differences and the performance of feature discrimination. 

Proc. of SPIE Vol. 8670  867026-6

Downloaded From: http://spiedigitallibrary.org/ on 07/15/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



 

 

5. CONCLUSION 
In this study, we compare the texture feature from two GE Digital mammography (DM) systems using a physical breast 
phantom, and propose a general process for texture feature standardization across different devices. Our results show that 
the Cumulative Distribution Function (CDF) curves for raw image intensity values between the two systems reveal a 
scaling pattern. The z-score normalization and proper choice of offset length in generating co-occurrence features can 
help alleviate the effects introduced by system differences. These results are validated using the Kolmogorov-Smirnov 
(K-S) test on the CDF curves at significance level p=0.05. Features not significantly (p>0.05) affected by the two 
systems can be selected as robust for any further studies performing digital mammogram texture analysis using these 
systems. Further work is underway to consider more detectors from different vendors for comparison purposes. We also 
plan to take into consideration several additional parameters associated with texture feature generation, in order to 
provide a more generalized feature standardization scheme for digital mammography texture analysis.  
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