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ABSTRACT  

 Images derived from a “phantom” are useful for characterizing the performance of imaging systems.  In 
particular, the modulation transfer properties of imaging detectors are traditionally assessed by physical phantoms 
consisting of an edge.  More recently researchers have come to realize that quantifying the effects of object 
variability can also be accomplished with phantoms in modalities such as breast imaging where anatomical structure 
may be the principal limitation in performance.  This has driven development of virtual phantoms that can be used in 
simulation environments.  In breast imaging, several such phantoms have been proposed.  In this work, we analyze 
non-Gaussian statistical properties of virtual phantoms, and compare them to similar statistics from a database of 
breast images. 

 The virtual phantoms assessed consist of three classes.  The first is known as clustered-blob lumpy 
backgrounds.  The second class is “binarized” textures which typically apply some sort of threshold to a stochastic 
3D texture intended to represent the distribution of adipose and glandular tissue in the breast.  The third approach 
comes from efforts at the University of Pennsylvania to directly simulate the 3D anatomy of the breast.  We use 
Laplacian fractional entropy (LFE) as a measure of the non-Gaussian statistical properties of each simulation. 

 Our results show that the simulation approaches differ considerably in LFE with very low scores for the 
clustered-blob lumpy background to very high values for the UPenn phantom.  These results suggest that LFE may 
have value in developing and tuning virtual phantom simulation procedures.  
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1. INTRODUCTION  
 The use of “virtual” breast phantoms for evaluating new breast imaging technology has many appealing 
qualities.  These phantoms are the output of simulations of breast tissue, with the intent of capturing the effect of 
anatomical variability on the performance of imaging systems.  As such, the “phantom” may be considered as the 
ensemble of image backgrounds produced by the simulation procedure.  Virtual phantoms have advantages that arise 
from known ground truth about the object being imaged, and the ability to evaluate an unbuilt system through a 
subsequent simulation of the imaging process. 

 However, in order to be effective, a virtual phantom must accurately capture the effects of patient 
structured images.  We will refer to this goal as phantom realism; a more realistic phantom will more fully capture 
anatomical effects than a less realistic phantom.  But it is not clear at this point in time how to validate such a 
comparison, or how such a validation might depend on the task that drives development of the imaging system..     
 The approach we are exploring in this work is based on the idea that realism can be characterized by 
comparing statistical properties of the phantom ensemble (or the subsequent images) and actual patient images in 
cases where such images are available.  Traditionally, statistical properties have been limited to the power-spectrum 
[1, 2], which characterize second-order statistical properties (i.e. variance, covariance, and correlations), under the 
assumption of stationarity.  However, it is well known that the power spectrum does not fully capture the appearance 
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of some medical images [3].  For example, it is 
generally easy to differentiate between a real patient 
mammogram and a Gaussian process that has matched 
the power spectrum of the mammograms.  Figure 1 
gives examples of each of these.  The top row shows 
breast images from clinical exams that have been log-
converted to density (note that we have not applied the 
usual “for-display” processing to these images since 
we are interested in the properties of the objects being 
imaged, and no necessarily the final displayed image).  
We contend that various textural components of the 
mammograms make them readily discriminable for the 
matched Gaussian textures.   

 Figure 1 suggests that if the statistical 
properties approach is going to be effective, we will 
likely need to evaluate properties beyond the mean and 
power spectrum that fully characterize a stationary 
Gaussian process.  We consider these to be “non-
Gaussian” statistics that assess relevant higher-order 
structure in the images.  In this work we evaluate one 
such measure, known as the Laplacian Fractional 
Entropy (LFE), for this purpose [3].  LFE is based on 
response histograms of Gabor filters, which are 
intended to represent receptive fields in early visual 
cortex [4-6].  Similar to visual receptive fields, the 
measure can be tuned to different bandwidths, center-
frequencies, phase, and orientations.  The measure computes the entropy of the histogram relative to the histogram 
from a Gaussian process.  This relative entropy will be zero when the two histograms match, making the measure 
insensitive to Gaussian statistics.  The Laplacian distribution is used as a yardstick for measuring how much a 
response histogram deviates from Gaussian form.  An LFE value of 100% is interpreted as being as non-Gaussian as 
a Laplacian distribution. 

 In this paper, we compare higher-order statistical properties of various virtual breast phantoms to a sample 
of patient mammograms.  For reference we also compare the power-spectra.  It is well known from the multiple 
studies [1, 2, 7] that power spectra of projection mammograms are well described by a power-law at low spatial 
frequencies where anatomical effects dominate.  At higher frequencies, where noise is the dominant source of 
variability, the spectrum departs from the power-law.        

 

2. MATERIALS AND METHODS 
2.1 Mammograms 

 The mammograms we use were obtained from the UC Davis Medical Center under an IRB approved 
human-subjects protocol that included de-identifying the image data.  Mammograms were acquired on a Hologic 
Dimensions system (Hologic Inc., Bedford MA). The images were saved in the pre-processed mode (i.e. “for 
processing”) and converted to density by a log-transform.  This step was done to avoid any non-Gaussian statistics 
that might be introduced by nonlinear transformations in the “for-display” processing.  Pixel size in the 
mammograms was 100 microns. We use a total of 19 patient images that had a large enough central region (1024 by 
1024 pixels) to assure that response histograms would not have excessive noise. 

 

Figure 1. X-ray breast images and filtered noise. The
upper panel of images (A) are taken from the interior of the
left CC view from different patients. The images have been
log-converted from the normalized detector outputs, but no
further display processing has been applied. The lower panel
of images (B) are the result of a Gaussian process with
matched mean and power spectrum. A common intensity
window is applied to all images.

1 cm

A. Mammograms

B. Gaussian Textures
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A. AB08 B. RN10 C. Gaussian

Figure 3. Examples of Truncated Binary Process
Backgrounds. The images show examples using the
approach of Abbey and Boone (A) and Reiser and Nishikawa
(B). The processes have been integrated over a 5cm
thickness, and converted from transmission to density. A
Gaussian texture with a power-law spectrum (C) is shown for
reference.

2.2 Clustered-Blob Lumpy Backgrounds 

  The Clustered-Blob Lumpy Backgrounds 
(CBLBs) have bend developed by Bochud and 
colleagues [8, 9] as an extension of Rolland and 
Barrett’s Type I Lumpy backgrounds [10]. The idea 
behind lumpy backgrounds was that a background 
could be generated as a superposition of lump profiles 
placed at different locations throughout the 
background area.  The CBLB extended this by 
allowing the lump profile to be a localized probability 
density for a cluster made up from smaller lumps.  

 A total of five CBLBs are considered here.  
These include the process described in the original 
publication [8] and referred to as OpExp99, as well as 
four virtual breast phantoms developed in a 
subsequent publication [9].  Two virtual phantoms 
based on oriented and isotropic processes are referred 
to as SimpOri and SimpIso respectively.  The 
remaining two phantoms both sum two CBLB 
processes modeling glandular and fibrous structure.  
These also incorporate oriented and isotropic 
processes, and are referred to ad DoubOri and 
DoubIso.  The parameters for these processes are all 
taken directly from the original publications, with the 
only change being to scale the number of clusters in 
the simulation by 16 to match the larger image size 
(1024 × 1024 instead of 256 × 256) tested.  Figure 2 
gives examples from each of these processes along 
with a power-law Gaussian texture for reference. 

 It should be noted that the CBLB phantoms 
directly simulate a 2D image.  This is considerably 
simpler than the methods below, which simulate a 3D 
breast, and then project the 3D simulation onto a 2D 
detector. 

 

2.3 Truncated Binary Processes 

 The “binary-truncation” (BT) phantoms are based on the idea that the breast can be well modeled as 
mixture of adipose and glandular tissues, each characterized by its respective attenuation coefficient.  These models 
have typically neglected calcifications.  The spatial distribution of the attenuation coefficients is generated by 
thresholding a 3D random process.  The approach of Abbey and Boone [11] (AB08) uses a 3D Gaussian process 
truncated to approximately 30% volume glandular fraction.  Rieser and Nishikawa [12] (RN10) used phase 
randomization followed by thresholding to generate the distribution of adipose and glandular tissue and targeted a 
75% glandular fraction.  It should be noted that both of these approaches have somewhat higher glandular fractions 
than the 19% average volume glandular fraction of the breast as measured from dedicated breast CT images [13].   

 We used the procedures described in both publications [11, 12] to generate binary 3D backgrounds with an 
isotropic sampling of 100 μm.  The grid was 1024 × 1024 × 512, and thus captured the 5cm average thickness of a 
compressed breast in a screening mammography exam.  Phantoms were projected onto a 100 μm detector by 
summing the z-dimension of the 3D phantom.  Examples of BT phantoms from these two processes are shown with 
a Gaussian power-law process as a reference in Figure 3.     

  

A. OpExp99 B. SimpIso C. SimpOri

D. DoubIso E. DoubOri F. Gaussian

Figure 2. Examples of Clustered-Blob Lumpy Back-
grounds. The images show 256 × 256 pixel samples from
each of the five CBLB textures (A-E). A Gaussian texture
with a power-law spectrum (F) is shown for reference.
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2.4 The UPenn Virtual Breast Phantom 

 A virtual breast phantom has been under 
development at the University of Pennsylvania for 
several years [14-16].  This phantom is based on 
simulating the major anatomical components of the 
breast, including skin, adipose tissue, fibroglandular 
tissue, and Cooper’s ligaments.  The breast simulation 
is initially generated in an uncompressed state, to 
which a compression transform is applied using a 
finite element model.   

 We consider two versions of the UPenn 
phantom.  The first is the published version of the 
phantom, tailored for projection mammography [15].  
In the second version, a new approach currently under 
investigation was used that involved simulating 
additional microstructure in the adipose 
compartments.  Mammograms were simulated from 
the 3D phantom assuming, a 950 mL breast volume with 6.4 cm compressed breast thickness, a polyenergetic x-ray 
beam, and 100 μm detector pixels.  Examples images from these two phantoms are given in Figure 4. 

 

2.5 Image Analysis 

 Gaussian white noise was added to the 
phantoms to simulate the effects of quantum and 
electronic acquisition noise.  The magnitude of the 
noise was set to approximately equal the amplitude of 
anatomical noise at 1.0 cyc/mm, the spatial frequency 
at which the power spectrum begins to diverge from 
the power-law form.  Figure 5 gives examples of the 
appearance of the phantom images after noise has 
been added.  

 Power spectra were computed by sampling 
fifty 256 ×256 pixel ROIs at random from within the 
ROI of the images, These were mean subtracted and 
then windowed using a radially symmetric Hanning 
window that extended to the edge of the ROI [17]. 
The average of the squared magnitude of the Fourier 
Transform was taken as the estimate of the power 
spectrum for that image.  Averages across images 
were used as the final estimate of the power spectrum. 

 The LFE was computed according to a recent 
publication [3].  Gabor filters that spanned center frequencies from 0.125 cyc/mm to 2.8 cyc/mm were evaluated at 
six different orientations.  The filters were sine-phase with 1.4 octave bandwidth, and an aspect ratio of 1.  Filter 
responses from 1cm inside the boundary of the ROI were used.  The histograms binned the central 99% of the 
responses, with an additional 1% bin for the remaining extremal values.  

3. RESULTS AND DISCUSSION 
 The main results of this work are power and LFE averaged over orientations and plotted as a function of 
spatial frequency (i.e. power spectra and LFE spectra). 

A. No 
Microstructure

B. With 
Microstructure

C. Gaussian

Figure 4. Examples of the UPenn Virtual Breast Phantom.
The images show an example of the breast phantom being
developed at the University of Pennsylvania (A) and a recent
version that includes a model of breast microstructure (B).
The backgrounds have been converted from transmission to
density. A Gaussian texture with a power-law spectrum (C) is
shown for reference.

A. Backgrounds

B. Backgrounds with added Noise

Figure 5. Addition of Acquisition noise. Example CBLB,
TB and Upenn phantom images before and after the addition
of noise. The magnitude of the noise was set to
approximately equate power at 1 cyc/mm.
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3.1 Power Spectra 

 Figure 6 plots the power spectra for the mammograms and each of the virtual breast phantoms with added 
image noise.  In each case, a fitted line representing a power-law power spectrum is plotted for reference.  The 
mammography data in Figure 6A closely follow the power-law at low spatial frequencies until about 1.0cyc/mm .  
The exponent of this power law is 3.0.  This is consistent with previous findings [1, 2].  
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A. Mammograms B. CBLBs

C. Truncated Binary Processes D. UPenn Phantoms

Figure 6. Power Spectra for Phantoms and Mammograms. Power spectra derived from the sample of
mammograms (A) are shown along with the three classes of virtual breast phantoms (B-D). A line representing
an ideal power-law is plotted in each case along with a Gaussian texture for each of the phantom classes.

Proc. of SPIE Vol. 9037  90370G-5

Downloaded From: http://spiedigitallibrary.org/ on 07/15/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



 

 

 The CBLBs in Figure 6B appear to rolloff at the lowest spetial frequencies plotted, before adopting an 
approximately power-law form (exponent is 3.0) from 0.1 to 1.0 cyc/mm, and then departing from this as the 
contribution of noise increases at higher frequencies.  Similar power-law evaluations of the CBLBs were made in 
the primary publications [8, 9], and the processes did not exhibit as much departure from the power law at low 
spatial frequencies.  This may be due to differences in how the power spectra were computed, although further 
investigation of this difference is warranted.  
 The truncated binary processes in Figure 6C and the UPenn phantoms in Figure 6D are well approximated 
by power-laws at low spatial frequencies, with noise-induced departure beginning at 1cyc/mm.  We note that the TB 
phantoms are fit by a power-law with an exponent of 3.3, and the UPenn phantom is fit by a power-law with 
exponent of 2.5.  
 Even with some departures at low-frequencies by the CBLBs, the general finding is that the power spectra 
of the virtual phantoms are reasonably well fit by a power-law over the frequencies in which anatomical variability 
dominates, even though the various phantoms have quite different visual appearances.  This is a testament to the 
ubiquitous nature of the power law.  However, when the goal is to distinguish between various models, the 
generality of the power law may work against its usefulness.  This serves as the motivation for investigating higher-
order statistical properties. 
    
3.2 Laplacian Fractional Entropy 

 Figure 7 shows the LFE for the CBLBs, along with a matched Gaussian texture.  Non zero LFE for the 
Gaussian texture reflects departures in the histogram due to the limited spatial extent of the ROI used to compute the 
histogram.  Also plotted for reference is the LFE computed from the sample of mammograms.  The mammograms 
start at an LFE of approximately 40% at the lowest spatial frequency measured (0.125 cyc/mm), and decrease at 
higher spatial frequencies nearing zero by about 2 cyc/mm, The Gaussian process starts at about 10% LFE and 
nearing zero by about 0.2 cyc/mm.  Surprisingly, LFE is not substantially different from the matched Gaussian 
texture across frequencies. 

 Figure 8 shows LFE plots for the TB phantoms, along with a matched Gaussian texture and mammograms.  
The TB phantoms start at approximately 30% LFE at 0.125 cyc/mm, and decrease steadily nearing zero at 1.0 

Figure 7. Laplacian Fractional Entropy for
Clustered-Blob Lumpy Backgrounds. LFE is plotted
as a function of spatial frequency for each of the five
clustered-blob backgrounds, as well as a matched
Gaussian noise texture. For reference the LFE from the
sample mammograms is also plotted (error bars = ±1
std. err.).
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Figure 8. Laplacian Fractional Entropy for
Truncated Binary Processes. LFE is plotted as a
function of spatial frequency for both of the truncated
binary backgrounds, as well as a matched Gaussian
noise texture. LFE from the sample mammograms is
also plotted (error bars = ±1 std. err.).
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cyc/mm.  While substantially greater than the Gaussian 
process, LFE from the TB processes is still substantially less 
than the average measured from mammograms.  

 Figure 9 Shows the LFE plots for the UPenn 
phantoms matched Gaussian texture, and mammograms.  At 
low spatial frequencies, the UPenn phantom without 
additional microstructure was found to exceed the LFE of 
the mammograms, with peak LFE of 92% at 0.35 cyc/mm.  
After this peak, LFE dropped rapidly to zero at 1.0 cyc/mm.  
The addition of microstructure reduced LFE values, more 
closely matching the mammograms.  

 All of the virtual phantoms had dropped to values 
near zero by 1.0 cyc/mm, although the mammograms 
maintain non-zero LFE until closer to 2.0 cyc/mm.  This 
may be a consequence of adding too much noise to the 
phantoms, thereby driving LFE to zero.       

4. CONCLUSIONS 
 This study of three classes of virtual breast 
phantoms shows that all have power spectra that are 
qualitatively similar to the power-law form that has been 
used to describe projection mammograms by Bochud [1], 
Burgess [2], Heine [7, 18], and others.  While this shows 
that the various phantoms have similar second-order 
statistical properties to clinical breast images, it also 
illustrates the limitations of the power spectrum for discriminating between phantoms.  The similarity of the 
phantoms at the level of the power-spectrum indicates the importance of higher-order structure in the appearance 
and realism of virtual breast phantoms. 

 By contrast, Laplacian Fractional Entropy is insensitive to the power spectrum of the phantoms. Instead, 
this measure focuses on non-Gaussian statistical properties in the response histograms of Gabor filters intended to 
represent receptive fields in early visual cortex.  Aside from Gaussian processes used as a reference, all of the breast 
phantoms considered here are rigorously non-Gaussian in that their probability distributions depart from that of a 
multivariate Gaussian process.  The LFE can be thought of as one possible measure of the degree of this departure.  
By this measure we find substantial differences between the different classes of breast phantoms.  The clustered-
blob lumpy backgrounds have modest values of LFE, less than 10% across spatial frequencies from 0.125 cyc/mm 
to 2.8 cyc/mm.  Binary truncation processes are somewhat higher, but are still uniformly less than the sample of 
mammograms.  The UPenn Virtual Breast Phantom has considerably higher LFE, and the addition of microstructure 
results in an LFE that is closer to the mammograms.  

 It is our belief that these examples suggest and partially illustrate the role of higher-order statistical 
properties in validating the realism of virtual breast phantoms.   
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Figure 9. Laplacian Fractional Entropy for Upenn
Phantoms. LFE is plotted as a function of spatial
frequency for the Upenn phantom both with and
without microstructure, as well as a matched
Gaussian noise texture. LFE from the sample
mammograms is also plotted (error bars = ±1 std.
err.).
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