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Purpose: By convention, slices in a tomosynthesis reconstruction are created on planes parallel to
the detector. It has not yet been demonstrated that slices can be generated along oblique directions
through the same volume, analogous to multiplanar reconstructions in computed tomography (CT).
The purpose of this work is to give a proof-of-principle justification for oblique reconstructions in
tomosynthesis, which acquires projection images over a smaller angular range than CT.
Methods: To investigate the visibility of individual frequencies in an oblique reconstruction, a the-
oretical framework is developed in which the reconstruction of a sinusoidal input is calculated. The
test frequency is pitched at an angle in a 2D parallel-beam acquisition geometry. Reconstructions are
evaluated along the pitch of the object. The modulation transfer function (MTF) is calculated from
the relative signal at various test frequencies. The MTF determines whether modulation is within
detectable limits in oblique reconstructions. In the previous linear systems (LS) model [B. Zhao and
W. Zhao, “Three-dimensional linear system analysis for breast tomosynthesis,” Med. Phys. 35(12),
5219–5232 (2008)], the MTF was calculated only in reconstructed slices parallel to the detector. This
paper generalizes the MTF calculation to reconstructed slices at all possible pitches. Unlike the pre-
vious LS model, this paper also analyzes the effect of object thickness on the MTF. A second test
object that is considered is a rod whose long axis is pitched similar to the sinusoidal input. The rod is
used to assess whether the length of an object can be correctly estimated in oblique reconstructions.
Results: To simulate the conventional display of the reconstruction, slices are first created along a 0◦

pitch. This direction is perpendicular to the rays of the central projection. The authors show that the
input frequency of a pitched sinusoidal object cannot be determined using these slices. By changing
the pitch of the slice to match the object, it is shown that the input frequency is properly resolved.
To prove that modulation is preserved in pitched slices, the MTF is also calculated. Modulation is
within detectable limits over a broad range of pitches if the object is thin, but is detectable over a
narrower range of pitches if the object is thick. Turning next to the second test object, it is shown that
the length of a pitched rod can be correctly determined in oblique reconstructions. Concordant with
the behavior of the MTF, the length estimate is accurate over a broad range of pitches if the object is
thin, but is correct over a narrower range of pitches if the object is thick.
Conclusions: This work justifies the feasibility of oblique reconstructions in tomosynthesis. It is
demonstrated that pitched test objects are most easily visualized with oblique reconstructions instead
of conventional reconstructions. In order to achieve high image quality over a broad range of pitches,
the object must be thin. By analyzing the effect of reconstruction pitch and object thickness on image
quality, this paper generalizes the previous LS model for tomosynthesis. © 2013 American Associa-
tion of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4819941]

Key words: tomosynthesis, multiplanar reconstruction (MPR), oblique reconstruction, filtered back-
projection (FBP), modulation transfer function (MTF)

1. INTRODUCTION

In computed tomography (CT), axial slices of the body are
reconstructed successively as the patient is translated in the
longitudinal direction. Due to the near isotropic resolution
of modern CT scanners, the stack of axial slices can be re-
formatted to display a multiplanar reconstruction (MPR), or
an image of any planar or curved surface in the volume.
One application of MPR is visualizing stenosis in coronary
arteries with a curved surface following the contour of the
vessel. Another example is dental CT, in which an oblique
plane can be used to display the jaw and teeth in the same
view.1

In tomosynthesis, projection images are acquired over a
small angular range instead of the full 180◦ arc used in CT.
It has been conventionally assumed that tomosynthesis re-
constructions should only be created with planes parallel to
the detector, since Fourier space is not sampled isotropically.2

The sampling of Fourier space is determined from the Central
Slice Theorem. As shown in Fig. 1 using a 2D parallel-beam
geometry for illustration, the sampled region of Fourier space
resembles a double cone whose opening angle matches the an-
gular range of the tomosynthesis scan. This region is termed
the “Fourier double cone” (FDC) throughout the remainder of
this work, even though the region is not 3D in the strict sense
of a cone.
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FIG. 1. (a) A parallel x-ray beam acquires a projection image for tomosynthesis. (b) According to the Central Slice Theorem, Fourier space is sampled along
the direction perpendicular to the x-ray beam of each projection. Thus, the sampled area resembles a double cone whose opening angle matches the angular
range (�) of the scan. This sampled area is termed the FDC in this work. (c) A test frequency is oriented along a pitch angle outside the FDC. Since the object
is very thick, its Fourier transform consists of two delta functions along the pitch axis. This object is occult to tomosynthesis. (d) The same object is oriented
along a pitch within the opening angle of the FDC. This object is sampled perfectly in Fourier space. Since a 0◦ pitch is always contained within the FDC, this
thought experiment supports the use of conventional slices along a 0◦ pitch in the reconstruction of a thick object.

To gain insight into a reason for using reconstruction
planes parallel to the detector, it is useful to perform a thought
experiment with objects that are occult to tomosynthesis.
Based on the Central Slice theorem, an object is occult to
tomosynthesis if its Fourier transform is zero at all points in-
side the FDC. It can be demonstrated from standard properties
concerning the Fourier transform that this condition is satis-
fied by a very thick object. Figure 1 illustrates this concept by
considering a very thick object whose attenuation coefficient
varies sinusoidally along an angle (i.e., “pitch”). The Fourier
transform of the object consists of two delta functions along
the pitch axis. One can use this object to assess whether in-
dividual frequencies are resolvable along various directions
in the reconstruction. If one first considers the case in which
the pitch is outside the opening angle of the FDC, it follows
from the Central Slice Theorem that the reconstruction is zero
everywhere [Fig. 1(c)]. Consequently, a slice that is recon-
structed along the pitch of the object cannot resolve the input
frequency. By contrast, if the same object has a pitch within
the opening angle of the FDC, the test frequency is sampled
perfectly in Fourier space [Fig. 1(d)]. By demonstrating that
the object is resolved at pitches within the opening angle of

the FDC, this thought experiment supports the use of conven-
tional slices oriented along a 0◦ pitch. The 0◦ pitch is always
contained within the opening angle of the FDC regardless of
the angular range of the scanner.

It is now useful to investigate the effect of reducing the ob-
ject thickness in the same thought experiment. As shown in
Fig. 2, the Fourier transform of a thin sinusoidal object con-
sists of two lines modulated by a “sinc” function along the
direction perpendicular to the pitch axis. Because the Fourier
transform has reasonably large modulation within the FDC,
a slice along the pitch of the input frequency should not be
trivial like the corresponding slice for a thick object.

To investigate whether an oblique reconstruction can in-
deed resolve a thin object, experimental images of a bar pat-
tern phantom were acquired with a Selenia Dimensions digital
breast tomosynthesis system (Hologic, Inc., Bedford, MA). A
goniometry stand was used to vary the pitch of frequencies
ranging from 1.0 to 10.0 line pairs per millimeter (lp/mm)
in 1.0 lp/mm increments. The technique factors of the scan
matched the ones given in our previous work.3, 4 Reconstruc-
tion was performed in the oblique plane of the bar patterns
using a commercial prototype backprojection filtering (BPF)

Medical Physics, Vol. 40, No. 11, November 2013



111911-3 R. J. Acciavatti and A. D. A. Maidment: Oblique reconstructions in tomosynthesis. I. Linear systems theory 111911-3

FIG. 2. To illustrate that a thin object can be visualized in an oblique reconstruction, a test frequency is analyzed at a nonzero pitch. As shown, the Fourier
transform of the object consists of two lines modulated by a “sinc” function along the direction perpendicular to the pitch axis. Because the Fourier transform is
nonzero within the FDC, a slice that is reconstructed along the pitch of the input frequency is expected to have information that would not otherwise be present
for a thick object [Fig. 1(c)]. The amplitude of the portion of the “sinc” function that intersects the FDC increases as the object thickness is reduced; hence, the
modulation in an oblique reconstruction is expected to be largest at small thicknesses.

algorithm (BrionaTM, Real Time Tomography, Villanova,
PA).5 Our previous work showed that frequencies up to
6.0 lp/mm can be resolved if the bar pattern phantom is par-
allel to the breast support (i.e., 0◦ pitch). Upon tilting the
plane of the bar patterns, reconstructions showed that frequen-
cies up to 5.0 and 3.0 lp/mm can be resolved at 30◦ and 60◦

pitches, respectively (Fig. 3). These experimental results indi-
cate that slices in a tomosynthesis reconstruction do not have
to be parallel to the breast support as stipulated by convention.

In breast tomosynthesis applications,6–8 the objects in the
American College of Radiology (ACR) Mammography Ac-
creditation Phantom9 give insight into the thickness of clini-
cally important structures. One common attribute of all three
objects in the ACR phantom (spheres, rods, and specks) is that
they are thin. These objects are designed to simulate masses,
spiculations, and calcifications, respectively, in breast images.
The thickness of these objects is comparable to the bar pattern
phantom considered in Fig. 3. For this reason, oblique recon-
structions should have clinical applicability in tomosynthesis.
Oblique reconstructions should allow a mammographer to de-
termine the size of a mass more accurately in cases where the
long axis of the lesion is pitched relative to the breast sup-
port. In addition, oblique reconstructions should improve the

visualization of the structural morphology of spiculations and
calcifications.

Although the experimental results indicate that thin ob-
jects can be resolved in oblique reconstructions, they also
demonstrate that high frequency information is lost as the
pitch is increased from 0◦. The purpose of this paper is
to develop an analytical model of image quality that offers
deeper insight into these experimental results. Zhao devel-
oped a preliminary model of image quality for tomosynthe-
sis by using linear systems theory to calculate the modula-
tion transfer function (MTF).2 Simplifying assumptions were
made in that work in order to keep the mathematics tractable.
Zhao assumed that slices in the reconstruction are parallel
to the detector. In addition, Zhao did not model the effect
of object thickness on MTF. In order to generalize Zhao’s
model, this paper calculates the MTF from first principles
based on the relative signal of a sine plate at various fre-
quencies. The limitations of Zhao’s model are addressed by
orienting the sine plate along various pitches and by ana-
lyzing the effect of object thickness. This paper provides
a platform for determining the highest frequency that can
be resolved in an oblique reconstruction for various object
thicknesses.
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FIG. 3. To investigate the experimental feasibility of oblique reconstructions
in a commercial breast tomosynthesis system, a bar pattern phantom was ori-
ented along various pitches using a goniometry stand. The frequencies were
pitched at 30◦ and 60◦ angles relative to the breast support. BPF reconstruc-
tions in the oblique plane of the bar patterns show frequencies up to 5.0 lp/mm
and 3.0 lp/mm at the two respective pitches.

A second test object that is simulated in this paper is a
pitched rod. This object is used to assess whether the length of
an object can be correctly estimated along various directions
in the reconstruction. Similar to the MTF, the accuracy of the

length estimate is investigated as a function of the thickness
of the object.

2. METHODS

2.A. Reconstruction formula for incomplete
angular data

From first principles, a general filtered backprojection
(FBP) reconstruction formula is now derived for an ideal-
ized tomosynthesis system with a parallel-beam geometry.
This formula will be used to calculate the reconstruction of a
pitched sine plate and a rod. Although clinical features are 3D,
a 2D simulation is developed for a proof-of-principle justifica-
tion for oblique reconstructions in tomosynthesis. In Paper II
of this series of papers, the model of the reconstruction will
be generalized to a broader set of assumptions which include
a pixelated detector and a 3D acquisition geometry. General-
izing the model will allow us to investigate more advanced
concepts that are beyond the scope of this paper, such as the
spatial anisotropy of image quality in the reconstruction.

It is useful to begin this derivation with a review of the
Radon transform. In a parallel-beam geometry, the Radon
transform is defined by considering the integral of the lin-
ear attenuation coefficient of an object over all possible lines
L(t, θ ) in R2. As shown in Fig. 4, L(t, θ ) denotes the line that
passes through the point (t cos θ , t sin θ ) and that is perpen-
dicular to the unit vector p = (cos θ )i + (sin θ )k, where i and
k are unit vectors in the x and z directions, respectively, and
where −∞ < t < ∞ and −90◦ < θ ≤ 90◦. Following Hsieh10

and others, the matrix transformation

(
x

z

)
=
(

cos θ − sin θ

sin θ cos θ

)(
t

s

)
(1)

FIG. 4. In a parallel-beam geometry, the Radon transform is defined as the integral of an attenuation coefficient over the line L(t, θ ). This line intercepts the
point (t cos θ , t sin θ ) and is perpendicular to the unit vector p = (cos θ )i + (sin θ )k. At a fixed projection angle θ , the dependency of the Radon transform on
the parameter t is illustrated for two test objects. (a) The first object is an infinitely long rectangular prism (thickness ε) whose attenuation coefficient varies
sinusoidally along the pitch angle, αy. (b) The second object is a rod (length �) that is similarly pitched.
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provides a parametric representation of the line L(t, θ ), as-
suming that (x, z) is a point in R2 and that s is a free parameter
ranging from −∞ to ∞. Denoting μ as the linear attenuation
coefficient of the input object, the Radon transform can thus
be written

Rμ(t, θ ) =
∫

L(t,θ)

μds. (2)

A fundamental relationship between the 1D Fourier transform
of Rμ(t, θ ) and the 2D Fourier transform of μ(x, z) is estab-
lished by the Central Slice Theorem10, 11

F1(Rμ)(fr, θ ) = F2μ(fr cos θ, fr sin θ ), (3)

where fr is radial frequency ranging from −∞ to ∞. Accord-
ing to Eq. (3), each projection samples Fourier space along
the angle θ perpendicular to the incident x-ray beam. In to-
mosynthesis applications for which projections are acquired
over a limited angular range, Fig. 1(b) shows the correspond-
ing region of Fourier space that is sampled. This region has
been termed the FDC in Sec. 1.

The Central Slice Theorem is now used to derive a for-
mula for the FBP reconstruction of an object in a DBT system
with incomplete angular data ranging from θ = −�/2 to
θ = +�/2. For the purpose of this derivation, the system is
taken to be noiseless and the angular spacing between pro-
jections is infinitesimally small. The FBP reconstruction11 of
μ(x, z) is

μFBP(x, z) =
∫ �/2

−�/2
(φ∗1Rμ)(x cos θ + z sin θ, θ )dθ (4)

=
∫ �/2

−�/2

∫ ∞

−∞
φ(x cos θ + z sin θ − τ )

·Rμ(τ, θ )dτdθ, (5)

where φ is the filter and ∗1 is the 1D convolution operator.
Backprojection of Rμ(t, θ ) to the point (x, z) corresponds to
evaluation of the Radon transform at t = x cos θ + z sin θ ,
as can be deduced from the inverse of the matrix transforma-
tion in Eq. (1). The transition from Eq. (4) to Eq. (5) follows
directly from the definition of convolution. The 2D Fourier
transform12 of μFBP(x, z) is thus

F2μFBP(fr cos ζ, fr sin ζ )

=
∫ ∞

−∞

∫ ∞

−∞

∫ �/2

−�/2

∫ ∞

−∞
φ(x cos θ + z sin θ − τ )

·Rμ(τ, θ ) · e−2πifr (x cos ζ+z sin ζ )dτdθdxdz, (6)

where ζ is the polar angle of the 2D frequency vector
(−90◦ < ζ ≤ 90◦). Equation (6) can be evaluated by changing
variables from the (x, z) coordinate system to the (t, s) coor-
dinate system. The differential area element dxdz in Eq. (6)
should be replaced by dsdt, since the Jacobian of the coordi-
nate transformation in Eq. (1) is unity:

F2μFBP(fr cos ζ, fr sin ζ )

=
∫ �/2

−�/2

∫ ∞

−∞
Rμ(τ, θ )

·
(∫ ∞

−∞
φ(t − τ ) · e−2πifr ,t cos(θ−ζ )dt

)

·
(∫ ∞

−∞
e2πifr ,s sin(θ−ζ )ds

)
dτdθ. (7)

In Eq. (7), the integral over t can be calculated using the
Fourier shift theorem12∫ ∞

−∞
φ(t − τ ) · e−2πifr t cos(θ−ζ )dt

= e−2πifr τ cos(θ−ζ ) · F1φ[fr cos(θ − ζ )], (8)

and the integral over s can be written in terms of a Dirac delta
function:13∫ ∞

−∞
e2πifr s sin(θ−ζ )ds = δ[fr sin(θ − ζ )]. (9)

Equation (9) can be simplified further by noting the compo-
sition identity for delta functions.13, 14 Assuming that u(θ ) is
a function with a finite number of zeros and with no repeated
zeros, the identity for the delta function of a composition is

δ [u(θ )] =
∑

k

δ(θ − θ0k)

|u′(θ0k)| , (10)

where θ0k is the kth zero of u(θ ). In evaluating Eq. (9),
we let u(θ ) = fr sin (θ − ζ ) and hence θ0k = kπ + ζ , where
k ∈ Z. Because the only zero of u(θ ) that falls within the
integration limits on θ in Eq. (7) is θ00, the summation in
Eq. (10) reduces to the single term for which k = 0. Noting
that u′(θ ) = fr cos (θ − ζ ), it follows that u′(θ00) = fr and
Eq. (9) simplifies to

δ[fr sin(θ − ζ )] = δ(θ − ζ )

|fr | . (11)

Combining Eqs. (7)–(11), the 2D Fourier transform of
μFBP(x, z) can now be written as

F2μFBP(fr cos ζ, fr sin ζ )

=
∫ �/2

−�/2

(∫ ∞

−∞
Rμ(τ, θ ) · e−2πifr τ cos(θ−ζ )dτ

)

·F1φ[fr cos(θ − ζ )] · δ(θ − ζ )

|fr | dθ. (12)

In Eq. (12), the integral over τ can be evaluated using the
Central Slice theorem [Eq. (3)]:

F2μFBP(fr cos ζ, fr sin ζ )

=
∫ �/2

−�/2
F2μ[fr cos(θ − ζ ) cos θ, fr cos(θ − ζ ) sin θ ]

·F1φ[fr cos(θ − ζ )] · δ(θ − ζ )

|fr | dθ. (13)

Due to the delta function in Eq. (13), this integration is non-
trivial only if ζ is between −�/2 and +�/2; otherwise, the
integral vanishes. For this reason, it is important to introduce
the function rect(ζ /�) in the evaluation of Eq. (13), so that

F2μFBP(fr cos ζ, fr sin ζ ) = 1

|fr | · F2μ(fr cos ζ, fr sin ζ )

·F1φ(fr ) · rect

(
ζ

�

)
, (14)
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where

rect(u) ≡
{

1, |u| ≤ 1/2

0, |u| > 1/2
. (15)

In Eq. (14), the function rect(ζ /�) perfectly recovers the FDC
whose opening angle is the scan range � (Fig. 1). This result
completes the derivation of the general tomosynthesis recon-
struction formula.

If one considers the case of complete angular data
(� = 180◦), all of Fourier space is sampled by the projections,
and the rectangle function in Eq. (14) can be replaced with a
constant (unity). By choosing the filter φ with the property
that F1φ(fr ) = |fr |, it follows directly from Eq. (14) that the
input object can be reconstructed perfectly. This formula for φ

is termed the “ramp” filter; it has been previously derived by
Hsieh10 and others for CT applications with complete angular
data. This agreement with CT reconstruction theory provides
a built-in check on the validity of Eq. (14).

With incomplete angular data (0 < � < 180◦), it is no
longer possible to choose a filter φ such that there is always
agreement between F2μFBP and F2μ in Eq. (14). In Secs. 2.B
and 2.C of this paper, Eq. (14) is used to calculate the re-
construction of a pitched sine plate and rod in tomosynthesis
applications with incomplete angular data.

In determining the reconstruction of the two test objects, an
important property to simplify calculations is that the spatial
representation of the reconstruction is real-valued. Following
the convolution theorem, the spatial representation is

μFBP(x, z) = μ(x, z)

∗2F−1
2

[
1

|fr | · F1φ(fr ) · rect

(
ζ

�

)]
(x, z) (16)

where ∗2 denotes the 2D convolution operator. From standard
properties, the 2D inverse Fourier transform to the right of the
convolution operator must be real-valued if the argument in
the rectangular brackets is an even function. Since 1/|fr| and
rect(ζ /�) are even functions, it follows that the reconstruction
is real-valued provided that F1φ(fr ) is also even. This work is
limited to filters that are even functions in Fourier space. Two
examples of filters that satisfy this property are the ramp filter
and the Hanning window function.2–4, 15 In breast tomosyn-
thesis applications, the ramp filter is used to reduce the low
frequency detector response, while the Hanning window func-
tion is used to suppress high frequency noise.

2.B. Reconstruction of a pitched sine plate

A framework for investigating the reconstruction of a sine
plate is now developed by modeling an infinitely long rectan-
gular prism whose attenuation coefficient varies sinusoidally
along the pitch αy. To illustrate that reconstructions are feasi-
ble along a broad range of pitches, the angle αy is taken to be
larger than �/2, so that the pitch is outside the opening angle
of the FDC (Fig. 1):

μ(x ′′, z′′) = C · cos(2πf0x
′′) · rect

(
z′′

ε

)
, (17)

where(
x ′′

z′′

)
=
(

cos αy sin αy

− sin αy cos αy

)(
x

z

)
. (18)

In this formulation, C denotes the maximum value of the
attenuation coefficient of the material, f0 is the input fre-
quency, x′′ indicates position along the pitch αy, and z′′

measures position along the thickness (ε) of the sine plate
[Fig. 4(a)]. The transformation matrix given in Eq. (18)
changes variables between the (x, z) coordinate system and
a rotated reference frame whose coordinate axes match the
long and short axes of the pitched sine plate, respectively. The
subscript y on the variable αy emphasizes that changing the
pitch is equivalent to rotating the x and z axes about the y axis
perpendicular to the plane of the parallel projections. For the
purpose of this work, it is assumed that 0 ≤ αy ≤ 90◦.

To illustrate the calculation of Rμ(t, θ ), the Radon trans-
form of this object is plotted versus t in Fig. 4(a) at a fixed pro-
jection angle (θ ). Appendix A demonstrates from first princi-
ples that this plot is sinusoidal with frequency f0 sec(θ − αy),
as shown in the figure.

To calculate the tomosynthesis reconstruction of the sine
plate [Eq. (14)], it is first necessary to determine the Fourier
transform of the sine plate

F2μ(fx, fz) ≡
∫ ∞

−∞

∫ ∞

−∞
μ(x, z)e−2πi(fxx+fzz)dxdz, (19)

=
∫ ∞

−∞

∫ ∞

−∞
μ(x ′′, z′′)e−2πi(f ′′

x x ′′+f ′′
z z′′)dx ′′dz′′. (20)

In Eq. (20), the frequency variables (f ′′
x , f ′′

z ) are defined by
a rotated reference frame analogous to the (x′′, z′′) coordinate
system(

f ′′
x

f ′′
z

)
=
(

cos αy sin αy

− sin αy cos αy

)(
fx

fz

)
. (21)

Substituting Eq. (17) into Eq. (20) yields

F2μ(f ′′
x , f ′′

z ) = Cε

2
[δ(f ′′

x − f0) + δ(f ′′
x + f0)]sinc(εf ′′

z ),

(22)

where

sinc(u) ≡ sin(πu)

πu
. (23)

Using Eq. (22) in conjunction with Eq. (14), the FBP recon-
struction can now be written as the inverse 2D Fourier trans-
form

μFBP =
∫ ∞

−∞

∫ ∞

−∞

F2μ√
f 2

x + f 2
z

· F1φ(fr )

· rect

(
ζ

�

)
· e2πi(xfx+zfz)dfxdfz (24)

=
∫ ∞

−∞

∫ ∞

−∞

F2μ√
f 2

x + f 2
z

· F1φ (|fr |)

· rect

(
ζ

�

)
· cos[2π (xfx + zfz)]dfxdfz. (25)
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The transition from Eq. (24) to Eq. (25) is justified from
a priori knowledge that the reconstruction is real-valued.
Equation (25) can now be evaluated by changing variables
into the (f ′′

x , f ′′
z ) and (x′′, z′′) coordinate systems. Combining

Eqs. (18), (21), (22), and (25) gives

μFBP = Cε

2

∫ ∞

−∞

∫ ∞

−∞
δ(f ′′

x + f0) · F1φ (|fr |) · rect

(
ζ

�

)

· cos[2π (x ′′f ′′
x + z′′f ′′

z )]sinc(εf ′′
z )√

f ′′2
x + f ′′2

z

df ′′
x df ′′

z

+Cε

2

∫ ∞

−∞

∫ ∞

−∞
δ(f ′′

x −f0) · F1φ (|fr |) · rect

(
ζ

�

)

· cos[2π (x ′′f ′′
x + z′′f ′′

z )]sinc(εf ′′
z )√

f ′′2
x + f ′′2

z

df ′′
x df ′′

z . (26)

In evaluating this expression, the inner integrals over f ′′
x can

be simplified by substituting the constraints f ′′
x = −f0 and

f ′′
x = +f0 into the terms to the right of the delta function in

each respective integrand. This step follows directly from the
definition of the delta function. Because of the term rect(ζ /�),
the outer integral over f ′′

z must then be evaluated along inte-
gration limits given from the intersection of the FDC with the
lines f ′′

x = ±f0. Figure 5(a) shows a pitch for which this in-
tersection consists of two line segments. At larger pitches ap-
proaching 90◦, the intersection consists of infinitely long rays
[Fig. 5(b)]. FBP reconstruction is now calculated separately
for these two cases.

2.B.1. Case 1

Figure 5(a) illustrates a pitch for which the FDC intersects
the lines f ′′

x = ±f0 along two line segments. The coordinates
of the two lines segments are now derived. It is shown in
Fig. 5(a) that, along the line f ′′

x = −f0, the first line segment

lies along the f ′′
z direction with extent between |−→PQ| and |−→PR|.

In applying trigonometry to the right triangle OPQ, it follows
that

|−→PQ| = |−→OP| · tan(αy − �/2), (27)

= f0 tan(αy − �/2). (28)

Similarly, in considering the right triangle OPR,

|−→PR| = |−→OP| · tan(αy + �/2), (29)

= f0 tan(αy + �/2). (30)

In Eq. (30), the tangent function tends to infinity if
αy = 90◦ − �/2. For this reason, if the pitch falls between the
limits 90◦ − �/2 < αy < 90◦, it is no longer true that the FDC
intersects the lines f ′′

x = ±f0 along line segments. Instead,
the intersection consists of infinitely long rays. This case is
considered in Sec. 2.B.2. To simplify Eqs. (28) and (30), one
can introduce the term ν±

ν± ≡ f0 tan(αy ± �/2), (31)

so that Eq. (26) can be evaluated as

μFBP = Cε

2

[∫ ν+

ν−

F1φ
(√

f 2
0 + f ′′2

z

)
cos
[
2π (−x ′′f0 + z′′f ′′

z )
]

sinc(εf ′′
z )√

f 2
0 + f ′′2

z

df ′′
z

+
∫ −ν−

−ν+

F1φ
(√

f 2
0 + f ′′2

z

)
cos
[
2π (x ′′f0 + z′′f ′′

z )
]

sinc(εf ′′
z )√

f 2
0 + f ′′2

z

df ′′
z

]
(32)

= Cε

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(2πx ′′f0)

⎛
⎜⎝∫ ν+

ν−

F1φ
(√

f 2
0 + f ′′2

z

)
cos(2πz′′f ′′

z )sinc(εf ′′
z )√

f 2
0 + f ′′2

z

df ′′
z

+
∫ −ν−

−ν+

F1φ
(√

f 2
0 + f ′′2

z

)
cos(2πz′′f ′′

z )sinc(εf ′′
z )√

f 2
0 + f ′′2

z

df ′′
z

⎞
⎟⎠

+ sin(2πx ′′f0)

⎛
⎜⎝∫ ν+

ν−

F1φ
(√

f 2
0 + f ′′2

z

)
sin(2πz′′f ′′

z )sinc(εf ′′
z )√

f 2
0 + f ′′2

z

df ′′
z

−
∫ −ν−

−ν+

F1φ
(√

f 2
0 + f ′′2

z

)
sin(2πz′′f ′′

z )sinc(εf ′′
z )√

f 2
0 + f ′′2

z

df ′′
z

⎞
⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (33)

In deriving Eq. (32), a symmetry property has been used to determine the integration limits along the line f ′′
x = +f0 from

knowledge of the analogous limits along the line f ′′
x = −f0. The transition from Eq. (32) to (33) is justified by the angle-sum
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FIG. 5. (a) By rotating the coordinate axes of Fourier space by the pitch of the test object, it can be shown that the Fourier transform of a sine plate
with frequency f0 [Fig. 4(a)] consists of the two lines f ′′

x = ±f0. As shown, these lines intersect the FDC along two line segments. This property holds if
0 ≤ αy < 90◦ − �/2. (b) At larger pitches for which 90◦ − �/2 < αy ≤ 90◦, it can be demonstrated that the Fourier transform of the sine plate intersects the
FDC along four rays.

identity

cos(b1 + b2) = cos(b1) cos(b2) − sin(b1) sin(b2) (34)

for the real numbers b1 and b2. Equation (33) can now be simplified by noting that that the first and second integrals are
equivalent, despite the different integration limits. This result holds because the integrands are an even function of f ′′

z , and the
two integration intervals are at equivalent distances from f ′′

z = 0. It can also be shown that the third and fourth integrals in
Eq. (33) have the same magnitude but opposite sign. This claim follows from the fact that each integrand is an odd function of
f ′′

z , and the two integration intervals are at the same distance from f ′′
z = 0. The negative sign preceding the fourth integral yields

net equivalence with the third integral, so that

μFBP = Cε

⎡
⎢⎣cos(2πx ′′f0)

∫ ν+

ν−

F1φ
(√

f 2
0 + f ′′2

z

)
cos(2πz′′f ′′

z )sinc(εf ′′
z )√

f 2
0 + f ′′2

z

df ′′
z

+ sin(2πx ′′f0)
∫ ν+

ν−

F1φ
(√

f 2
0 + f ′′2

z

)
sin(2πz′′f ′′

z )sinc(εf ′′
z )√

f 2
0 + f ′′2

z

df ′′
z

⎤
⎥⎦ . (35)

It would be difficult to evaluate the two integrals analytically in Eq. (35). Instead, they can be determined numerically using the
midpoint formula for integration16

μFBP
∼= Cε(ν+ − ν−) · lim

J→∞
1

J

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(2πx ′′f0)
J∑

j=1

F1φ
(√

f 2
0 + f ′′2

zj

)
cos(2πz′′f ′′

zj )sinc(εf ′′
zj )√

f 2
0 + f ′′2

zj

+ sin(2πx ′′f0)
J∑

j=1

F1φ
(√

f 2
0 + f ′′2

zj

)
sin(2πz′′f ′′

zj )sinc(εf ′′
zj )√

f 2
0 + f ′′2

zj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (36)

In applying the midpoint formula to Eq. (35), the interval [ν−, ν+], which corresponds to the integration limits, is evenly
partitioned into subintervals. The midpoint of the jth subinterval is

f ′′
zj ≡ ν− + (j − 1/2)(ν+ − ν−)

J
, (37)

where J is the total number of subintervals (J → ∞). The midpoint formula is a valid approximation method provided that the
integration limits are finite. This property holds if 0◦ ≤ αy < 90◦ − �/2.
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2.B.2. Case 2

In Sec. 2.B.1, it was demonstrated that the FDC intersects the lines f ′′
x = ±f0 along infinitely long rays if the pitch satisfies the

inequality 90◦ − �/2 < αy ≤ 90◦. Figure 5(b) shows the four rays of intersection. It follows that

μFBP = Cε

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ ν+

−∞

F1φ
(√

f 2
0 + f ′′2

z

)
cos
[
2π (−x ′′f0 + z′′f ′′

z )
]

sinc(εf ′′
z )√

f 2
0 + f ′′2

z

df ′′
z

+
∫ ∞

ν−

F1φ
(√

f 2
0 + f ′′2

z

)
cos
[
2π (−x ′′f0 + z′′f ′′

z )
]

sinc(εf ′′
z )√

f 2
0 + f ′′2

z

df ′′
z

+
∫ −ν−

−∞

F1φ
(√

f 2
0 + f ′′2

z

)
cos
[
2π (x ′′f0 + z′′f ′′

z )
]

sinc(εf ′′
z )√

f 2
0 + f ′′2

z

df ′′
z

+
∫ ∞

−ν+

F1φ
(√

f 2
0 + f ′′2

z

)
cos
[
2π (x ′′f0 + z′′f ′′

z )
]

sinc(εf ′′
z )√

f 2
0 + f ′′2

z

df ′′
z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(38)

= Cε

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(2πx ′′f0)

⎛
⎜⎝∫ ν+

−∞

F1φ
(√

f 2
0 + f ′′2

z

)
cos(2πz′′f ′′

z )sinc(εf ′′
z )√

f 2
0 + f ′′2

z

df ′′
z

+
∫ ∞

ν−

F1φ
(√

f 2
0 + f ′′2

z

)
cos(2πz′′f ′′

z )sinc(εf ′′
z )√

f 2
0 + f ′′2

z

df ′′
z

⎞
⎟⎠

+ sin(2πx ′′f0)

⎛
⎜⎝∫ ν+

−∞

F1φ
(√

f 2
0 + f ′′2

z

)
sin(2πz′′f ′′

z )sinc(εf ′′
z )√

f 2
0 + f ′′2

z

df ′′
z

+
∫ ∞

ν−

F1φ
(√

f 2
0 + f ′′2

z

)
sin(2πz′′f ′′

z )sinc(εf ′′
z )√

f 2
0 + f ′′2

z

df ′′
z

⎞
⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (39)

One can justify the transition from Eq. (38) to (39) by applying steps analogous to the ones used between Eqs. (32) and (35).
Since the integration limits are not all finite, it is no longer acceptable to evaluate these integrals with the midpoint formula. For
the purpose of this work, the integrals are evaluated numerically in MATLAB R2012b using the “integral” command.

2.C. Reconstruction of a pitched rod

The reconstruction of a pitched rod is now determined by
modifying the attenuation coefficient of the input object in
Eq. (17). The rod is modeled as a rectangle function with
length (�) aligned along the pitch αy [Fig. 4(b)]:

μ(x ′′, z′′) = C · rect

(
x ′′

�

)
· rect

(
z′′

ε

)
. (40)

Similar to the sine plate, the rod thickness is ε, and the maxi-
mum value of the attenuation coefficient is C. The pitch αy

is assumed to be larger than �/2, so that the long axis of

the rod is not within the opening angle of the FDC. To illus-
trate the Radon transform of this object, its dependency on t is
shown in Fig. 4(b) at a fixed projection angle (θ ). The Radon
transform is calculated in Appendix B from first principles.

As discussed in Sec. 2.B, it is necessary to calculate the
Fourier transform of the input object in order to derive the
reconstruction. Following Eq. (20), this transform can be
written

F2μ(f ′′
x , f ′′

z ) = C�ε · sinc(�f ′′
x )sinc(εf ′′

z ). (41)

The reconstruction can now be determined by substituting
Eq. (41) into Eq. (25):

μFBP(x, z) = C�ε

∫ ∞

−∞

∫ ∞

−∞

sinc(�f ′′
x )sinc(εf ′′

z )√
f 2

x + f 2
z

· F1φ (|fr |) · rect

(
ζ

�

)
· cos

[
2π (xfx + zfz)

]
dfzdfx (42)
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= C�ε

∫ 0

−∞

∫ −fx tan(�/2)

fx tan(�/2)

sinc[�(fx cos αy +fz sin αy)]sinc[ε(−fx sin αy +fz cos αy)]√
f 2

x + f 2
z

F1φ(|fr |) cos[2π (xfx + zfz)]dfzdfx

+C�ε

∫ ∞

0

∫ fx tan(�/2)

−fx tan(�/2)

sinc[�(fx cos αy +fz sin αy)]sinc[ε(−fx sin αy +fz cos αy)]√
f 2

x + f 2
z

F1φ(|fr |) cos[2π (xfx +zfz)]dfzdfx.

(43)

To transition from Eq. (42) to Eq. (43), the arguments of the sinc functions are transformed into the (fx, fz) coordinate system
using Eq. (21). Also, the limits of the inner integral over fz are modified to model the FDC. Because it would be difficult to
evaluate the inner integrals over fz in closed form, the midpoint formula16 can now be used as an approximation technique.
Similar to Eq. (35), the two intervals of integration in Eq. (43) should be evenly partitioned into subintervals numbered between
k = 1 and K, so that

μFBP(x, z) = C�ε

∫ 0

−∞
lim

K→∞
−2fx tan(�/2)

K

K∑
k=1

F1φ
(√

f 2
x + f 2

zk

)
sinc(ϒ−

1kfx)sinc(ϒ−
2kfx)cos(πϒ−

3kfx)√
f 2

x + f 2
zk

dfx

+C�ε

∫ ∞

0
lim

K→∞
2fx tan(�/2)

K

K∑
k=1

F1φ
(√

f 2
x + f 2

zk

)
sinc(ϒ+

1kfx)sinc(ϒ+
2kfx)cos(πϒ+

3kfx)√
f 2

x + f 2
zk

dfx, (44)

where

fzk ≡ 2fx tan

(
�

2

)[
k − 1/2

K
− 1

2

]
, (45)

ϒ±
1k ≡ �

[
cos αy ± 2

(
k − 1/2

K
− 1

2

)
tan

(
�

2

)
sin(αy)

]
, (46)

ϒ±
2k ≡ ε

[
− sin αy ± 2

(
k − 1/2

K
− 1

2

)
tan

(
�

2

)
cos(αy)

]
, (47)

ϒ±
3k ≡ 2

[
x ± 2z

(
k − 1/2

K
− 1

2

)
tan

(
�

2

)]
. (48)

The integrals in Eq. (44) cannot be evaluated analytically for the most general filter φ. One special case that can be simplified,
however, is simple backprojection (SBP) reconstruction for which F1φ(fr ) = 1:

B(Rμ)(x, z) = C�ε

∫ 0

−∞
lim

K→∞
−2fx tan(�/2)

K

K∑
k=1

sinc(ϒ−
1kfx)sinc(ϒ−

2kfx)cos(πϒ−
3kfx)√√√√f 2

x

(
1 + 4 tan2

(
�

2

)[
k − 1/2

K
− 1

2

]2
)dfx

+C�ε

∫ ∞

0
lim

K→∞
2fx tan(�/2)

K

K∑
k=1

sinc(ϒ+
1kfx)sinc(ϒ+

2kfx)cos(πϒ+
3kfx)√√√√f 2

x

(
1 + 4 tan2

(
�

2

)[
k − 1/2

K
− 1

2

]2
)dfx. (49)

Since√
f 2

x =
{−fx, fx < 0

+fx, fx ≥ 0
, (50)

it follows that

B(Rμ)(x, z) = C�ε

∫ 0

−∞
lim

K→∞
−2fx tan(�/2)

K

K∑
k=1

sinc(ϒ−
1kfx)sinc(ϒ−

2kfx) cos(πϒ−
3kfx)

(−fx)

√
1 + 4 tan2

(
�

2

)[
k − 1/2

K
− 1

2

]2
dfx

+C�ε

∫ ∞

0
lim

K→∞
2fx tan(�/2)

K

K∑
k=1

sinc(ϒ+
1kfx)sinc(ϒ+

2kfx) cos(πϒ+
3kfx)

(fx)

√
1 + 4 tan2

(
�

2

)[
k − 1/2

K
− 1

2

]2
dfx (51)
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= 2C�ε tan(�/2) · lim
K→∞

K∑
k=1

I−
k,SBP + I+

k,SBP

K

√
1 + 4 tan2

(
�

2

)[
k − 1/2

K
− 1

2

]2
, (52)

where

I−
k,SBP =

∫ 0

−∞
sinc(ϒ−

1kfx)sinc(ϒ−
2kfx) cos(πϒ−

3kfx)dfx, (53)

I+
k,SBP =

∫ ∞

0
sinc(ϒ+

1kfx)sinc(ϒ+
2kfx) cos(πϒ+

3kfx)dfx. (54)

Using a computer algebra system (Maple 16, Maplesoft, Waterloo, Ontario) to evaluate Eqs. (53) and (54), it can be shown
that

I±
k,SBP =

∣∣ϒ±
1k + ϒ±

2k + ϒ±
3k

∣∣+ ∣∣ϒ±
1k + ϒ±

2k − ϒ±
3k

∣∣− ∣∣ϒ±
1k − ϒ±

2k + ϒ±
3k

∣∣− ∣∣ϒ±
1k − ϒ±

2k − ϒ±
3k

∣∣
8ϒ±

1kϒ
±
2k

, (55)

completing the derivation of the SBP reconstruction.

3. RESULTS

3.A. Sine plate

3.A.1. Visualization of the reconstruction

Image acquisition is now simulated for a tomosynthe-
sis system comparable to the Selenia Dimensions DBT unit
(Hologic Inc., Bedford, MA) with an angular range (�)
of 15◦, assuming that the sine plate has a thickness (ε) of
0.10 mm and a frequency (f0) of 2.0 lp/mm. Following
our previous work,3, 4 the attenuation coefficient of the sine
plate is normalized so that total attenuation is unity for the
central projection for which θ = 0◦. Accordingly, we let
C = 1/(ε sec αy). The denominator in this expression is the
x-ray path length through the object for the central projection.

In Fig. 6, SBP reconstruction is displayed as a grayscale
image in the xz plane, which is analogous to the plane of the
chest wall in a breast application. The two subplots (a) and (b)
correspond to two pitches for the sine plate; namely, 0◦ and
45◦. An oscillatory pattern with the frequency of the input
object is correctly resolved along both pitches. This finding
illustrates that an input frequency with a pitch well outside the
opening angle of the FDC can be resolved in tomosynthesis.

Figure 6 also shows that the reconstruction greatly overes-
timates the thickness of the sine plate due to backprojection
artifacts. This result is observed at both the 0◦ and 45◦ pitches.
Similar backprojection artifacts would not be present in a FBP
reconstruction for CT with complete angular data (� = 180◦).

In a clinical application of DBT, the reconstruction is not
typically viewed in the xz plane as it is shown in Fig. 6. In-
stead, the reconstruction is conventionally displayed as a se-
ries of slices oriented along a 0◦ pitch. In order to simulate
the clinical display of a reconstruction more closely, signal
should be plotted versus position (x) measured along a 0◦

pitch, regardless of the pitch of the input object. Figures 7(a)–
7(c) show this result for a sine plate pitched at a 45◦ angle
similar to Fig. 6(b). The three plots correspond to three differ-
ent reconstruction depths (z) given by −3.0, 0, and +3.0 mm.
By viewing these three slices, it is difficult to deduce that the
input object is sinusoidal along a 45◦ pitch. Instead, the ob-

ject appears as if it were a dampened sine wave whose maxi-
mum shifts along the x direction with increasing depth, z. The
spacing between adjacent peaks near the maximum is approx-
imately 0.34 mm, corresponding to a frequency of 2.9 lp/mm.
This frequency does not match the input frequency (f0) of
2.0 lp/mm. It should be noted that the sine plate actually
spans a length of ε sec αy , or 0.14 mm, within each slice in
Figs. 7(a)–7(c). Signal extends across a much broader length
than 0.14 mm due to backprojection artifacts, causing the
dimension of the object within the slice to be greatly
overestimated.

To demonstrate that the same object can be better visu-
alized in an oblique reconstruction, the pitch of the slice is
changed to 45◦ in Fig. 7(d). This slice is generated at the depth
(z′′ = 0) corresponding to the mid-thickness of the sine plate
along the pitch axis. Figure 7(d) illustrates that signal is sinu-
soidal with the correct frequency, 2.0 lp/mm. For this reason,
the 45◦ pitch is the preferred orientation for displaying slices
for this object.

3.A.2. Modulation transfer function

To give further insight into Fig. 7(d), we now re-examine
the formula for the reconstruction derived in Sec. 2, and
show that signal in a slice along the pitch of the object is
always sinusoidal with the correct frequency. According to
Eqs. (35) and (39) giving the formula for the reconstruction,
the signal is a linear combination of sinusoidal functions
along the x′′ direction. This result can be written in terms of
one sinusoidal function using the trigonometric identity

A1 cos(β) + A2 sin(β) =
√

A2
1 + A2

2 cos(β + �), (56)

where

� = arctan

(
A2

A1

)
+
{−π/2, A1 < 0

+π/2, A2 < 0
. (57)

From Eqs. (35) and (39), it follows that

μFBP =
√

A2
1 + A2

2 cos(2πx ′′f0 + �), (58)
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FIG. 6. The SBP reconstruction of a sine plate [Fig. 4(a)] is displayed as a grayscale image in the xz plane, assuming that � = 15◦, ε = 0.10 mm, and
f0 = 2.0 lp/mm. While it is conventional to display the reconstruction with slices oriented along a 0◦ pitch (that is, with fixed values of z), this figure is useful for
showing that an oscillatory pattern can be resolved along the two object pitches, 0◦ and 45◦. The oscillatory pattern has the correct frequency along each pitch.
Due to the limited angular range of the projections, backprojection artifacts cause the thickness of the object to be overestimated.

where

A1 = Cε

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩
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f 2
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(59)

A2 = Cε
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(60)

Equation (58) provides the desired formula for signal in a slice
with the same pitch as the object. This formula proves that the
signal is sinusoidal with the correct frequency (f0). This result
holds whether the slice is inside or outside the object.

In the pitched slice described by Eq. (58), the signal has a
phase shift � that does not necessarily match the phase of the
input object at each reconstruction depth, z′′. If one considers

the special case in which the depth of the slice is aligned with
the mid-thickness of the sine plate (z′′ = 0), it can be shown
that � vanishes. Hence the phase of the signal matches the
object

μFBP|z′′=0 = G(f0) · C cos(2πx ′′f0), (61)

where

G(f0) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε

∫ f0 tan(αy+�/2)

f0 tan(αy−�/2)

F1φ
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0 + f ′′2
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)
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z )√
f 2
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z

df ′′
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ε

⎡
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f 2
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∫ ∞
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⎤
⎥⎦ , 90◦ − �/2 < αy ≤ 90◦.

(62)

Equation (61) demonstrates that signal in the slice along
the mid-thickness of the object is proportional to the at-
tenuation coefficient of the sine plate. The proportionality

factor, G(f0), is by definition the optical transfer function
(OTF). The OTF compares the amplitude of signal in the
image against the attenuation coefficient of the test object
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FIG. 7. (a)–(c) Following convention, the reconstruction in Fig. 6(b) is displayed using slices oriented along a 0◦ pitch. Each slice corresponds to a fixed depth
z. It is difficult to deduce that the test object is sinusoidal along a 45◦ pitch. (d) In viewing a slice through the mid-thickness of the object at a 45◦ pitch (z′ ′ = 0),
it becomes clear that the attenuation coefficient is sinusoidal along this direction. For this reason, the 45◦ pitch is the preferred orientation for displaying slices
through this object.

at all frequencies, f0. Depending on the sign of the OTF,
the phase shift relative to the input object is either 0◦ or
180◦.

To investigate how image quality varies with pitch in an
oblique reconstruction, the MTF is now derived from the OTF.
The MTF is calculated by normalizing the modulus of G(f0)
to the corresponding limit for which f0 → 0.17 Appendix C
shows that this limit can be evaluated in closed form for
Case 1 of Sec. 2. To demonstrate that modulation is preserved,
the MTF should approach unity:

MTF(f0) = |G(f0)|
lim
f0→0

G(f0)
. (63)

In Fig. 8, the MTF is plotted versus frequency (f0) and
pitch (αy) for four thicknesses of the sine plate: ε = 0.01,
0.10, 1.0, and 10.0 mm. The reconstruction technique is
SBP. As expected, Fig. 8 demonstrates that the MTF de-
creases with frequency. This dependency is not quite mono-
tonic at high frequencies exceeding the first zero of the
MTF.

Figure 8 illustrates that the MTF is highly dependent upon
the thickness of the object. If the object is very thin [Fig. 8(a)],

the MTF is close to unity over a broad range of pitches and
frequencies. As the object thickness is increased, the MTF
decreases. This degradation in MTF is pronounced with in-
creasing pitch and frequency. In accord with the predictions
of the analytical model, experimental reconstructions of bar
patterns also demonstrate that high frequency information is
lost with increasing pitch (Fig. 3).

It is useful to explain the thickness dependency of the MTF
in terms of Fourier theory. Recall that the Fourier transform
of a sine plate consists of two lines modulated by a “sinc”
function along the direction perpendicular to the pitch axis.
Within the sampling cones of Fourier space, it can be shown
that the amplitude of the “sinc” function increases as the ob-
ject thickness is reduced (Fig. 2). This observation explains
why the MTF of a thin object is larger than a thick object in
Fig. 8.

At various object thicknesses, Fig. 8 provides a platform
for calculating the highest frequency with detectable mod-
ulation in an oblique reconstruction. In Paper II of this se-
ries of papers, the highest detectable frequency is explicitly
calculated under a more general set of modeling assump-
tions which include a pixelated detector and a 3D acquisition
geometry.
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FIG. 8. The dependency of the in-plane MTF on frequency (f0) and pitch (αy) is analyzed using surface plots at four object thicknesses (ε = 0.01, 0.10, 1.0, and
10.0 mm). It is demonstrated that modulation is preserved over a broad range of pitches and frequencies if the object is thin. As the object thickness is increased,
modulation is degraded. This loss of modulation is pronounced with increasing pitch and frequency. This finding is concordant with experimental images of bar
patterns presented earlier in this work (Fig. 3), which also show that high frequency information is lost with increasing pitch.

3.B. Rod

With a similar acquisition geometry, SBP reconstructions
of a rod at 0◦ and 45◦ pitches are now simulated (Fig. 9),
assuming a rod length (�) of 10.0 mm and a thickness (ε)
of 0.10 mm. Grayscale images are displayed in the xz plane
analogous to Fig. 6 showing the reconstruction of a sine plate.
Due to backprojection artifacts, it is difficult to deduce that
the input object is rectangular. However, it can be shown that
the rod length is accurately determined from signal along the
lines z = 0 and z = x for the 0◦ and 45◦ pitches, respectively.

In conventional practice, the reconstruction is not dis-
played as a grayscale image in the xz plane, but instead, as
a series of slices with a 0◦ pitch. To simulate this conven-
tion, signal is plotted versus x in Figs. 10(a)–10(c), assuming
that the rod is pitched at a 45◦ angle. The three plots corre-
spond to three depths within the rod; namely, z = −3.0, 0, and
+3.0 mm. In a perfect reconstruction, each slice should be a
rectangle function with length ε sec αy , or 0.14 mm. Due to
backprojection artifacts, the reconstruction actually appears
trapezoidal, and the extent of the rod within each slice is
greatly overestimated. At all three depths, the plateau length
of the trapezoid is 6.0 mm and the full width at half maximum

(FWHM) is 7.0 mm. Consequently, the conventional display
of slices is not useful for this object.

The reconstruction more clearly resembles the input ob-
ject if slices are generated along a 45◦ pitch, as shown in
Fig. 10(d). In this plot, we simulate a slice at the depth
z′′ = 0, corresponding to the mid-thickness of the rod. As ex-
pected, signal is a rectangle function with a plateau length
of 10.0 mm. This length matches known ground truth for
the rod.

Figure 10(d) also investigates how the estimate of rod
length is influenced by rod thickness. As the thickness is in-
creased, it is demonstrated that signal appears more trape-
zoidal than rectangular, and thus the edge of the rod is blurred.
To estimate rod length, one can calculate the FWHM of the
trapezoid. With rod thicknesses of 0.1, 3.4, and 6.7 mm, the
FWHM is exactly 10.0 mm in agreement with the actual rod
length. By contrast, with a rod thickness of 10.0 mm, the
FWHM is 10.6 mm. Consequently, the rod length at a 45◦

pitch is slightly overestimated if its thickness is comparable
to its length.

To investigate how the measurement of the size of an ob-
ject varies along different directions in the reconstruction, the
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FIG. 9. The SBP reconstruction of a rod [Fig. 4(b)] is displayed as a grayscale image in the xz plane, assuming that � = 15◦, ε = 0.10 mm, and
� = 10.0 mm. One can show that the rod length of 10.0 mm is correctly determined along the two object pitches, 0◦ and 45◦, by measuring signal along
the lines z = 0 and z = x, respectively. Because projections are acquired over a limited angular range, there are backprojection artifacts that cause the thickness
of the rod to be overestimated. In addition, the object does not appear to be rectangular in the reconstruction.

estimate of rod length is plotted versus pitch in Fig. 11(a).
We continue to use the FWHM as the metric for estimating
rod length in a pitched slice. Figure 11(a) shows that the esti-
mate of rod length is accurate (10.0 mm) over a broad range

of pitches if the object is thin. Increasing the rod thickness
causes the length estimate to be accurate over a narrower
range of pitches; all inaccuracies are overestimates of rod
length.

FIG. 10. (a)–(c) By displaying the reconstruction in Fig. 9(b) with conventional slices oriented along a 0◦ pitch, it is difficult to deduce the length of a rod whose
long axis is oblique (45◦ pitch). Due to backprojection artifacts, signal spans a much greater length than expected; signal in each slice should be a rectangle
function with length 0.14 mm. (d) The rod length can be correctly determined if slices are generated through the mid-thickness of the object at a 45◦ pitch
(z′ ′ = 0). Increasing the thickness of the object causes the edges of the rod to be blurred.
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FIG. 11. (a) The length of a rod is determined at various pitches using oblique reconstructions. The FWHM of signal in pitched slices [Fig. 10(d)] is the metric
used to estimate rod length; the actual length is 10.0 mm. (b) At various rod thicknesses, one can use Fig. 11(a) to determine the maximum pitch at which rod
length can be correctly measured. This maximum pitch is plotted versus rod thickness for different levels of error tolerance in the measurement of rod length. It
is demonstrated here that rod length is correctly determined over a broad range of pitches if the object is thin, but over a narrower range of pitches if the object
is thick.

Figure 11(b) illustrates the thickness dependency of the
maximum pitch at which rod length can be correctly deter-
mined. As shown, the maximum pitch decreases with rod
thickness. In the special case of an extremely thin rod, the
rod length can be correctly determined up to a 90◦ pitch.

The consequences of permitting error in the estimate of
rod length are also explored in Fig. 11. It is shown that the
introduction of error tolerance broadens the range of pitches
at which the estimate of rod length is acceptable. For example,
if the rod is square, the length estimate is exact up to a pitch
of 38◦, but is acceptable up to a pitch of 48◦ with an error
tolerance of 15% (Points A and B, respectively, in Fig. 11).

4. COMPARISON WITH RESULTS IN THE
LITERATURE

In this paper, the MTF is calculated by comparing the am-
plitude of the image against the attenuation coefficient of a
sinusoidal test object at various frequencies. Previous authors
such as Zhao2 have proposed a different formulation for MTF
in tomosynthesis. Zhao’s work draws a distinction between
in-plane MTF and 3D MTF. In Zhao’s formulation, the in-
plane MTF is the integral of the 3D MTF along the z direc-
tion. This approach presumes that the z direction is perpendic-
ular to the slice.2 To generalize Zhao’s calculation of in-plane
MTF to oblique planes, we now show that the line integral
should be performed along a more general direction perpen-
dicular to the slice. To this end, one must first deduce the OTF
of the entire reconstruction space using the expression for in-
plane OTF derived in Eq. (62):

H (fx, fz) = F1φ
(√

f 2
x + f 2

z

)
√

f 2
x + f 2

z

· rect

(
fz

2fx tan(�/2)

)
.

(64)

In Eq. (64), the rect function models the FDC whose opening
angle matches the angular range of the scan [Fig. 1(b)]. Al-
though Eq. (64) is derived from Eq. (62), it can be shown that
Eq. (64) is equivalent to the Fourier transform of the point

spread function (PSF). This result follows directly from
Eq. (14) noting that the Fourier transform of a point-like in-
put object is unity; that is, F2μ(fr cos ζ, fr sin ζ ) = 1. The
formula below demonstrates that the in-plane OTF [Eq. (62)]
can be expressed as a line integral of the OTF of the entire
reconstruction space [Eq. (64)]:

G(f0) =
∫ ∞

−∞
H (f ′′

x , f ′′
z )
∣∣
f ′′

x =f0
ε · sinc(εf ′′

z )df ′′
z , (65)
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z cos αy

2
[
f ′′

x cos αy − f ′′
z sin αy

]
tan(�/2)

)
.

(66)

Since the line integral in Eq. (65) is performed along a general
direction (f ′′

z ) which is perpendicular to the pitch of the slice,
this result generalizes Zhao’s formulation of in-plane OTF to
oblique planes.

Although Zhao does not model the thickness of an object
in the reconstruction, this paper demonstrates that the in-plane
MTF is indeed dependent upon the object thickness (Fig. 8).
This property arises from the term ε · sinc(εf ′′

z ) in the in-plane
MTF calculation [Eq. (65)]. Recall that this term is the Fourier
transform of the function rect(z′′/ε), which models the object
thickness ε along the direction perpendicular to the slice
[Eq. (17)]. In summary, this paper introduces the object thick-
ness as an additional parameter for quantification of in-plane
MTF, thus generalizing Zhao’s model of image quality.

5. DISCUSSION

By convention, a tomosynthesis reconstruction is created
with slices parallel to the detector. This work demonstrates
from first principles that oblique slices are also justified. To
assess how individual frequencies in the MTF are preserved
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in oblique reconstructions, a sine plate is simulated along var-
ious pitches. Although this object is not properly visualized in
conventional slices generated along a 0◦ pitch, the sinusoidal
attenuation coefficient is perfectly resolved in slices created
along the pitch of the test frequency.

To analyze whether the length of an object can be correctly
determined along various pitches, the reconstruction of a rod
is also simulated. It is shown that backprojection artifacts in
conventional slices oriented along a 0◦ pitch cause the extent
of the object to be greatly overestimated with SBP reconstruc-
tion. By contrast, backprojection artifacts are minimal in a
pitched slice oriented along the length of the rod.

In linear systems theory, the MTF of a single projection
image is calculated without making reference to the thickness
of the test frequency.17 This work demonstrates that the in-
plane MTF of a tomosynthesis reconstruction is indeed de-
pendent upon the object thickness. Previous authors such as
Zhao have not introduced the object thickness as a parameter
in the MTF calculation.2

According to this work, a very thin object can be recon-
structed at large pitches approaching 90◦. This property does
not hold as the thickness of the object is increased; in partic-
ular, it is shown that the MTF is degraded and that the mea-
surement of rod length is inaccurate at large pitches. Because
a clinical image consists of objects with a range of thick-
nesses, a clinical reconstruction is not expected to be valid
up to pitches approaching 90◦. Future work is merited to de-
termine the range of pitches at which clinical reconstructions
are appropriate in tomosynthesis; however, anecdotal results
suggest that pitches approaching 45◦ are viable.

In CT, reconstructions can be generated along any planar
or curved surface in the imaging volume using MPR.1 Al-
though this work on oblique reconstructions is implicitly lim-
ited to planar slices, it is reasonable to posit that tomosynthe-
sis reconstructions are also justifiable with curved surfaces.
Displaying a blood vessel or a vascular calcification cluster
in a single view is a potential application for curved planar
reformatting in DBT. It is conceivable that the full extent of
these tortuous structures cannot be visualized using conven-
tional slices oriented along a 0◦ pitch. Justifying the feasibil-
ity of MPR along any curved surface would be difficult with
analytical modeling. For this reason, future studies should in-
vestigate these reconstructions in computer anthropomorphic
phantoms and in clinical cases.

This study could also be expanded by considering multiple
test objects in the reconstruction. Although this work calcu-
lates the backprojection artifacts of a single test object, it does
not investigate whether the backprojection artifacts of one ob-
ject could hide another object. For example, it would be useful
to investigate whether the backprojection artifacts of a mass
impact the modulation of a sine plate or the length estimate of
a rod (e.g., a spiculation).

This work shows that a pitched slice is the preferred orien-
tation for viewing some test objects in the reconstruction. In
theoretical calculations, choosing the optimal pitch for view-
ing an object is trivial, since the actual pitch of the object is
known. Choosing the optimal pitch will be more challenging
in clinical cases in which there are out-of-focus artifacts and

ground truth is lacking. The development of a framework for
determining the optimal pitch for viewing a clinical recon-
struction remains the subject of future work. Quantifying the
precise size of an asymmetric mass prior to surgical resection
is one application where matching the pitch of the reconstruc-
tion to the long axis of a lesion is potentially important.

While filtering is modeled in the FBP formulas of Sec. 2,
the reconstructions that are plotted in Sec. 3 do not apply
filtering (Figs. 6–11). Instead, the reconstructions use sim-
ple backprojection. Recalling Eq. (61), it can be shown that
filtering is not critical in displaying a slice through the mid-
thickness of a pitched sine plate [Fig. 9(d)]. According to this
expression, signal is sinusoidal with the correct frequency, re-
gardless of filter. Consequently, introducing a filter would not
change the relative signal in the pitched slice in Fig. 7(d).

Although the ramp filter is the basis for image reconstruc-
tion in CT,2, 15, 18 we now explain why this work suggests that
the ramp filter is not optimal for tomosynthesis. In the OTF
identity that is derived in Appendix C [Eq. (C6)], it is im-
portant to note that G(0) is proportional to F1φ(0), or the fil-
ter evaluated at zero frequency. In normalizing G(f0) by G(0)
to calculate the in-plane MTF [Eq. (63)], it follows from
Appendix C that the quotient is infinite if F1φ(0) = 0. Hence,
the in-plane MTF is not well-defined if ramp filtering is used.
Our previous work on super-resolution in DBT also con-
cluded that the ramp filter is not optimal, since modulation
is zero in the reconstruction of a test frequency perpendicu-
lar to the plane of x-ray tube motion.4 Future work on filter
optimization is merited for these reasons. Although this work
calculates the in-plane MTF for SBP reconstruction only, it is
expected that this result is dependent on the filter [Eq. (62)].

Some of the limitations of this work and directions for
future analytical modeling are now noted. Although a 2D
simulation with a parallel-beam geometry was sufficient for
a proof-of-principle justification for oblique reconstructions,
it will be important to extend this work to a 3D simulation
with a divergent-beam geometry. In addition, future studies
should model the presence of discrete step angles between
projections as well as a more general detector that rotates be-
tween projections. Finally, the presence of a thin-film transis-
tor array,19–21 which samples digital detector signal in pixels,
should also be simulated.22–24

6. CONCLUSION

Conventional practice is to generate a tomosynthesis re-
construction using slices parallel to the detector. This work
demonstrates that slices can also be generated along oblique
directions through the same volume. It is shown that the object
must be thin in order to be displayed with high image quality
in an oblique reconstruction. In the ACR Mammography Ac-
creditation Phantom, this thickness constraint is satisfied by
the three test objects (spheres, rods, and specks), which have
been designed to simulate clinically important structures.

It should be emphasized that the results presented in this
study are valid in any application of tomosynthesis, not sim-
ply breast applications. In addition, although the beam in each
projection is presumed to consist of x rays, the calculations in
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this work are applicable to electromagnetic radiation at any
energy, as well as to beams consisting of particles (e.g., neu-
tron tomosynthesis).
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APPENDIX A: RADON TRANSFORM OF PITCHED
SINE PLATE

In Fig. 4, plots of the Radon transform are shown versus t at
a fixed projection angle (θ ) for the two test objects. In order to
derive the plot for the sine plate [Fig. 4(a)], we now calculate
the Radon transform from first principles. Recall that the 2D
Fourier transform of this object is

F2μ(fx, fz) = Cε

2
[δ(fx cos αy + fz sin αy − f0)

+ δ(fx cos αy + fz sin αy + f0)]

· sinc[ε(−fx sin αy + fz cos αy)]. (A1)

This result follows from Eq. (22) using the transforma-
tion between the (f ′′

x , f ′′
z ) and (fx, fz) coordinate systems

[Eq. (21)]. According to the Central Slice Theorem [Eq. (3)],
this 2D Fourier transform can be related to the Radon trans-
form as follows:

Rμ(t, θ ) =
∫ ∞

−∞
F2μ(fr cos θ, fr sin θ ) · e2πifr t dfr (A2)

=
∫ ∞

−∞

Cε

2
(δ[fr cos(θ − αy) − f0]

+ δ[fr cos(θ − αy) + f0])

· sinc[εfr sin(θ − αy)] · e2πifr t dfr . (A3)

In order to simplify Eq. (A3), one must assume that
θ �= 90◦ + αy, so that the two delta functions can be evaluated

with the identity

δ[fr cos(θ − αy) ± f0] = δ[fr ± f0 sec(θ − αy)]

· sec(θ − αy). (A4)

Due to an infinity in the secant function, Eq. (A4) is undefined
if θ = 90◦ + αy. This constraint corresponds to the projection
for which each ray is parallel with the long axis of the sine
plate. The Radon transform cannot be written in closed form
for this projection, since the total x-ray attenuation is unde-
fined along an infinite path length:

Rμ(t, 90◦ + αy) =
{

undefined, −ε/2 ≤ t ≤ ε/2

0, otherwise
. (A5)

Although the Radon transform cannot be written in closed
form if θ = 90◦ + αy, it can indeed be written in closed form
for the projection angle illustrated in Fig. 4(a). Combining
Eqs. (A3) and (A4) yields

Rμ(t, θ ) = Cε

2
· sec(θ − αy)sinc[εf0 tan(θ − αy)]

· (e2πif0t sec(θ−αy ) + e−2πif0t sec(θ−αy )
)

(A6)

= Cε sec(θ − αy)sinc[εf0tan(θ − αy)]

· cos[2πf0t sec(θ − αy)]. (A7)

This result proves that the Radon transform has sinusoidal
dependence on t, as indicated in the figure. Consistent with
Eq. (A7), the plot has no phase shift relative to the origin,
t = 0.

APPENDIX B: RADON TRANSFORM
OF PITCHED ROD

In Fig. 4(b), the Radon transform of a pitched rod is plotted
versus t at a fixed projection angle (θ ). To derive this plot,
we now calculate the Radon transform from first principles.
Using Eqs. (21) and (41), it can be shown that the 2D Fourier
transform of this object is

F2μ(fx, fz) = C�ε · sinc[�(fx cos αy + fz sin αy)]

· sinc[ε(−fx sin αy + fz cos αy)]. (B1)

From Eq. (A2), it follows that

Rμ(t, θ ) = C�ε

∫ ∞

−∞
sinc[�fr cos(θ − αy)]

· sinc[εfr sin(θ − αy)] · e2πifr t dfr . (B2)

Similar to Appendix A, one must consider two separate con-
straints in order to evaluate the Radon transform; namely,
θ = 90◦ + αy and θ �= 90◦ + αy. If one first considers the
constraint θ = 90◦ + αy, the integral in Eq. (B2) simplifies to

Rμ(t, 90◦ + αy) = C�ε

∫ ∞

−∞
sinc(εfr ) · e2πifr t dfr (B3)

= C� · rect

(
t

ε

)
. (B4)
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This result corresponds to the projection for which each ray
is parallel to the pitch axis (x′′). The Radon transform is a
rectangular function of t; the width of this function matches
the rod thickness (ε). If one next considers the constraint
θ �= 90◦ + αy, the convolution theorem can be used to sim-
plify Eq. (B2):

Rμ(t, θ �= 90◦ + αy)

= C�ε · F−1
1 sinc[�fr cos(θ − αy)]

∗1F−1
1 sinc[εfr sin(θ − αy)], (B5)

= C�ε · 1

� cos(θ − αy)
rect

[
t

� cos(θ − αy)

]

∗1
1

ε sin(θ − αy)
rect

[
t

ε sin(θ − αy)

]
. (B6)

In order to analyze the dependency of the Radon trans-
form on t, it is useful to review the equation of an isosceles

trapezoid

Rμ(t, θ �= 90◦ + αy)

= B · rect

[
t

(q1 + q2)/2

]

∗1
1

(q2 − q1)/2
rect

[
t

(q2 − q1)/2

]
(B7)

= B ·

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, |t | ≤ q1

2
−1

(q2 − q1)/2

(
|t | − q2

2

)
,

q1

2
< |t | ≤ q2

2

0, |t | >
q2

2

,

(B8)

where B is the height of the plateau, q1 is the length of the
plateau, and q2 is the length of the base. The trapezoid is sym-
metric about the origin, t = 0. Assuming that −90◦ < θ ≤ 90◦

and that 0 ≤ αy ≤ 90◦, as stipulated in the body of this work,
Eqs. (B6) and (B7) can be equated to yield

B =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Cε sec(θ − αy), θ < αy + arctan

(
�

ε

)

C� csc(θ − αy), θ > αy + arctan

(
�

ε

) , (B9)

q1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

� cos(θ − αy) − ε sin(θ − αy), θ < αy + arctan

(
�

ε

)

ε sin(θ − αy) − � cos(θ − αy), θ > αy + arctan

(
�

ε

) , (B10)

q2 = � cos(θ − αy) + ε sin(θ − αy). (B11)

This result provides a justification for the trapezoidal plot in
Fig. 4(b) showing the Radon transform of the rod at a fixed
projection angle (θ ).

Although not plotted in Fig. 4(b), two degenerate cases in
the formula for the trapezoid [Eq. (B7)] are noted for com-
pleteness. One degeneracy occurs if the plateau and base
of the trapezoid have the same length (q1 = q2). Using
Eqs. (B10) and (B11), it can be shown that this property oc-
curs if θ = αy:

Rμ(t, αy) = Cε · rect

(
t

�

)
. (B12)

This degeneracy corresponds to the projection in which the
rays are perpendicular to the pitch axis. It is also useful to ex-
amine a second degenerate case in which the length of the
plateau of the trapezoid is zero (q1 = 0), while the length
of the base is nonzero (q2 > 0). This degeneracy occurs if
the lengths of the two rectangle functions in Eq. (B6) are

equivalent.

Rμ

(
t, αy + arctan

(
�

ε

))

=C
√

ε2+�2 ·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1− |t | √ε2 + �2

�ε
, |t |≤ �ε√

ε2 + �2

0, |t |> �ε√
ε2 + �2

.

(B13)

The Radon transform is no longer a trapezoidal function of t
but instead is a triangular function of t. Unlike the projection
illustrated in Fig. 4(b), it can be shown that this degenerate
case corresponds to the projection in which one of the rays
intercepts two corners of the rod. In the projection shown in
Fig. 4(b), a ray that intercepts one corner of the rod does not
strike the other corner.
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APPENDIX C: OPTICAL TRANSFER FUNCTION
IDENTITY

In this study, the MTF of a pitched reconstruction slice is
calculated by normalizing the OTF to its value in the limit
f0 → 0 [Eq. (63)]. It is difficult to evaluate this limit in closed
form using Eq. (62), since the integration limits both tend
toward zero. For this reason, we now provide a more direct
method for evaluating G(0) by explicitly calculating the re-
construction of a sine plate with zero frequency. This object
is an infinitely long rod whose long axis is oriented along the
pitch αy and whose thickness is ε.

It is first necessary to evaluate the Radon transform of the
object by substituting f0 = 0 into Eq. (A7):

Rμ(t, θ ) = Cε sec(θ − αy). (C1)

As discussed in Appendix A, this result presumes that
θ �= 90◦ + αy. Recalling Sec. 2, it can be shown that this
inequality holds at all projections angles for Case 1 of the re-
construction (Sec. 2.B.1). Hence

μFBP(x, z) =
∫ �/2

−�/2

∫ ∞

−∞
φ(τ )

·Rμ(x cos θ + z sin θ − τ, θ )dτdθ (C2)

=
[∫ ∞

−∞
φ(τ )dτ

] [∫ �/2

−�/2
Rμ · dθ

]
. (C3)

The transition from Eq. (C2) to Eq. (C3) is justified because
the Radon transform in Eq. (C1) is independent of t. The first
term in Eq. (C3) is the integral of the filter φ over all space.
From Fourier theory, this integral is equivalent to F1φ(0). The
second term in Eq. (C3) is∫ �/2

−�/2
Rμ · dθ =

∫ �/2

−�/2
Cε sec(θ − αy)dθ, (C4)

= Cε ln

∣∣∣∣ sec(αy −�/2)−tan(αy −�/2)

sec(αy + �/2)−tan(αy +�/2)

∣∣∣∣ . (C5)

Combining Eqs. (C3) and (C5) yields

G(0) = F1φ(0) · ε ln

∣∣∣∣ sec(αy − �/2) − tan(αy − �/2)

sec(αy + �/2) − tan(αy + �/2)

∣∣∣∣ ,
(C6)

completing the derivation of the OTF identity. If one consid-
ers the special case of SBP reconstruction, the substitution
F1φ(fr ) = F1φ(0) = 1 should be made in Eq. (C6).

It would be difficult to perform an analogous derivation of
G(0) in considering Case 2 of Sec. 2, since the x-ray beam
is aligned with the pitch axis of the rod in the projection for
which θ = 90◦ + αy. At this projection angle, the Radon trans-
form cannot be written in closed form:

Rμ(t, 90◦ + αy) =
{∞, −ε/2 ≤ t ≤ ε/2

0, otherwise
. (C7)

Because it would be difficult to evaluate a reconstruction us-
ing a Radon transform with an infinity, we evaluate G(0) nu-

merically in considering Case 2. This result can be derived
from the integral in Eq. (62) in the limit f0 → 0.

APPENDIX D: NOMENCLATURE

Symbol Meaning
* Convolution operator (subscript denotes dimen-

sion)
∈ Set membership
B Backprojection operator
F Fourier transform operator (subscript denotes di-

mension)
L(t, θ ) Line that intercepts the point (t cos θ , t sin θ )

and that is perpendicular to the unit vector
p = (cos θ )i + (sin θ )k

R Radon transform operator
R2 Euclidean 2-space
Z Set of integers
αy Pitch angle, corresponding to a rotation about the

y axis
β Real number used to illustrate an identity involv-

ing the linear combination of a sine and a cosine
function [Eq. (56)]

δ Delta function
ε Thickness of sine plate or rod (Fig. 4)
ζ Polar angle of 2D frequency vector
θ Projection angle (defined in Fig. 4).
� Angular range of tomosynthesis scan
μ X-ray linear attenuation coefficient of test object
ν± A quantity defined by Eq. (31) to simplify inter-

mediate calculations (Fig. 5)
� Rod length (Fig. 4).
ϒ±

jk Terms defined by Eqs. (46)–(48) used to simplify
intermediate calculations, where j varies from 1
to 3

φ Reconstruction filter
� A quantity defined by Eq. (57) used to simplify

intermediate calculations
A1, A2 Quantities defined by Eqs. (59) and (60) used to

simplify intermediate calculations
ACR American College of Radiology
B Height of plateau of trapezoid used for calcu-

lating the Radon transform of a pitched rod
[Eq. (B7)]

b1,b2 Real numbers used to illustrate an angle sum
trigonometric identity [Eq. (34)]

BPF Backprojection filtering
C Maximum value of attenuation coefficient of sine

plate or rod
CT Computed tomography
DBT Digital breast tomosynthesis
DM Digital mammography
f Spatial frequency (subscript denotes direction of

measurement)
f0 Input frequency of a sine plate
f ′′

zj A quantity defined by Eq. (37) used to simplify
intermediate calculations
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fzk A quantity defined by Eq. (45) used to simplify
intermediate calculations

FBP Filtered backprojection
FDC Fourier double cone (defined by Fig. 1)
FWHM Full width at half maximum
G(0) In-plane OTF evaluated at zero frequency
G(f0) In-plane OTF evaluated at the frequency f0

[Eq. (62)]
H(fx, fz) OTF of the reconstruction [Eq. (64)]
i Imaginary unit given as

√−1
I±
k,SBP An integral defined by Eqs. (53) and (54)

lp Line pairs
LS Linear systems
MTF Modulation transfer function
OTF Optical transfer function
p Unit vector given by (cos θ )i + (sin θ )k (Fig. 4)
PSF Point spread function
q1 Length of plateau of trapezoid used for cal-

culating the Radon transform of a pitched rod
[Eq. (B7)]

q2 Length of base of trapezoid used for calculating
the Radon transform of a pitched rod [Eq. (B7)]

s Free parameter ranging between −∞ and ∞
used in the parametric representation of the line
L(t, θ ) [Eq. (1)]

SBP Simple backprojection
t Affine parameter of Radon transform [Eq. (1)]
(x, z) Point in space
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