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Purpose: In tomosynthesis, super-resolution has been demonstrated using reconstruction planes par-
allel to the detector. Super-resolution allows for subpixel resolution relative to the detector. The pur-
pose of this work is to develop an analytical model that generalizes super-resolution to oblique re-
construction planes.
Methods: In a digital tomosynthesis system, a sinusoidal test object is modeled along oblique angles
(i.e., “pitches”) relative to the plane of the detector in a 3D divergent-beam acquisition geometry. To
investigate the potential for super-resolution, the input frequency is specified to be greater than the
alias frequency of the detector. Reconstructions are evaluated in an oblique plane along the extent of
the object using simple backprojection (SBP) and filtered backprojection (FBP). By comparing the
amplitude of the reconstruction against the attenuation coefficient of the object at various frequen-
cies, the modulation transfer function (MTF) is calculated to determine whether modulation is within
detectable limits for super-resolution. For experimental validation of super-resolution, a goniometry
stand was used to orient a bar pattern phantom along various pitches relative to the breast support in
a commercial digital breast tomosynthesis system.
Results: Using theoretical modeling, it is shown that a single projection image cannot resolve a sine
input whose frequency exceeds the detector alias frequency. The high frequency input is correctly
visualized in SBP or FBP reconstruction using a slice along the pitch of the object. The Fourier
transform of this reconstructed slice is maximized at the input frequency as proof that the object is re-
solved. Consistent with the theoretical results, experimental images of a bar pattern phantom showed
super-resolution in oblique reconstructions. At various pitches, the highest frequency with detectable
modulation was determined by visual inspection of the bar patterns. The dependency of the highest
detectable frequency on pitch followed the same trend as the analytical model. It was demonstrated
that super-resolution is not achievable if the pitch of the object approaches 90◦, corresponding to the
case in which the test frequency is perpendicular to the breast support. Only low frequency objects
are detectable at pitches close to 90◦.
Conclusions: This work provides a platform for investigating super-resolution in oblique recon-
structions for tomosynthesis. In breast imaging, this study should have applications in visualizing
microcalcifications and other subtle signs of cancer. © 2013 American Association of Physicists in
Medicine. [http://dx.doi.org/10.1118/1.4819942]

Key words: tomosynthesis, super-resolution, oblique reconstruction, modulation transfer function
(MTF), bar pattern phantom

1. INTRODUCTION

In tomosynthesis, a volumetric reconstruction is gener-
ated from projection images acquired over a small angular
range. Our previous studies proposed a conceptual test ob-
ject known as a sine plate for assessing image quality in
tomosynthesis.1–7 This object is a thin strip whose attenua-
tion coefficient varies sinusoidally. Increasing the frequency
of the object simulates small closely-spaced structures such
as microcalcifications, which are early indicators of cancer
in breast imaging applications.8 The sine plate has led to
the discovery of super-resolution in tomosynthesis.1, 5 Super-
resolution is a term which describes the ability to resolve in-
put frequencies higher than the detector alias frequency, or
the frequency above which high frequency information is rep-
resented as if it were low frequency information in a single
projection.5

Super-resolution arises because the image of an object is
translated in subpixel detector element increments between
projections. To observe super-resolution, it is necessary to
perform the reconstruction with a matrix whose pixel size is
much smaller than that of the detector elements. The exis-
tence of super-resolution was verified experimentally with a
bar pattern phantom1, 5 using a commercial digital breast to-
mosynthesis (DBT) x-ray unit and a commercial prototype
reconstruction solution9 (BrionaTM, Real Time Tomography,
Villanova, PA). In DBT, super-resolution has applications in
improving the visibility of microcalcifications and other sub-
tle signs of breast cancer.

By orienting the long axis of the sine plate along vari-
ous “pitch” angles relative to the plane of the detector, we
have also demonstrated the feasibility of oblique reconstruc-
tions in tomosynthesis.7 To analyze image quality at various
test frequencies, the modulation transfer function (MTF) was

111912-1 Med. Phys. 40 (11), November 2013 © 2013 Am. Assoc. Phys. Med. 111912-10094-2405/2013/40(11)/111912/19/$30.00

http://dx.doi.org/10.1118/1.4819942
http://dx.doi.org/10.1118/1.4819942
http://crossmark.crossref.org/dialog/?doi=10.1118/1.4819942&domain=pdf&date_stamp=2013-10-11


111912-2 R. J. Acciavatti and A. D. A. Maidment: Oblique reconstructions in tomosynthesis. II. Super-resolution 111912-2

calculated from the relative amplitude of the reconstruction.
This approach addressed some of the simplifying assumptions
made in Zhao’s model of MTF for tomosynthesis.10 Although
Zhao’s model assumes the use of reconstructed slices parallel
to the detector, the sine plate provided a framework for deter-
mining the MTF in oblique slices. In addition, the sine plate
was used to model the effect of object thickness on the MTF.

Our previous work on oblique reconstructions does not
model detector pixelation, and thus does not explicitly show
that test frequencies exceeding the detector alias frequency
can be reconstructed at various pitches. This study extends our
analysis of super-resolution to oblique reconstruction planes.
To determine whether the thickness of the object places limits
on the feasibility of super-resolution, this study also general-
izes the MTF calculation to a digital system. For experimen-
tal proof of both resolution and super-resolution in oblique
reconstructions, projection images of a bar pattern phantom
were acquired and subsequently reconstructed.

2. METHODS

2.A. Pitched sine plate

A framework for investigating super-resolution in oblique
reconstructions for tomosynthesis is now developed. Accord-
ingly, we calculate the reconstruction of a rectangular prism
whose linear attenuation coefficient varies sinusoidally along
the pitch angle, αy. The object is modeled by a rectangular
prism, since this shape allows us to analyze the effect of ob-
ject thickness on in-plane resolution, similar to our previous
work.7 As shown in Fig. 1, the pitch angle corresponds to a
rotation of the x and z axes about the y axis perpendicular to

the plane of x-ray tube motion (i.e., the xz plane). In DBT, the
breast is positioned so that the chest wall lies in the plane of
x-ray tube motion, and hence, the y axis is the chest wall-to-
nipple direction. The matrix transformation corresponding to
the pitch rotation about the y axis is⎛

⎜⎝
i′′

j′′

k′′

⎞
⎟⎠ =

⎛
⎜⎝

cos αy 0 sin αy

0 1 0

− sin αy 0 cos αy

⎞
⎟⎠

⎛
⎜⎝

i

j

k

⎞
⎟⎠ , (1)

where i, j, and k are orthogonal unit vectors in the x, y, and z
directions, respectively, and where i′′, j′′, and k′′ are the trans-
formed unit vectors. One can introduce a vector to model the
input frequency (f0) along the pitch angle, αy. To investigate
the potential for super-resolution, this frequency is taken to be
higher than the alias frequency of the detector

f0 = f0i′′ (2)

= f0[(cos αy)i + (sin αy)k]. (3)

Figure 1 shows a cross section of the input object in the plane
of x-ray tube motion. The object has infinite extent in the i′′

and j′′ directions. Defining the origin (O) as the midpoint of
the chest wall side of the detector, the attenuation coefficient
of the object can thus be written as

μ(x, y, z) = C · cos (2π f0 • [r − r0])

· rect

(
k′′ • [r − r0]

ε

)
, (4)

where r is a position vector from O to any point (x, y, z) in
R3, r0 denotes a vector from O to a known point (x0, y0, z0) in

FIG. 1. A pitched sine plate is used to investigate the potential for super-resolution in oblique reconstructions for tomosynthesis. The pitch axis along the angle
αy relative to the i direction lies within the plane of x-ray tube motion (i.e., the xz plane). Although a 2D cross section of the object is shown, it is assumed
that the object has infinite extent in the +y direction. In acquiring the nth projection image, the x-ray tube rotates about point B at the angle ψn relative to the z
direction. The detector rotates about the y axis at the angle γ n relative to the x direction.
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the object, C is the maximum value of the attenuation coeffi-
cient, ε indicates the object thickness along the k′′ direction,
and

rect(u) ≡
{

1, |u| ≤ 1/2

0, |u| > 1/2.
(5)

Combining Eqs. (1), (3), and (4) yields

μ(x, y, z) = C · cos(2πf0[(x − x0) cos αy

+ (z − z0) sin αy])

· rect

[−(x − x0) sin αy + (z − z0) cos αy

ε

]
(6)

completing the formalism of the attenuation coefficient.

2.B. Digital detector signal

To calculate detector signal for the nth projection, it is use-
ful to perform ray tracing between the focal spot at A and the
incident point on the detector at C (Fig. 1). The most general
tomosynthesis geometry with a divergent x-ray beam and a
rotating detector is analyzed. Following our previous work,5

the vector from the origin to point C on the detector is written
as

−→
OC = u1i′n + u2j′n, (7)

where u1 measures detector position within the plane of the
x-ray tube motion and u2 measures position along the perpen-
dicular direction. The unit vectors i′n and j′n are determined
from detector rotation about the y axis at the angle γ n⎛

⎜⎝
i′n
j′n
k′

n

⎞
⎟⎠ =

⎛
⎜⎝

cos γn 0 sin γn

0 1 0

− sin γn 0 cos γn

⎞
⎟⎠

⎛
⎜⎝

i

j

k

⎞
⎟⎠ . (8)

Each projection angle ψn relative to the z axis is calculated
from the angular spacing between projections (�ψ) as

ψn = n · �ψ, (9)

so that

γn = ψn

g
, (10)

where g denotes the gear ratio of the detector and where
the projection number n varies between −(N − 1)/2 and
+(N − 1)/2. In our prior study, the parametric equations for
the ray between the focal spot at A and the incident point on
the detector at C have been determined

x = w(u1 cos γn + h sin ψn) − h sin ψn, (11)

y = wu2, (12)

z = w(u1 sin γn − l − h cos ψn) + l + h cos ψn. (13)

In these expressions, h is the distance between the focal spot
and the center-of-rotation (COR) of the x-ray tube, l is the
COR-to-origin distance (Fig. 1), and w is a free parameter
ranging between zero and unity. The x-ray path length Ln

through the input object is now derived from these parametric
equations by calculating the points of intersection of the x-ray
beam with the planar surfaces of the sine plate. Using Eqs. (5)
and (6), it can be shown that the planar surfaces of the object
can be modeled by the expression

z± = (x − x0) tan αy + z0 ± (ε/2) sec αy, (14)

where the “+” and “−” symbols correspond to the x-ray en-
trance and exit surfaces, respectively. Denoting x±

n and w±
n as

the values of x and w at these two surfaces, it follows from
Eq. (11) that

w±
n = x±

n + h sin ψn

u1 cos γn + h sin ψn

(15)

and from Eqs. (13) and (14) that

w±
n = (x±

n − x0) tan αy + z0 ± (ε/2) sec αy − l − h cos ψn

u1 sin γn − l − h cos ψn

.

(16)

Equations (15) and (16) provide a system of two equations in
two unknowns (x±

n and w±
n ). Using a computer algebra system

(Maple 16, Maplesoft, Waterloo, Ontario) to solve for the two
unknowns, w±

n can be written in a form that does not depend
on x±

n

w±
n = z0 − l − h cos ψn − (x0 + h sin ψn) tan αy ± (ε/2) sec αy

u1 sin γn − l − h cos ψn − (u1 cos γn + h sin ψn) tan αy

. (17)

Total x-ray attenuation Aμ(n) for the nth projection is now found by integrating μ(x, y, z) along Ln

Aμ(n) =
∫
Ln

μds. (18)

From our previous work, the differential arc length ds along Ln is

ds = [
h cos(ψn − γn) + l cos γn

]
sec(θn) · dw, (19)

where θn is the angle of x-ray incidence relative to k′
n
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θn = arccos

⎡
⎣ h cos(ψn − γn) + l cos γn√

(u1 cos γn + h sin ψn)2 + u2
2 + (l + h cos ψn − u1 sin γn)2

⎤
⎦ . (20)

By combining Eqs. (6), (11), (13), (18), and (19), the total x-ray attenuation for each projection can now be calculated in closed
form

Aμ(n) = κn

∫ w−
n

w+
n

cos(2πf0[(u1 cos γn + h sin ψn) cos αy + (u1 sin γn − l − h cos ψn) sin αy]w + λn)dw (21)

=
κn

[
sin(2πf0[(u1 cos γn + h sin ψn) cos αy + (u1 sin γn − l − h cos ψn) sin αy]w−

n + λn)

− sin(2πf0[(u1 cos γn + h sin ψn) cos αy + (u1 sin γn − l − h cos ψn) sin αy]w+
n + λn)

]

2πf0[(u1 cos γn + h sin ψn) cos αy + (u1 sin γn − l − h cos ψn) sin αy]
, (22)

where

κn = C[h cos(ψn − γn) + l cos γn] sec θn, (23)

λn = 2πf0[(l + h cos ψn − z0) sin αy − (h sin ψn + x0) cos αy]. (24)

Using a sum-to-product trigonometric identity for real numbers b1 and b2,

sin(b1) − sin(b2) = 2 cos

(
b1 + b2

2

)
sin

(
b1 − b2

2

)
. (25)

Equation (22) can be rewritten as

Aμ(n) = κn(w−
n − w+

n )sinc(f0[(u1 cos γn + h sin ψn) cos αy + (u1 sin γn − l − h cos ψn) sin αy][w−
n − w+

n ])

· cos(πf0[(u1 cos γn + h sin ψn) cos αy + (u1 sin γn − l − h cos ψn) sin αy][w+
n + w−

n ] + λn) (26)

=
[

εκn sec αy

l + h cos ψn + (u1 cos γn + h sin ψn) tan αy − u1 sin γn

]

· sinc

(
εf0[u1 cos γn + h sin ψn + (u1 sin γn − l − h cos ψn) tan αy]

l + h cos ψn + (u1 cos γn + h sin ψn) tan αy − u1 sin γn

)

· cos

⎛
⎜⎜⎜⎜⎝

(
2πf0[(u1 cos γn + h sin ψn) cos αy + (u1 sin γn − l − h cos ψn) sin αy]

·[l + h cos ψn + (x0 + h sin ψn) tan αy − z0]

)

l + h cos ψn + (u1 cos γn + h sin ψn) tan αy − u1 sin γn

+ λn

⎞
⎟⎟⎟⎟⎠ , (27)

where

sinc(u) ≡ sin(πu)

πu
. (28)

Equation (27) gives the signal recorded by the x-ray con-
verter in a detector with no noise or blurring. Lee et al.11

showed that an amorphous selenium (a-Se) photoconduc-
tor operated in drift mode is a good approximation for an
x-ray converter with these characteristics. This photoconduc-
tor has a MTF of approximately unity at all frequencies.11 It
is useful to model an a-Se detector for the purpose of this
work, since this detector is present in the experimental sys-
tem that is used in Sec. 4 to create oblique reconstructions of
a bar pattern phantom. Although it is beyond the scope of this
work to model detector noise and blurring, a few strategies
for simulating these concepts in futures studies are addressed
in Sec. 6.

The digitized signal is now found by sampling the total
x-ray attenuation using a thin-film transistor (TFT) array hav-
ing detector elements with area ax × ay. The logarithmically
transformed signal in the mth detector element for the nth pro-
jection is

Dμ(m, n) =
∫ ay (my+1)

aymy

∫ ax (mx+1/2)

ax (mx−1/2)
Aμ(n) · du1

ax

du2

ay

,

(29)

where mx and my are integers used for labeling detector el-
ements. Detector elements are centered on u1 = mxax and
u2 = (my + 1/2)ay. In the case of square detector elements,
it is assumed that ax = ay = a. Although Eq. (29) cannot be
evaluated in closed form, this integral can be calculated nu-
merically using the midpoint formula, which is addressed in
our previous work.5
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The attenuation coefficient can now be reconstructed us-
ing a filtered backprojection (FBP) formula derived in our
previous work.5 It is important to evaluate the reconstruc-
tion using pitched slices with extent in the i′′ and j′′ directions
[Eq. (30)]⎛

⎜⎝
x

y

z

⎞
⎟⎠ =

⎛
⎜⎝

x0

y0

z0

⎞
⎟⎠ +

⎛
⎜⎝

cos αy 0 − sin αy

0 1 0

sin αy 0 cos αy

⎞
⎟⎠

⎛
⎜⎝

x ′′

y ′′

z′′

⎞
⎟⎠ .

(30)

Within this slice, x′′ measures position along the pitch (αy)
and y′′ measures position perpendicular to the plane of x-ray
tube motion. By contrast, z′′ denotes position perpendicular to
the slice. All three positions in the double primed coordinate
system are measured relative to the point (x0, y0, z0) in the
input object.

Following linear systems theory,10 the net reconstruction
filter should be written as the product of ramp (RA) and spec-
trum apodization (SA) filters in the Fourier domain. The SA
filter is conventionally given by a Hanning window function.
The filters are truncated at the frequencies ±ξ in Fourier
space.

2.C. Fourier transform of the pitched
reconstruction slice

To demonstrate that the input object is resolved in the im-
age, the Fourier transform of the pitched reconstruction plane
should have a major peak at the test frequency, f0. The Fourier
transform is now calculated analytically using the FBP re-
construction formula that is derived in our previous work
[Eq. (65) in Acciavatti and Maidment5]

μFBP(x, y, z) =
∑
m,n

Dμ(m, n)

N
· [ρ1(t1)]|t1=σ1mnx+σ2mnz

· [ρ2(t2)]|t2=σ3mnx+σ4mny+σ5mnz. (31)

The variables ρ and σ were defined in our prior study to sim-
plify intermediate calculations.5 It was demonstrated in that
work that the 1D Fourier transforms (F1) of ρ1 and ρ2 are

F1ρ1(f1) = F1φ(f1) · ax cos(θmn)sinc(axf1 cos θmn)

·e−2πimxaxf1 cos θmn (32)

F1ρ2(f2) = ay cos(θmn)sinc(ayf2 cos θmn)

·e−2πi(my+1/2)ayf2 cos θmn (33)

where F1φ(f1) is the Fourier representation of the filter and
θmn is the evaluation of θn at the centroid of the mth detec-
tor element. Thus, the 2D Fourier transform (F2) of Eq. (31)
within the pitched reconstruction slice at the fixed depth z′′ is

F2μFBP(f ′′
x , f ′′

y ) =
∑
m,n

Dμ(m, n)

N

·
∫ ∞

−∞
ρ1(σ1mnx + σ2mnz)

· I ′′
ymn(x, z) · e−2πif ′′

x x ′′
dx ′′, (34)

where

I ′′
ymn(x, z) =

∫ ∞

−∞
ρ2[σ3mnx + σ4mn(y0 + y ′′) + σ5mnz]

· e−2πif ′′
y y ′′

dy ′′. (35)

In Eq. (34), the variables f ′′
x and f ′′

y are introduced to measure
frequency along the x′′ and y′′ directions, respectively, within
the pitched slice. Equation (35) can be evaluated by making
the substitution

η′′
ymn = σ3mnx + σ4mn(y0 + y ′′) + σ5mnz. (36)

Since σ 4mn > 0, one finds

I ′′
ymn(x, z) =

∫ ∞

−∞
ρ2(η′′

ymn)e
−2πif ′′

y (η′′
ymn−σ3mnx−σ5mnz−σ4mny0)

σ4mn

dη′′
ymn

σ4mn

(37)

= e
2πif ′′

y (σ3mnx+σ5mnz+σ4mny0)

σ4mn

σ4mn

∫ ∞

−∞
ρ2(η′′

ymn)e
−2πi

(
f ′′
y

σ4mn

)
η′′

ymn

dη′′
ymn

(38)

= e
2πif ′′

y (σ3mnx+σ5mnz+σ4mny0)

σ4mn

σ4mn

F1ρ2

(
f ′′

y

σ4mn

)
. (39)

Hence, from Eq. (34), it follows that

F2μFBP(f ′′
x , f ′′

y ) =
∑
m,n

Dμ(m, n)

N

I ′′
xmn

σ4mn

F1ρ2

(
f ′′

y

σ4mn

)
,

(40)

where

I ′′
xmn =

∫ ∞

−∞
ρ1(σ1mnx + σ2mnz)

·e−2πi

[
f ′′

x x ′′− (σ3mnx+σ5mnz+σ4mny0)f ′′
y

σ4mn

]
dx ′′ (41)

=
∫ ∞

−∞
ρ1[(σ1mn cos αy + σ2mn sin αy)x ′′ + σ1mnx1 + σ2mnz1] · e

−2πi

[(
f ′′

x − [σ3mn cos αy+σ5mn sin αy ]f ′′
y

σ4mn

)
x ′′− (σ3mnx1+σ5mnz1+σ4mny0)f ′′

y

σ4mn

]
dx ′′,

(42)

and where

x1 = x0 − z′′ sin αy, (43)

z1 = z0 + z′′ cos αy. (44)
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Equation (30) justifies the transition from Eq. (41) to Eq. (42). In Eqs. (43) and (44), the variables x1 and z1 are introduced to
simplify intermediate calculations. To evaluate Eq. (42), it is necessary to perform the change of variables

η′′
xmn = (σ1mn cos αy + σ2mn sin αy)x ′′ + σ1mnx1 + σ2mnz1, (45)

giving

I ′′
xmn =

∫ ∞

−∞
ρ1(η′′

xmn)e−2πi

[(
f ′′

x − [σ3mn cos αy+σ5mn sin αy ]f ′′
y

σ4mn

)(
η′′
xmn−σ1mnx1−σ2mnz1

σ1mn cos αy+σ2mn sin αy

)
− (σ3mnx1+σ5mnz1+σ4mny0)f ′′

y

σ4mn

]
dη′′

xmn

|σ1mn cos αy + σ2mn sin αy | (46)

= e
2πi

[(
f ′′

x − [σ3mn cos αy+σ5mn sin αy ]f ′′
y

σ4mn

)(
σ1mnx1+σ2mnz1

σ1mn cos αy+σ2mn sin αy

)
+ (σ3mnx1+σ5mnz1+σ4mny0)f ′′

y

σ4mn

]

|σ1mn cos αy + σ2mn sin αy |
∫ ∞

−∞
ρ1(η′′

xmn)e
−2πi

(
σ4mnf ′′

x −[σ3mn cos αy+σ5mn sin αy ]f ′′
y

σ4mn[σ1mn cos αy+σ2mn sin αy ]

)
η′′

xmn

dη′′
xmn

(47)

= e
2πi

[(
f ′′

x − [σ3mn cos αy+σ5mn sin αy ]f ′′
y

σ4mn

)(
σ1mnx1+σ2mnz1

σ1mn cos αy+σ2mn sin αy

)
+ (σ3mnx1+σ5mnz1+σ4mny0)f ′′

y

σ4mn

]

|σ1mn cos αy + σ2mn sin αy | F1ρ1

(
σ4mnf

′′
x − [σ3mn cos αy + σ5mn sin αy]f ′′

y

σ4mn(σ1mn cos αy + σ2mn sin αy)

)
.

(48)

Substituting Eq. (48) into Eq. (40) yields the final expression for the 2D Fourier transform

F2μFBP(f ′′
x , f ′′

y ) =
∑
m,n

Dμ(m, n)

N

e
2πi

[(
f ′′

x − [σ3mn cos αy+σ5mn sin αy ]f ′′
y

σ4mn

)(
σ1mnx1+σ2mnz1

σ1mn cos αy+σ2mn sin αy

)
+ (σ3mnx1+σ5mnz1+σ4mny0)f ′′

y

σ4mn

]

|σ1mn cos αy + σ2mn sin αy |σ4mn

·F1ρ1

(
σ4mnf

′′
x − [σ3mn cos αy + σ5mn sin αy]f ′′

y

σ4mn

(
σ1mn cos αy + σ2mn sin αy

)
)
F1ρ2

(
f ′′

y

σ4mn

)
. (49)

An important special case of Eq. (49) occurs with f ′′
y = 0

F2μFBP(f ′′
x , 0) =

∑
m,n

Dμ(m, n)

N

e
2πi[σ1mn (x0−z′′ sin αy )+σ2mn(z0+z′′ cos αy )]f ′′

x
σ1mn cos αy+σ2mn sin αy ay cos θmn

|σ1mn cos αy + σ2mn sin αy |σ4mn

F1ρ1

(
f ′′

x

σ1mn cos αy + σ2mn sin αy

)
. (50)

This special case is useful for analyzing an input frequency
oriented along the pitch, αy, such as the input frequency given
in Eq. (2). To analyze an input frequency oriented along a
0◦ pitch (αy = 0), one can introduce the equation z = z0 to
define the plane of reconstruction. It follows directly from
Eqs. (1) and (30) that the following properties hold for this
reconstruction plane: x0 = z′′ = 0 and f ′′

x = fx . If one makes
these substitutions in Eq. (50), one can recover the Fourier
transform of a conventional reconstruction plane that was
derived in our previous work [Eq. (86) in Acciavatti and
Maidment5]. This agreement with our previous work provides
a built-in check on the validity of Eq. (50).

3. THEORETICAL RESULTS

3.A. Projection images

Projection images are now simulated for a Selenia Dimen-
sions DBT system (Hologic, Inc., Bedford, MA), assuming

an object thickness (ε) of 0.05 mm, an object pitch (αy) of
20◦, and an object displacement (x0) of 0 mm along the direc-
tion parallel to the chest wall side of the breast support. The
object thickness was chosen based on the size of a small cal-
cification in breast imaging. The acquisition parameters for
the system are detailed in our previous work.5 The centroid
of the sine plate (point D in Fig. 1) is simulated at the depth
z0 = 50.0 mm. This depth corresponds to the mid-thickness of
a typical breast size (50.0 mm thick), assuming that the breast
support is 25.0 mm above the detector. In order to investi-
gate super-resolution in this system with 140 μm detector el-
ements, the test frequency ( f0) is chosen to be 5.0 lp/mm. This
input frequency is higher than the detector alias frequency
(3.6 lp/mm).

The total attenuation of a zero frequency object is
now calculated in order to normalize the amplitude C of
the attenuation coefficient of the input waveform. From
Eqs. (23) and (27), it follows that

C =
[

1

N

∑
n

ε[h cos(ψn − γn) + l cos γn] sec(θn) sec(αy)

l + h cos ψn + [u1(n) cos γn + h sin ψn] tan αy − u1(n) sin γn

]−1

, (51)
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FIG. 2. (a) and (b) Two projection images of a pitched sine plate are shown, assuming αy = 20◦, f0 = 5.0 lp/mm, ε = 0.05 mm, x0 = 0 mm, and z0 = 50.0 mm.
Signal is plotted versus detector position u1 at the fixed distance (u2) of 30.0 mm from the plane of x-ray tube motion. The presence of each detector element
(a = 0.14 mm) is modeled by a rectangle function. (c) and (d) The Fourier transforms of each projection show classical signs of aliasing. The major Fourier
peak does not occur at the input frequency (5.0 lp/mm) but instead at a frequency less than the detector alias frequency, 3.6 lp/mm.

where

u1(n) = x0(l + h cos ψn) + z0h sin ψn

x0 sin γn + (l − z0) cos γn + h cos(ψn − γn)
,

(52)

u2(n) = y0[l cos γn + h cos(ψn − γn)]

x0 sin γn + (l − z0) cos γn + h cos(ψn − γn)
.

(53)

This calculation assumes that rays for each projection pass
through the point (x0, y0, z0), giving rise to x-ray attenuation.
Concordant with our previous work, Eqs. (52) and (53) are de-
rived from the equations [Eqs. (11)–(13)] for the ray between
the focal spot and the point (u1, u2) on the detector. Although
u2(n) is not a coordinate listed directly in Eq. (51), it is calcu-
lated in Eq. (53) as a necessary substitution in the formula for
θn [Eq. (20)].

In Figs. 2(a) and 2(b), a cross section of signal is plot-
ted versus detector position u1 for the central projection

(n = 0) and an oblique projection (n = 7). The signal is cal-
culated at the distance u2 = 30.0 mm from the chest wall side
of the breast support. Following our previous work,5 this u2

displacement is chosen to simulate a position approximately
halfway between the chest wall and nipple in a typical breast
size (450 ml). To illustrate that oblique x-ray incidence intro-
duces a translational shift in the image of the object on the
detector, Fig. 2(b) shows the shift in the oblique projection
[Eq. (52)], assuming that h = 70.0 cm as would be character-
istic of the Selenia Dimensions system. The analogous shift
in the central projection is zero [Fig. 2(a)].

Although detector signal is a discrete function in a digital
system, it is represented graphically as a continuous function
in Figs. 2(a) and 2(b). The presence of each detector element
is modeled by a rectangle function whose width matches the
detector element length (0.14 mm). The projection images do
not have the appearance of the input waveform, but instead
are step-like due to the detector element sampling.

To illustrate the presence of aliasing in the two projec-
tion images, the Fourier transform of detector signal is also
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FIG. 3. The projection of a pitched sine plate onto the detector is illustrated
using a parallel x-ray beam geometry (h = ∞). As shown, the period T of the
input waveform is projected onto the x-ray converter as Tcos αy in the central
projection. Hence, the frequency detected by the x-ray converter is f0 sec αy ,
or 5.3 lp/mm assuming f0 = 5.0 lp/mm and αy = 20◦. This frequency corre-
sponds to the first minor Fourier peak in Fig. 2(c) in the acquisition geometry
for which h = ∞.

calculated in Fig. 2. Our previous study has demonstrated that
this Fourier transform is

F2(Sμ)(f1, f2) = a2sinc(af1)sinc(af2) ·
∑

m

Dμ(m, n)

· e−2πia[mxf1+(my+1/2)f2], (54)

where Sμ denotes the detector signal, and f1 and f2 mea-
sure frequency along the u1 and u2 directions, respectively.
Figures 2(c) and 2(d) show the Fourier transform versus f1, as-
suming f2 = 0. The major peak of the Fourier transform does
not occur at the input frequency (5.0 lp/mm), but instead at a
frequency less than the detector alias frequency (3.6 lp/mm).
This finding is concordant with our prior work studying a sim-
ilar test frequency at a 0◦ pitch in place of the 20◦ pitch.

Although the source-to-COR distance (h) is 70.0 cm in
the Selenia Dimensions system, it is useful to consider
projections at an infinite value of h. This limiting case
corresponds to a parallel-beam geometry. As illustrated in
Figs. 2(c) and 2(d), the positions of the Fourier peaks for each
projection are dependent on h. For a parallel-beam geome-
try (h = ∞), Fig. 3 illustrates how to calculate the frequen-
cies of the Fourier peaks in the central projection. The pe-
riod T of the test frequency projects onto the x-ray converter
as Tcos αy. Hence, the projected frequency is f0 sec αy , or
5.3 lp/mm. This frequency gives the first minor Fourier peak
in Fig. 2(c). Sampling by the TFT array aliases the input fre-
quency to 1.8 lp/mm, yielding the major Fourier peak. The
two largest Fourier peaks in Fig. 2(c) are equidistant from
the detector alias frequency 0.5a−1 (3.6 lp/mm). As shown
in the figure, two additional Fourier peaks occur at 9.0 and
12.5 lp/mm. These peaks are similarly equidistant from the
frequency 1.5a−1 (10.7 lp/mm).

Unlike a parallel-beam geometry, a divergent-beam geom-
etry (h = 70.0 cm) magnifies the object that is projected onto
the x-ray converter. Denoting M as the magnification

M = h

h − z0
, (55)

it follows from Fig. 3 that the test frequency f0 projects
onto the x-ray converter as M−1 · f0 sec αy , or 4.9 lp/mm.
This frequency corresponds to the first minor Fourier
peak in Fig. 2(c). The major peak at 2.2 lp/mm and the
first minor peak are equidistant from the alias frequency,
3.6 lp/mm. As expected, additional Fourier peaks occur at 9.3
and 12.1 lp/mm with equal distance relative to the frequency
1.5a−1 (10.7 lp/mm).

3.B. SBP and FBP reconstruction

In Fig. 4(a), SBP reconstruction is shown in a slice with
signal measured in the x′′ direction along a 20◦ pitch, as-
suming that y′′ = 0 and z′′ = 0 [Eq. (30)]. Although a sin-
gle projection is not capable of resolving the test frequency,
the pitched reconstruction is capable of resolving 5.0 lp/mm
properly. The corresponding SBP Fourier transform [Eq. (50)]
shows that the major peak occurs at the input frequency
[Fig. 4(c)]. These results generalize our previous work on
super-resolution at a 0◦ pitch to an oblique pitch.

FBP reconstructions and their Fourier transforms are also
plotted in Fig. 4 using either the RA filter alone or the RA and
SA filters together. Following our previous work on super-
resolution,5 the filter truncation frequency (ξ ) is 14.3 lp/mm,
corresponding to the second zero of the MTF of the detector
sampling process

MTF(f1, f2) = |sinc(af1)sinc(af2)| . (56)

This value of ξ is chosen to correspond with the second zero
of the MTF measured along the f1 direction, assuming that
f2 = 0. Figure 4 demonstrates that like SBP, the Fourier trans-
forms of FBP reconstructions possess their major peak at the
input frequency, 5.0 lp/mm. Filtering provides an improve-
ment over SBP reconstruction by smoothing pixelation arti-
facts in the spatial domain. The two FBP reconstructions dif-
fer in that reconstruction with the RA filter alone has greater
modulation than reconstruction with the RA and SA filters
together. This finding is expected, since the SA filter places
more relative weight on low frequencies to reduce high fre-
quency noise. The drawback of reconstructing with the RA
filter alone is the increased amplitude of high frequency spec-
tral leakage in the Fourier domain. Figures 4(b) and 4(d) are
qualitatively concordant with the results at a 0◦ pitch in our
previous work.

3.C. Effect of object thickness on the MTF

Section 3.B has demonstrated the existence of super-
resolution in oblique reconstructions using a relatively thin
input object (ε = 0.05 mm). Based on our earlier work mod-
eling a non-pixelated detector, one would expect the MTF in
an oblique reconstruction to be substantially degraded at large
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FIG. 4. (a)–(d) SBP and FBP reconstructions are performed using a slice with signal measured in the x′′ direction along the 20◦ pitch of the input object,
assuming y′′ = 0 and z′′ = 0. Unlike a single projection (Fig. 2), the reconstructions can resolve the high frequency object. The corresponding Fourier transforms
have a major peak at the input frequency (5.0 lp/mm), demonstrating that our earlier work on super-resolution at a 0◦ pitch can be generalized to oblique
reconstructions.

object thicknesses. For this reason, we now investigate the
thickness dependency of super-resolution in oblique recon-
structions.

In Fig. 5, the dependency of the MTF on object thickness
and frequency is investigated with surface plots at two pitches
(0◦ and 20◦), assuming SBP reconstruction. Following con-
vention, the MTF is found by normalizing the amplitude of
the reconstruction at each test frequency f0 against the cor-
responding value for a zero-frequency object (f0 = 0). As
Fig. 4 illustrates, the amplitude of the reconstruction can be
determined by the value at x′′ = 0, corresponding to signal at
the point (x0, y0, z0).

It is common practice to assume that the detectability limit
occurs with a MTF of 10.0%.12 This threshold is denoted by a
solid black line in both subplots of Fig. 5. If the object is very
thin (ε = 0.01 mm), one can show that frequencies up to 5.7
and 5.4 lp/mm are detectable at the 0◦ and 20◦ pitches, respec-
tively. These frequencies exceed the detector alias frequency,
3.6 lp/mm. Consequently, super-resolution is achievable at ei-
ther pitch.

Turning next to the case of a thick object, Fig. 5 shows
that the MTF is more sharply degraded with increasing fre-

quency. The resolution loss at high frequencies is much more
pronounced at the 20◦ pitch than at the 0◦ pitch. For exam-
ple, if the object is 1.0 mm thick, the highest detectable fre-
quencies at the 0◦ and 20◦ pitches are 5.4 and 2.5 lp/mm, re-
spectively, assuming that the limit of resolution is a MTF of
10.0%. This finding illustrates that super-resolution is only
achievable in an oblique reconstruction if the object is thin.
Super-resolution is feasible at a 0◦ pitch over a much broader
range of object thicknesses.

In the reconstruction of a thick object, Fig. 5 demon-
strates that low frequencies have detectable modulation over
a broader range of pitches than high frequencies. To illustrate
this concept, Fig. 6 shows the reconstruction of a relatively
thick object (ε = 1.0 mm) at 2.0 and 5.0 lp/mm with either
the 0◦ or 20◦ pitch. Modulation is detectable at both pitches
for the low frequency object, but is detectable only at the 0◦

pitch for the high frequency object.
In Fig. 6(b), the reconstruction of the 5.0 lp/mm frequency

at a 20◦ pitch shows a 180◦ phase shift that is not observed in
the other plots in the figure. This result can be explained from
the fact that the optical transfer function (OTF) is negative.
Recall that the MTF is the normalized modulus of the OTF.
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FIG. 5. Using SBP reconstruction, the dependency of the MTF on frequency and object thickness is investigated at two pitches: (a) 0◦ and (b) 20◦. The MTF
decreases with frequency, as expected. If the object is thick, the resolution loss at high frequencies is much more pronounced at the 20◦ pitch than at the 0◦ pitch.

The OTF attains negative values at frequencies just exceeding
the first zero of the MTF (Fig. 5).

3.D. Limiting resolution of an oblique reconstruction

3.D.1. Loss of resolution with increasing object
thickness

Using a MTF of 10.0% as the limit of resolution,
Fig. 6(c) explicitly studies the thickness dependence of the
highest frequency with detectable modulation. As expected,
it is demonstrated that modulation is within detectable limits
over a broad range of frequencies if the object is thin. Modu-
lation is detectable over a narrower range of frequencies if the
object is thick.

It is also shown in Fig. 6(c) that the highest frequency
with detectable modulation decreases with pitch. If the ob-
ject is very thin (0.01 mm thick), the highest frequencies
with detectable modulation are 5.7, 5.5, 5.0, 4.0, 2.9, and
1.5 lp/mm at 0◦, 15◦, 30◦, 45◦, 60◦, and 75◦ pitches, respec-
tively. As expected, the highest frequency with detectable
modulation does not exceed the frequency corresponding to
10.0% detector MTF (6.5 lp/mm), which can be calculated
from Eq. (56) assuming that f2 = 0. Figure 6(c) illustrates that
super-resolution is not achievable at pitches approaching 90◦,
regardless of object thickness. However, modulation of lower
frequency objects is preserved even at high obliquity.

3.D.2. Aliasing at large object thicknesses

In Fig. 6(c), the thickness range is truncated at an inter-
mediate value (3.8 mm) for the 0◦ pitch. Unlike the other
pitches in the plot, it can be demonstrated that frequencies
exceeding the detector alias frequency have detectable mod-
ulation at thicknesses exceeding 3.8 mm. We now show that
these high frequencies are aliased based on a metric devel-
oped in our previous work.5 Using the Fourier transform of
the SBP reconstruction of a sine plate [Fig. 4(c)], this metric

is the ratio (r) of the amplitude of the highest peak less than
the detector alias frequency (3.6 lp/mm) to the amplitude at
the input frequency (5.0 lp/mm). Super-resolution is present if
r < 1, while aliasing is present if r ≥ 1. Figure 6(d) shows that
the r-factor exceeds unity at thicknesses greater than 3.8 mm
for a 0◦ pitch. Because Fig. 6(d) demonstrates the existence
of aliasing at these thicknesses, the corresponding thickness
range is truncated in Fig. 6(c).

To further illustrate that aliasing is present at thicknesses
exceeding 3.8 mm, the SBP reconstruction of a 5.0 mm thick
sine plate is shown in Fig. 7 for the 0◦ pitch. As expected
from Fig. 6(d), this object is not resolved since the peaks and
troughs in the reconstruction do not properly match the input
frequency. The r-factor is 2.0 at this thickness.

3.E. Depth-dependence of super-resolution

Using the r-factor, our previous work showed that the ex-
istence of super-resolution is dependent on depth (z0) in the
reconstruction. For frequency measurements along the x di-
rection, it was demonstrated that various depths in the plane
x = 0 do not exhibit super-resolution. The plane x = 0 was
termed the mid posteroanterior (PA)/source-to-support (SS)
plane in our previous work, since this plane has extent in
the PA and SS directions in breast applications. Figure 8 in-
vestigates whether the depth-dependency of the r-factor con-
tinues to hold in oblique reconstructions. The detector field-
of-view (FOV) used for calculating the Fourier transforms is
42.1 × 42.1 mm and is centered on the mid PA/SS plane.
The detector element indices mx and my range from −150 to
+150 and 0 to 301, respectively; this range matches the one
used in Fig. 6(d). At the two smallest pitches investigated in
Fig. 8 (0◦ and 2.5◦), r exceeds unity at eight depths, which
are comparable to the results presented in our earlier work.5

At these eight peaks, the image of the sine plate is translated
in approximately integer multiples of detector element length
between projections. Super-resolution is not achievable since
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FIG. 6. (a) In the SBP reconstruction of a 1.0 mm thick object with a 2.0 lp/mm input frequency, modulation is detectable at both the 0◦ and 20◦ pitches.
(b) In the analogous reconstruction at a 5.0 lp/mm input frequency, modulation is detectable only at the 0◦ pitch. (c) Using a MTF threshold of 10.0% as the limit
of resolution of SBP reconstruction, the highest frequency with detectable modulation is plotted versus object thickness. At various pitches, this figure shows
that the object must be thin in order to maximize the range of frequencies with detectable modulation. (d) At a 0◦ pitch, super-resolution is not achievable at
thicknesses exceeding 3.8 mm (r ≥ 1).

the translational shifts between projections do not maximize
subpixel sampling gain.

Turning next to the 5.0◦ pitch, Fig. 8 shows that the r-factor
continues to peak at eight depths in the reconstruction, but
does not exceed unity. Super-resolution is technically achiev-
able at all depths in the reconstruction. Since r exceeds 0.5
at these eight peaks, the quality of super-resolution is not
optimal.

By increasing the pitch further to 7.5◦, 10.0◦, or 20.0◦,
Fig. 8 shows that the peaks in the value of r have much
lower amplitude. Hence, super-resolution with reasonably
good quality can be achieved at all depths for these pitches.
Although the r-factor can be used to analyze the existence
of super-resolution, it does not demonstrate whether modula-
tion is within detectable limits. Future work will further ex-
plore the calculation of modulation at various reconstruction
depths.

4. EXPERIMENTAL RESULTS

In order to validate the analytical model, a gonio-
metry stand was used to vary the pitch of a relatively thin
(ε = 0.05 mm) bar pattern phantom (Model 07-515, Fluke
Biomedical, Cleveland, OH). Projection images were ac-
quired on a Selenia Dimensions DBT system, and recon-
struction was performed in the oblique plane of the bar pat-
terns using a commercial prototype backprojection filtering
(BPF) algorithm9 (BrionaTM, Real Time Tomography, Vil-
lanova, PA). The technique factors of the image acquisition
matched the ones given in our previous work.5 The long axis
of the phantom, which was centered on the mid PA/SS plane,
was positioned at a fixed depth, z0 = 10.8 cm above the
detector, for all pitches. Although this depth corresponds to
a position outside the breast in a typical 5.0 cm thickness
under compression, it was the only depth supported by the
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FIG. 7. At a 0◦ pitch, the SBP reconstruction of a very thick object
(ε = 5.0 mm) shows aliasing for a 5.0 lp/mm input frequency. This result
illustrates that the thickness of the test object places a constraint on the feasi-
bility of super-resolution, as expected from Fig. 6(d) using the r-factor.

goniometry stand and is presented for the purpose of experi-
mental validation of oblique reconstructions.

To illustrate that a single projection image cannot resolve
frequencies exceeding the detector alias frequency, the central

projection of the bar pattern phantom at a 0◦ pitch is shown in
Fig. 9. The projection misrepresents frequencies higher than
3.6 lp/mm. For example, at 4.0 lp/mm, Moiré patterns are
present. At 5–7 lp/mm, the line pairs have an erroneous ori-
entation and are imaged as if they were a lower frequency.

As expected from our earlier work on super-resolution, a
reconstruction at a 0◦ pitch [Fig. 10(a)] is capable of resolv-
ing higher frequencies than a single projection. Frequencies
up to 5.75 lp/mm can be resolved. This estimate of the high-
est detectable frequency is approximated to the nearest mul-
tiple of 0.25 lp/mm, since it is determined by visual inspec-
tion. The reconstruction grid was specified to have ten times
smaller pixelation (14.0 μm) than the detector in order to sup-
port super-resolution. At a 30◦ pitch, the reconstruction in
the plane of the bar patterns [Fig. 10(b)] also shows super-
resolution, as frequencies up to 4.75 lp/mm have detectable
modulation. This experimental result verifies that our earlier
work on super-resolution can be generalized to an oblique re-
construction plane.

Concordant with the analytical model, the experimental
images demonstrated that super-resolution is not achievable at
pitches approaching 90◦. To illustrate this concept, Fig. 10(c)
shows the reconstruction of the bar pattern phantom at a 60◦

pitch. The highest frequency with detectable modulation is
3.0 lp/mm.

FIG. 8. The depth dependency of super-resolution is investigated for measurements made in the mid PA/SS plane (x = 0) using a 5.0 lp/mm input frequency.
At a (a) 0◦ or (b) 2.5◦ pitch, super-resolution is not achievable at various reconstruction depths for which r ≥ 1. By increasing the pitch, it is demonstrated that
the peaks in the value of r have much lower amplitude: (c) 5.0◦, (d) 7.5◦, (e) 10.0◦, (f) 20.0◦ pitch. For high quality super-resolution, r should approach zero. All
subplots in this figure implicitly share a common legend.
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FIG. 9. A bar pattern phantom was positioned parallel to the breast support (i.e., at a 0◦ pitch) of a Selenia Dimensions DBT system. It is shown here that the
central projection cannot resolve frequencies higher than the detector alias frequency, 3.6 lp/mm, for 140 μm detector elements.

Although Fig. 10 only shows reconstructions at 0◦, 30◦,
and 60◦ pitches, images of bar patterns at additional pitches
were also obtained experimentally. By visually inspecting
the reconstruction at each pitch, the highest frequency with
detectable modulation was determined. The estimate was
approximated to the nearest multiple of 0.25 lp/mm. In
Fig. 11, these results are compared against the predictions of
the analytical model. Because there is no absolute threshold
for detectable modulation, we consider MTF thresholds
of 5.0%, 10.0%, and 15.0% in the analytical model.

Figure 11 demonstrates that the highest frequency with
detectable modulation decreases with pitch. In order to model
the mid-thickness of a typical breast size under compression,
the analytical results are simulated at a different depth
(z0 = 5.0 cm) than the experimental results (z0 = 10.8 cm).
The experimental results correspond to a depth exceeding a
typical breast size, as this was the only depth supported by
the goniometry stand.

In order to demonstrate that the experimental and ana-
lytical results follow the same trend with increasing pitch,

FIG. 10. (a) A BPF reconstruction, which is performed on a grid with much smaller pixelation than the detector, is capable of resolving higher frequencies than
a single projection. As shown here at the 0◦ pitch, the highest frequency with detectable modulation is approximately 5.75 lp/mm. This frequency is higher than
the detector alias frequency, 3.6 lp/mm. (b) A reconstruction in the oblique plane of the bar patterns at a 30◦ pitch also shows super-resolution, with visibility of
frequencies up to 4.75 lp/mm. (c) At a 60◦ pitch, the highest frequency with detectable modulation is 3.0 lp/mm. This result illustrates that super-resolution is
not achievable at pitches approaching 90◦.
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FIG. 11. Using the experimental reconstructions, the highest frequency with
detectable modulation is plotted versus the pitch of the bar pattern phan-
tom. In addition, the analogous results derived from the analytical model are
shown using MTF thresholds of 5.0%, 10.0%, and 15.0%. The experimental
results follow the same trend as the analytical model.

Pearson’s correlation coefficient is calculated. Pearson’s
correlation coefficient quantifies the extent to which the
experimental and analytical results are linearly dependent on
a scale from −100% to 100%. One can show that there is

99.7% correlation between the six experimental points and
the six corresponding analytical points. This result holds for
each of the three MTF thresholds in Fig. 11. Thus, the ex-
perimental and analytical results effectively follow the same
trend with pitch, regardless of the specific MTF threshold that
is used in the model.

The highest frequency that can be resolved in a single pro-
jection is the alias frequency of the detector. Using Fig. 11,
one can calculate the pitch at which the highest frequency
with detectable modulation exactly matches the alias fre-
quency of the detector (3.6 lp/mm). For a MTF threshold of
10.0% and a depth of 5.0 cm, this pitch is 51◦. This result sug-
gests that a 51◦ angle is a practical upper limit for the pitch
at which a reconstruction should be generated. Figure 11 pre-
sumes that the object is relatively thin (0.05 mm thick). Be-
cause a clinical reconstruction consists of objects with various
thicknesses, future work is necessary to determine the range
of pitches at which clinical reconstructions are appropriate.

5. CLINICAL RESULTS

In breast imaging, super-resolution has application in the
visualization of fine structural details, such as microcalcifica-
tions. This concept is illustrated in Fig. 12 which builds upon

FIG. 12. In breast imaging, the concepts studied in this work have applications in the visualization of microcalcifications. (a) A slice at a 0◦ pitch in a BPF
reconstruction is initially created using pixels matching the detector element size (140 μm), and the result is magnified to give the image displayed. (b) A slice
at a 0◦ pitch is generated using a reconstruction grid with much smaller pixelation than the detector. (c) Using the same reconstruction grid size as image (b), the
pitch of the reconstruction plane is changed to 30◦. (d) The oblique reconstruction plane in image (c) is orthogonally translated by 5.0 mm to bring the upper
left cluster of calcifications into focus. Images (b)–(d) support super-resolution, unlike image (a).
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a clinical case presented in our earlier work. This figure dif-
fers slightly from our earlier work (Fig. 12 in Acciavatti and
Maidment5) in terms of the region of interest (ROI) size and
the reconstruction parameters. Figure 12(a) is created by mag-
nifying a slice at a 0◦ pitch using 140 μm voxels matching
the detector element size. The net result has 35 μm voxels.
By contrast, Fig. 12(b) is a reconstruction of the same clinical
case using much smaller pixelation than the detector, yielding
a sharper image that supports super-resolution. In Fig. 12(c),
a slice is generated at a 30◦ pitch using the same pixelation
as Fig. 12(b). Figure 12(c) demonstrates that the visibility of
the lower cluster of calcifications is not considerably different
from Fig. 12(b). The impact of super-resolution is evident in
the oblique reconstruction plane.

The upper left cluster of calcifications is not visible at the
30◦ pitch in Fig. 12(c), as it is out of the reconstruction plane.
Visualization is improved by orthogonally translating the re-
construction plane by 5.0 mm [Fig. 12(d)]. The calcifications
are sharper in Fig. 12(d) than in Fig. 12(a), reflecting the ef-
fect of super-resolution.

It appears that a greater number of calcifications in the up-
per left cluster are visible in Fig. 12(d) than in Fig. 12(b). It
also appears that some of the individual calcifications can be
seen with higher contrast in Fig. 12(d) than in Fig. 12(b). This
result might suggest that the upper left cluster is obliquely
pitched relative to the breast support and is best visualized
in an oblique reconstruction plane (Fig. 13). While it would
be reasonable to assume that a reconstruction is optimally
viewed along the actual pitch of the calcification cluster, it is
not possible to determine this optimal pitch due to the lack of
ground truth in clinical images. In addition, it is not possible
to determine whether the increase in contrast for some of the
individual calcifications in Fig. 12(d) is due to random effects.
The development of a framework for determining the optimal
pitch for viewing a clinical reconstruction is beyond the scope
of this work, but should be the subject of future phantom sim-
ulation studies in which ground truth is known. Future work

FIG. 13. A sketch of microcalcification clusters at two orientations is shown.
It is posited that the calcification cluster in Fig. 12(d) is obliquely pitched
relative to the breast support, unlike the cluster in Fig. 12(c).

should also investigate techniques for optimizing the filter in
oblique reconstructions.

Oblique reconstructions also have application in quanti-
fying the size of a complex cancer. Figure 14 shows the re-
construction of a clinical example using slices at 0◦ and 38◦

angles relative to the breast support. It appears that the full
extent of the lesion can be seen more clearly in the oblique
plane than in the plane parallel to the breast support. It also
appears that the tumor margins are defined more precisely in
the oblique plane. A future clinical study is merited to quan-
tify the clinical impact of oblique reconstructions in tomosyn-
thesis.

6. DISCUSSION

Our preceding paper7 gave a proof-of-principle justifica-
tion for oblique reconstructions in tomosynthesis. Because
simplifying assumptions about the acquisition geometry were
made in that paper, it was not explicitly demonstrated that
oblique reconstructions are capable of super-resolution. By
modeling detector pixelation and additional features of the
acquisition geometry, this current study shows that input fre-
quencies exceeding the detector alias frequency are indeed
resolvable in an oblique reconstruction. The features of the

FIG. 14. (a) A reconstruction plane at a 0◦ angle relative to the breast support does not show the full extent of a complex cancer in this anecdotal example.
(b) A plane at a 38◦ angle relative to the breast support appears to show the full extent of the lesion more clearly and to define the borders of the tumor more
precisely.
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TABLE I. In simulating the reconstruction of a pitched sine plate (Fig. 1), this
work models features of the tomosynthesis acquisition geometry that were
not modeled in our preceding paper (Ref. 7). The most important feature for
demonstrating the existence of super-resolution is detector pixelation.

Preceding paper (Part I) (Ref. 7) Current paper (Part II)

Non-pixelated detector Pixelated detector
Stationary detector Rotating detector
2D reconstruction space 3D reconstruction space
Parallel x-ray beam geometry Divergent x-ray beam geometry
Infinitesimally small angular spacing

between projections
Discrete step angles between

projections

acquisition geometry that are modeled in this work, but not in
our preceding paper,7 are summarized in Table I.

In order for a test frequency to be visualized in an image,
it is necessary for the MTF to exceed the detectability limit
(10.0%). This work demonstrates that an object must be thin
for frequencies exceeding the detector alias frequency to have
detectable MTF in an oblique reconstruction. This constraint
does not hold for low frequency objects, which are detectable
in oblique reconstructions at larger thicknesses.

The r-factor was investigated as a metric for assessing
the depth dependency of super-resolution. In oblique recon-
struction planes centered about the mid PA/SS plane, it was
demonstrated that the depth dependency of the r-factor is min-
imized with increasing pitch. Thus, one benefit of increas-
ing the pitch of the reconstruction plane is minimizing the
anisotropies in super-resolution.

The existence of super-resolution in oblique reconstruc-
tions was validated with a commercial DBT system by ana-
lyzing a bar pattern phantom. Super-resolution is achievable
up to a 51◦ pitch in the Selenia Dimensions geometry, as-
suming that the input object is thin. As we noted in our ear-
lier work,5 the feasibility of super-resolution is not necessar-
ily unique to the commercial DBT system analyzed or to the
commercial reconstruction algorithm used. A necessary con-
straint is that the reconstruction algorithm supports finer sam-
pling than the detector. The range of pitches at which super-
resolution is achievable is dependent upon the design of the
acquisition geometry.

By using modulation as the metric of detectability, this
work implicitly assumes that noise does not influence the visi-
bility of an object. This assumption is valid for a high contrast
bar pattern phantom, as was the case in the experimental im-
ages. If one were to consider low contrast signals, the relative
signal-to-noise would be a more useful metric of detectabil-
ity. Future work should expand the analytical model to simu-
late quantum noise at various radiation dose levels, as well as
other noise sources.13, 14 The highest detectable frequency in
an oblique reconstruction plane [Figs. 6(c) and 11] could then
be calculated as a function of the radiation dose.

Although the 2D MTF for a slice in the reconstruction is
used as a metric of image quality in this work (Fig. 5), our pre-
vious study demonstrated that 3D MTF can also be used as a
metric of image quality.7 In that study, we showed that the
3D MTF is nonzero within a region resembling a double cone
in the fx-fz planes of Fourier space (see Fig. 1 of Acciavatti

and Maidment7). The opening angle of the sampling cones
matches the angular range of the scan. Since the 0◦ pitch is
contained within the sampling cones in a parallel-beam geom-
etry, conventional practice is to create slices along this pitch.
It is important to note that the 0◦ pitch is not necessarily con-
tained within the sampling cones in a divergent-beam geom-
etry. At the corner of the detector opposite the chest wall, for
example, the incident angle (θn) varies over 15 projections
between 22.9◦ and 26.3◦ in the Selenia Dimensions system
with a 24.0 × 29.0 cm detector FOV. In this example, an im-
portant distinction must be drawn between the 3D MTF and
the inplane MTF. Although the 3D MTF is zero along the 0◦

pitch of Fourier space, the 2D MTF of a slice along this pitch
is nonzero. This property arises because the in-plane MTF is
the integral of the 3D MTF along the direction perpendicular
to the slice.

In order to view a reconstruction using an oblique plane,
this work assumes that the conventional reconstruction planes
perpendicular to the z axis are rotated about the y axis, or the
chest wall-to-nipple direction in a breast application. Oblique
reconstruction planes can also be generated by a rotation
about the x axis, or the direction parallel to the chest wall
side of the breast support. Using the conventional definition
of Euler angles, the latter rotation is termed a “roll” instead
of a “pitch.” Roll rotations were not modeled in this study,
although we have successfully investigated these experimen-
tally (images not shown). Roll rotations should be investi-
gated in future work to generalize the calculation of the high-
est detectable frequency [Figs. 6(c) and 11] to various pitch
and roll combinations.

This paper simulates a point-like focal spot with a MTF of
unity at all frequencies. Future work should model the MTF
due to the finite size of the focal spot. Since the MTF of the
focal spot decreases with increasing magnification,12, 15–17 it is
expected that resolution should become poorer with increas-
ing depth (z0) in the reconstruction. Although this effect was
not modeled in this paper, the loss of resolution is evident
if one compares the bar pattern reconstruction at a 0◦ pitch
[Fig. 10(a)] against our previous work on super-resolution.5

Using the same experimental system and acquisition param-
eters, our previous work demonstrated that frequencies up
to 6.0 lp/mm have detectable modulation, yet our current
work shows frequencies up to 5.75 lp/mm (Fig. 11). Be-
cause our current experimental results correspond to a higher
depth (z0 = 10.8 cm) than our previous experimental results
(z0 = 5.0 cm), poorer resolution is expected due to the in-
creased focal spot magnification.

A few additional directions for more complete modeling
in future work are now noted. Future work should simulate
blurring in the x-ray converter, so that total attenuation in
Eq. (27) is convolved with a point spread function (PSF).
Blurring in the x-ray converter is most pronounced at the
edges and corners of the detector due to increasing deviation
in the angle of x-ray incidence relative to the normal to the de-
tector. Previous studies have calculated the MTF degradation
due to oblique x-ray incidence.18–25

Detector lag and ghosting are additional concepts that
would be useful to model in future studies.26–28 Although
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this work implicitly assumes the presence of a monoener-
getic x-ray beam, polyenergetic x-ray spectra29–31 should also
be simulated in future work. Finally, the MTF degradation
due to continuous x-ray tube motion during the scan of the
projections should be simulated.2, 6, 10, 32–34 While these sub-
tleties of the acquisition geometry were not modeled directly
in this paper, the simulations showed reasonably good agree-
ment with the experimental results for the purpose of this
work.

7. CONCLUSION

This work demonstrates the existence of super-resolution
in oblique reconstructions for tomosynthesis. We show that
test frequencies exceeding the detector alias frequency can be
resolved in an oblique plane created with pixelation smaller
than the detector element size. The test object must be thin in
order for high frequencies to have detectable modulation.

Experimental images of a thin bar pattern phantom verified
the existence of super-resolution in oblique reconstructions.
In accord with the predictions of the analytical model, the
range of frequencies with detectable modulation decreased
with increasing pitch, so that only low frequency objects
could be detected at pitches approaching 90◦. This limiting
case corresponds to a test frequency perpendicular to the
breast support in the DBT system used for experimental val-
idation. In breast imaging, super-resolution has application in
the visualization of microcalcifications and other subtle signs
of cancer.
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APPENDIX: NOMENCLATURE

Symbol Meaning
Aμ(n) Total attenuation for the nth projection
Dμ(m, n) Signal in the mth detector element for the nth

projection

F Fourier transform operator (subscript denotes
dimension)

Ln Path length through the input for the nth projec-
tion

R3 Euclidean 3-space
Sμ Raw signal at coordinate (u1, u2) on the rotated

detector
αy Pitch angle, corresponding to a rotation about

the y axis
γ n Angle of rotation of the detector relative to the

x axis for the nth projection
�ψ Angular spacing between projections
ε Thickness of sine plate (Fig. 1)
η′′

xmn A term defined by Eq. (45) to simplify interme-
diate calculations

η′′
ymn A term defined by Eq. (36) to simplify interme-

diate calculations
θn Angle of x-ray incidence relative to the normal

to the detector (θmn denotes the special case at
the centroid of the mth detector element for the
nth projection)

κn A quantity defined by Eq. (23)
λn A quantity defined by Eq. (24)
μ X-ray linear attenuation coefficient of input ob-

ject (sine plate)
ξ Truncation frequency of reconstruction filter
ρ1,ρ2 Quantities defined in our previous work.5

σ jmn Terms defined in our previous work.5

φ Reconstruction filter
ψn Nominal projection angle
ax,ay Detector element dimensions in the x and y di-

rections; if the x and y subscripts are removed,
the detector element is square (ax = ay = a)

b1,b2 Real numbers used to illustrate a sum-to-
product trigonometric identity [Eq. (25)]

C Maximum value of the attenuation coefficient of
the sine plate [Eq. (4)]

COR Center-of-rotation of x-ray tube motion
CT Computed tomography
DBT Digital breast tomosynthesis
DM Digital mammography
f Spatial frequency (f0 denotes the input fre-

quency)
FBP Filtered backprojection
FOV Field-of-view
g Gear ratio of detector
h Source-to-COR distance for rotating x-ray tube
i Imaginary unit given as

√−1
I′′xmn An integral defined by Eq. (41)
I′′ymn An integral defined by Eq. (35)
l Distance between the COR and the origin O

(Fig. 1)
lp Line pairs
m A doublet with coordinates (mx, my) used for la-

beling detector elements
M Magnification
MTF Modulation transfer function
n Projection number
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N Total number of projections
PA Posteroanterior (in breast x-ray imaging, the di-

rection perpendicular to the chest wall)
PA/SS Descriptive acronym for a plane with extent

along the PA and SS directions
PSF Point spread function
r Ratio of the amplitude at the highest Fourier

peak less than the detector alias frequency
(0.5a−1) to the amplitude at the input frequency
(e.g., 5.0 lp/mm) in reconstructing a high fre-
quency sine plate (Fig. 1)

RA Ramp filter
ROI Region of interest
SA Spectrum apodization filter
SBP Simple backprojection
SS Source-to-support (defined to be synonymous

with the z direction)
T Period of input waveform (Fig. 3)
TFT Thin-film transistor
u1,u2 Position in the plane of the rotated detector (par-

allel and perpendicular to the chest wall, respec-
tively)

w Parameter ranging between 0 and 1 in the equa-
tion of the x-ray beam between the focal spot
and the incident point on the detector [Eq. (16)]

w±
n Value of w at the entrance (w+

n ) and exit (w−
n )

points of the x-ray beam through the sine plate
(Fig. 1) for the nth projection

x Position parallel to the chest wall side of the
breast support; rotation by the angle γ n about
the y axis yields x ′

n

x′′ Position along the pitch angle αy of an oblique
reconstruction plane relative to the point
(x0, y0, z0) in Eq. (30)

(x0, y0, z0) Centroid of an oblique reconstruction plane
[Eq. (30)]

x±
n Value of x at the entrance (x+

n ) and exit (x−
n )

points of the x-ray beam through the sine plate
(Fig. 1) for the nth projection

y Position perpendicular to the chest wall; it is
equivalent to y ′

n

y′′ Position perpendicular to the plane of x-ray
tube motion relative to the point (x0, y0, z0) in
Eq. (30)

z Position perpendicular to the plane of the breast
support; rotation by the angle γ n about the y
axis yields z′

n

z′′ Position perpendicular to an oblique reconstruc-
tion plane relative to the point (x0, y0, z0) in
Eq. (30)
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