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Abstract. Within the framework of a virtual clinical trial for breast imaging, we 
aim to develop numerical observers that follow the same detection performance 
trends as those of a typical human observer. In our prior work, we showed that 
by including spatio-temporal contrast sensitivity function (stCSF) of human 
visual system (HVS) in a multi-slice channelized Hotelling observer (msCHO), 
we can correctly predict trends of a typical human observer performance with 
the viewing parameters of browsing speed, viewing distance and contrast. In 
this work we further improve our numerical observer by modeling contrast 
masking. After stCSF, contrast masking is the second most prominent property 
of HVS and it refers to the fact that the presence of one signal affects the visi-
bility threshold for another signal. Our results indicate that the improved  
numerical observer better predicts changes in detection performance with back-
ground complexity.  
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1 Purpose 

Commonly used numerical observers cannot necessarily predict the behavior of a 
typical human observer in all observation scenarios. This is due to the fact that they 
are modeled after ideal observers (i.e., maximizing some detection performance me-
tric) with some concessions for tractability (e.g., channelization). For example, a  
multi-slice channelized Hotelling observer (msCHO), without correct application of 
spatio-temporal contrast sensitivity function (stCSF), is unable to predict the  
fundamental effect of display contrast on detection of lesions in digital breast  
tomosynthesis (DBT) [1, 2]. 

Our goal is to enhance a numerical observer by making it perform more similarly 
to a human observer. Our approach towards this goal is to integrate important proper-
ties of the human visual system (HVS) as a pre-processing step to a commonly used 
numerical observer (msCHO). In other words, as the result of HVS modeling,  
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“perceived” 3D image stacks are fed to msCHO. Previously we have reported on the 
benefits of integrating the HVS property of stCSF with msCHO [1, 2, 3]. 

In this work, we study the effect of modeling the contrast masking property of 
HVS in our numerical observer. Contrast masking refers to the phenomenon that the 
presence of a signal (“masker”) makes detection of another signal (“maskee”) more 
difficult. 

1.1 Prior Work 

Zhang et al channelized the input image in orientation and (spatial) frequency [4]. In 
the most sophisticated model used, an inhibitory component (denominator of Eq. 13 
therein) is used to factor in the contrast masking effect. 

Early channelization of the data in [4] is undesirable in our methodology. By post-
poning channelization to CHO (i.e., HVS simulation followed by a traditional numer-
ical observer at the backend), one can replace msCHO by a more sophisticated  
observer to upgrade the pipeline. In other words, early channelization discards data 
that may be useful to the detection task to be performed at the backend. Also, the 
perception model in [4] is parametric and is unusable without a calibration to  
(psychophysical) experimental results. 

Krupinski et al developed a perceptual numerical observer as follows [5]. Using a 
perceptual image quality metric, JNDmetrix, a lesion image (signal + background) is 
compared to the corresponding healthy image (background only). Lesion detectability 
is assumed to be correlated to the metric value which is an indication of the perceived 
difference between the two images. Contrast masking is one of the effects considered 
in the derivation of perceptual difference. 

The perceptual observer proposed in [5] is double-ended. Our current pipeline is 
single-ended. This is an advantage in our application since unlike a double-ended 
observer, a single-ended observer does not require having both a version with and 
without lesion for every image stack.  

Our current pipeline is designed for DBT (three dimensional, 2D space and 1D 
time; may be used for other 3D modalities, though not tested) and is able, for exam-
ple, to show a peak in detection performance with slice browsing speed [2].  
Numerical observers in above mentioned papers are spatial-only (2D). 

2 Methods 

2.1 Simulation Platforms and Preparation of Datasets 

In this work, synthetic breast images were generated using the breast anatomy and 
imaging simulation pipeline developed at the University of Pennsylvania (UPenn). 
Normal breast anatomy is simulated by a recursive partitioning algorithm using oc-
trees [10]. Phantom deformation due to clinical breast positioning and compression is 
simulated using a finite element model [11]. DBT image acquisition is simulated by 
ray tracing projections through the phantoms, assuming a polyenergetic x-ray beam 
without scatter, and an ideal detector model. Reconstructed breast images are obtained 
using the Real-Time Tomography image reconstruction and processing method [12].  
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Fig. 1. Block diagram of the display and virtual observer simulation. The methods proposed in 
this paper are used in the dotted block. 

The display and virtual observer simulation (Fig. 1) is implemented in MEVIC 
(Medical Virtual Imaging Chain) [13], an extensible C++ platform developed for 
medical image processing and visualization at Barco. DBT stack datasets (volumes of 
interest) with and without simulated lesions, generated using the UPenn pipeline, are 
input to the display and virtual observer simulation pipeline. For the experiments with 
numerical observer that are reported here, the “simple background” dataset (see next 
paragraph for details) consists of 3296 reconstructed 64x64x32 DBT image stacks, 
half with lesions and half without. Each stack is first decomposed into its spatiotem-
poral frequency components using a 3D fast Fourier transform (FFT). The stCSF [1, 
2], contrast masking (Section 2.2), and psychometric function [1, 2] are modeled in 
the dotted block in Fig. 1 to determine the perceived amplitude of each frequency 
component. Then, an inverse 3D FFT is applied to the perceived amplitudes to trans-
form the perceived stack into the space-time domain. Finally, the results are fed to a 
multi-slice channelized Hotelling observer (msCHO) developed by Platiša et al [14]. 
For further details of the simulation see [2]. 

 

Fig. 2. From left to right: Slices #16 from the same image stack in datasets with background 
complexity level of 0 (simple background), 1, 2, 3, and 4. The insertion contrast for these im-
ages is increased to make the lesion (the bright spot in the center of each slice) visible for the 
purposes of publication. 

To create datasets with varying background complexity, spatiotemporal low-pass 
Gaussian noise with four different levels of energy was added to the dataset from 
UPenn phantom. Slices #16 from a sample image stack in five datasets are shown in 
Fig. 2. 
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2.2 Experiments with Numerical Observers 

The following section describes how we modeled HVS contrast masking property in 
the numerical observer. According to Winkler, we can disregard temporal contrast 
masking effect since there is no abrupt change in average luminance (Section 9.2 of 
[6]). This does assume a continuous browsing in viewing DBT stacks. 

To account for spatial contrast masking, we use Barten’s model (Chapter 6 of [7]), 
with the following considerations. Barten addressed the masking of a single spatial 
tone (single-frequency signal) by a band-pass noise. We assume each frequency com-
ponent as masker for all other frequency components in a neighborhood determined 
by masker-maskee difference in frequency and orientation. This is done for every 
slice in the image stack and the result is used to adjust the CSF-only visibility thre-
shold calculated for each spatio-temporal component of the image stack as follows 
(Eq.  2.50 in [7]): ݉௧ᇱ ൌ ඥ݉௧ଶ  ݇ଶ݉ଶ ,     (1) 

where ݉௧ᇱ  is the visibility threshold with masking, ݉௧  is the CSF-only visibility 
threshold, ݉  is the masker power, and k is Crozier coefficient. The rest of 
processing is the same as the CSF-only pipeline with psychometric non-linearity de-
scribed in our prior work [1, 2]. 

To find ݉ ሺݑ,  ,ሻ, the masker power for a component with spatial frequency (u, v)ݒ
we first approximate S, the spatial spectrum of the image stack, as follows. ܵሺݑ, ሻݒ ൌ ∑ ,ݑሺܫ| ,ݒ ௪ሻ|ଶݓ     (2) 

I is 3D DFT of the image stack. w denotes the temporal frequency. By generalizing 
Eq. 6.2 of [7] for 2D spatial frequencies, we derive the following formula for the 
masker power. 

  ݉ ሺݑ, ሻݒ ൌ ∑ ௪൫௨,௩,௨ᇲ,௩ᇲ൯ሺೠᇲ,ೡᇲሻ ௌ൫௨ᇲ,௩ᇲ൯ௌሺ,ሻ ∑ ௪ሺ௨,௩,௨ᇲ,௩ᇲሻሺೠᇲ,ೡᇲሻ ݑ   , ് 0 or ݒ ് 0,             (3) 

 ܽ݊݀  ݉ ሺ0,0ሻ ൌ 0.  
 
The function ݓሺݑ, ,ݒ ,ᇱݑ ᇱሻݒ  allows a higher weight for nearby components in  
(spatial) frequency and orientation and is given by 
 

,ݑሺݓ ,ݒ ,ᇱݑ ᇱሻݒ ൌ ۔ۖەۖ
|ߙ|                                                        ,0ۓ  5°

݁ିଶ.ଶమ൮ଵାඨ൫ೠషೠᇲ൯మశ൫ೡషೡᇲ൯మೠమశೡమ ൲,         |ߙ|  5°    (4) 

 
where ߙ is the angle between ሺݑԢ, ,ݑԢሻ and ሺݒ  ሻ. This weighting function above isݒ
derived by generalizing Eq. 6.4 of [7] for 2D spatial frequencies, and considering the 
fact that only excitations close in orientation mask one another (Eq. 5.18 in [8]). 
 



 It Is Hard to See a Needle in a Haystack: Modeling Contrast Masking Effect 727 

 

Simulation parameters are the same as those used for human observer experiments 
(Section 2.3). For calculation of stCSF and the perceived amplitudes, see [2]. 

2.3 Experiments with Human Observers 

The following section describes how we have established human observer detection 
performance in three levels of background complexity. From the same datasets used 
for experiments with numerical observer, 35 image stacks are randomly chosen for 
each of the six conditions. The set of conditions is the Cartesian product of {lesion, 
healthy} (i.e., lesion present or absent) and {0, 2, 4} level of background complexity 
(see Fig. 2), simulated by the image stacks without addition of noise, and the image 
stacks with medium and high energy noise added (the noise spectrum remained the 
same) respectively. 

The total of 210 image stacks were presented to the human observer in a random 
order on a DICOM-calibrated BARCO MDMG-5221 medical display which is opti-
mized and cleared by FDA for reading of DBT images and is equipped with Rapid-
Frame temporal response compensation technology. Each image stack was displayed 
in cine mode at a constant browsing speed of 10 slice/sec twice. The recommended 
viewing distance from the display was about 40 cm (translates to a spatial sample rate 
of 18 pixel/degree) but was not strictly enforced for the observer’s comfort. The max-
imum luminance of display (Lmax) was set to 850 cd/m2. In our viewing environment, 
the black point luminance of the display (i.e., the level of luminance associated with 
drive level of zero) was measured at Lmin = 1.75 cd/m2, using a Minolta CS-100A. 
Therefore, the effective contrast given by Lmax/Lmin, was 486. 

The observer could repeat the presentation of an image stack (as described above) 
as many times as desired, or score the presence of a lesion in the spatiotemporal cen-
ter of the stack. No temporal or spatial clue was provided for the location of lesion. 
That was because, given our presentation scenario, we found such clues unnecessary 
and even distracting from the lesion detection task in our pilot experiments. Scoring 
an image stack consisted of entering one number from the set {0, 1, 2, 3} meaning 
{certainly no lesion, probably no lesion, probably lesion, certainly lesion} respective-
ly. When an image stack was scored, the process above was repeated for the next 
image stack. We considered the detection performance as the percentage of correctly 
identified (i.e., scored 2 or 3) lesion image stacks. 

To have more stable results, the same set of image stacks that were randomly cho-
sen for the first human observer was used for the experiments with other human  
observers as well. 

The observers were required to have normal vision and pass a 10-minute training 
session to become familiar with the experiment and their task. The observers were not 
radiologist. This is justified considering the fact that the location of the lesion, if 
present, is always known (and constant), hence the detection task is simply reduced to 
recognizing a bright spot in a background with various levels of complexity. 
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3 Results and Discussion 

The results of experiments with two human observers are given in Table 1. As ex-
pected, the detection performance for human observers falls with increasing back-
ground complexity. It is conceivable that with more experience, human observers who 
are aware of lesion prevalence rate (50% in our experiments) reach the chance  
performance (0.5) even in high background complexity. 

Table 1. Percentage of correctly identified lesion stacks (of total) in three background 
complexity levels 

Background 
Complexity Low Medium High 

Observer A 0. 9714 0. 7714 0. 2571 
Observer B 0. 8000 0. 7143 0. 3429 

 

 

Fig. 3. Detection performance (in AUC) for datasets at various background complexity levels 
(Section 2.1) 

Simulation results from modeling HVS with stCSF only, and stCSF plus contrast 
masking are compared in Fig. 3. In each case, three methods of calculating the per-
ceived amplitudes using the visibility threshold are simulated: Monte Carlo (MC), 
probability map (PM), and linear filtering (LF). While both methods PM & MC use a 
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nonlinear psychometric function, PM is deterministic and MC is not. For more  
information on calculation of the perceived amplitudes, see [2]. 

The inclusion of contrast masking makes the numerical observer more closely re-
semble the human observer performance, in the sense that it removes some of the over 
performance of numerical observer. Among the six graphs in Fig. 3, the one showing 
the results of modeling HVS with stCSF plus contrast masking using the PM method 
for perceived amplitude calculation demonstrates the most significant drop in detec-
tion performance with increasing background complexity. Even this graph, however, 
cannot match the fast drop of detection performance of human observers as listed in 
Table 1. 

4 Conclusion 

Our results indicate that by modeling the HVS contrast masking property, lesion de-
tection becomes more difficult in a busier background, as expected from a typical 
human observer. 

This is a work in progress. We plan to continue our work on this project in the fol-
lowing avenues. (i) Experiments are conducted with more human observers and the 
scores will be aggregated with one-shot multi-reader multi-case ROC analysis [9]. (ii) 
A more realistic model of background complexity including anatomical and quantum 
noise using our software phantom will be used to prepare the datasets. (iii) We will 
explore the extent of our claims for a variety of lesion sizes and types. 
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