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Abstract—This paper investigates the use of a wavelet 
multiresolution analysis to reduce noise in mammographic 
images acquired with low levels of radiation dose. We studied 
the use of a wavelet denoising technique to filter the quantum 
noise that is incorporated in mammographic images when the 
radiation dose is reduced. Results were obtained by denoising a 
set of mammographic images acquired with different levels of 
radiation exposure, using an anthropomorphic breast 
phantom. Parameters of the algorithm were adjusted to 
provide more efficient reduction of noise without blurring or 
insertion of artifacts. We used the Anscombe transformation 
before denoising to convert the Poisson signal-correlated noise 
into an approximately additive white Gaussian noise. 
Evaluation of denoising performance were conducted by 
comparing image quality indexes between mammograms 
acquired with normal radiation dose and those acquired at 
lower doses levels, after denoising by the proposed technique. 

Keywords-component; image processing; image denoising; 
digital mammography; quantum noise; wavelet transform; 
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I.  INTRODUCTION 
Digital mammography is the most important exam to 

early detection of breast cancer, with a better performance 
than the screen-film mammography [1]. However, nowadays 
the radiation doses used in clinical practice with the digital 
systems are approximately the same used by the screen-film 
systems. It happens because the relationship between the 
radiation dose and the accuracy of medical diagnosis is not 
yet well established for digital mammography [2]. 

It is known the radiation exposure caused by 
mammography exams can induce the development of breast 
cancer in some women undergoing mammographic 
screening [3,4]. The main obstacle to reducing the radiation 
dose in mammography is the increase of quantum noise in 
the image. The quantum noise is the result of low photon 
count used in image formation process; it is the main cause 
of the reduction of visibility of subtle lesions in 
mammography [5]. Thus, a reduction in the radiation dose 
and the consequent increase in image noise may compromise 
the detection of breast lesions by radiologists, especially in 
its early stages [2]. 

Accordingly, the aim of this study is to investigate the 
use of denoising techniques to reduce the quantum noise in 
mammographic images acquired with reduced radiation 
dose, providing that the image quality is preserved as for the 
images acquired at the standard dose. The denoising 
technique proposed in this work is the coefficient shrinkage 
in wavelet domain, a method that uses the multiresolution 
concept to remove noise of digital images [6]. The denoising 
process was applied to a set of mammographic images 
acquired in different radiation levels in a clinical 
mammographic unit, using an anthropomorphic breast 
phantom [7,8]. As the wavelet shrinkage methodology has 
been proposed by Additive White Gaussian Noise (AGWN), 
we used the Anscombe Transformation [9,10,11] in order to 
stabilize the variance of signal prior to denoising, converting 
the signal-dependent Poisson noise into an approximately 
AGWN. 

II. MATERIALS AND METHODS 

A. Noise Filtering 
The observation of an image ���� corrupted by AGWN, 

where x is the 2D spatial coordinate of image pixels, is 
defined by: 

���� � ����� 	 �
���,   (1) 

where ���� is the noiseless image and 
��� is the additive 
noise.  

Denoising algorithms normally have the goal of 
calculating an estimate ����� of the noiseless image ���� by 
removing noise from image ���� with minimum blurring or 
artifacts insertion. 

In this work, the denoising algorithm used to allow a 
dose reduction in digital mammography follows the 
framework established by Donoho and Johnstone [12,13], 
which consists of three steps: 

 
1. Decompose the input signal (� ) with forward wavelet 
transform: 


 � ����    (2) 
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2. Apply a thresholding (�) method to the coefficients:  

� � ��
� ��    (3) 

3. Apply the wavelet inverse transform in order to 
reconstruct the signal: 

�� � ������    (4) 

The wavelet transform consists in systematically 
applying the orthonormal bases pair, �  and �  to the input 
signal. In the case of bi-dimensional signals, as images, the 
forward transform is applied alternately to the lines and 
columns of the signal. Thereby, the sub-bands produced are 
defined as: 

����� �� � ���� �� �����   (5) 

����� �� � ���� �� �����   (6) 

����� �� � ���� �� �����   (7) 

���� �� � ���� �� �����   (8) 

where �� , �� , ��  and �  are the detail horizontal, detail 
vertical, detail diagonal and approximation coefficients, 
respectively.  

In this work, we used the pair of bases developed by 
Ingrid Daubechies [14], with 4 vanishing moments, known 
by Db-4. These bases were chosen empirically. 

The multilevel decomposition occurs when we apply the 
same approach to the approximation coefficients, which 
again can be decomposed on four more sub-bands. The 
coefficients generated by wavelet decomposition permit 
better separability between the original signal (which is 
represented by coefficients of greater magnitude and smaller 
quantities) and the noise (which are represented by 
coefficients of smaller magnitude and greater quantity). 

We can explore the separability of the signals in wavelet 
domain to better noise filtering: a thresholding procedure 
should be applied to the details coefficients (horizontal, 
vertical and diagonal) to remove noise coefficients and 
preserve the original signal of the image. In the literature, the 
most used procedures are the hard and soft thresholding 
[14,15]. However, given the approach of this work, the best 
performance was obtained with a customized threshold rule 
we designed specifically to remove noise in digital 
mammography: 

���
� �� �� � � 
������������ �!
! " �

 � �� #$%&'(�)&   (9) 

where 
 corresponds to the input signal, � is the threshold 
value and, � is a scale factor.  

The main idea was to remove the spare noise that was 
added to the images when acquired with low doses of 
radiation. Thus, the scale factor added conducts a gradual 
reduction of the coefficient according to its magnitude, 
which is related to image noise (and consequently the 

radiation dose). Whether the coefficients have a relatively 
small magnitude, this rate will converge to zero naturally. 

Besides the threshold rule to be used, the success of 
filtering is dependent on a good estimate of the threshold 
value �. In this sense, the literature contains a wide range of 
techniques [12,13,15]. In this work, we used the VisuShrink, 
technique [12], described in (10). It was chosen for its 
simplicity and for being a good estimator: 

 � � *+ � ,-�. � / (10) 

where, . is the total amount of elements to be processed and / is the noise standard deviation. 
Images were decomposed in five levels for the proposal 

of this work. As each level of decomposition produces three 
details sub-bands, the threshold rule as well as the estimate 
of � was applied locally in each one of them. 

Regarding the noise characteristics in digital 
mammography, it is known that the predominant noise in 
mammographic images is the quantum noise [2,5], which is 
non-additive, signal-dependent and can be described by 
Poisson’s probability mass function: 

0�1� � � 23456
78  ,   �99�  

where 1 is a random variable and � is the expected value of 
the Poisson distribution, which is in this case equal to the 
mean and the variance of the distribution. 

Thus, in order to work with additive and non-correlated 
noise from a Poisson noise, we must use a Variance 
Stabilization Transformation (VST) to convert Poisson noise 
into AWGN. In this work we used the Anscombe 
Transformation [9,10,11], given by (12), which is one of the 
most known VST and can convert an image ���� corrupted 
by Poisson noise in an image corrupted by approximately 
AWGN, with zero mean and unit variance: 

:��� � �+;���� 	 <
=��� � � �9+��

It has been proved that the inverse algebraic Anscombe 
transformation is biased. For this work, we used the inverse 
transformation proposed by [16], which shows to be exact 
and asymptotically unbiased.  

 

B. Mammographic Images 
The tests were performed through a set of 

mammographic images acquired in a clinical mammographic 
machine (Selenia Dimensions, Hologic, Bedford, MA) under 
four different levels of radiation exposures, in order to 
simulate different quantities of quantum noise. We acquired 
20 mammographic images in dose levels corresponding to 
100%, 85%, 70% and 50% of a standard radiation dose used 
clinically (5 images in each dose level). All image 
acquisitions were performed using an anthropomorphic 
physical breast phantom [7] prototyped by CIRS, Inc. 
(Reston, VA) based upon a realization of the breast software 
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phantom developed at the University of Pennsylvania [8]. 
The use of a physical phantom was important to assure that 
all images acquisitions had the same object in the same 
position. Fig. 1 shows a picture of the physical phantom used 
in this work (in the left) and the corresponding 
mammographic image of the phantom (in the right).  

 

 
(a) 

 
(b) 

Figure 1. (a) in the left: Anthropomorphic breast phantom used in this 
study; (b) in the right: example of a mammographic image acquired in 

a clinical machine using this phantom. 

Fig. 2 shows ROIs extracted from the images acquired in 
different dose levels: 100%, 85%, 70% and 50% of the 
standard dose, respectively. As the images came from the 
same phantom, they have exactly the same tissue structures 
and microcalcifications, but different levels of quantum 
noise. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. Region of interest showing a cluster of microcalcifications 
extracted from the mammographic images acquired at different dose 
levels: (a) 100%, (b) 85%, (c) 70%, and (d) 50% of the regular dose. 

In addition to these images, we created an additional set 
of 10 images that were acquired using regular dose levels 
(100%). These images were averaged to have the noise 
removed, creating a reference image (ground-truth). Since 
noise is a random event, averaging several images can 
provide a good estimate of a noiseless image. Ground-truth 
images are important for the image quality assessment. 

C. Evaluation of Denoising Methodology 
The evaluation of the proposed technique was performed 

using quantitative image quality metrics. We measured the 
Peak Signal-to-Noise Ratio (PSNR) [17] and the Mean 
Structural Similarity Index (MSSIM) [18] for all images 
used in this study, before and after the use of the denoising 
technique. 

III. RESULTS AND DISCUSSION 
The assessment of the proposed methodology were 

conducted considering the following approach: 
 
1. The same ROI of >??���>??  pixels was extracted 

from all mammographic images, considering the 
same spatial coordinates. Each ROI was evaluated in 
terms of PSNR and MSSIM, before applying the 
denoising methodology. 

2. For each ROI of 50%, 70% and 85% of dose, we 
applied the proposed denoising methodology. Filter 
parameters were adjusted considering that the low-
dose images must have same quality than the 100% 
image. 

3. After denoising, we calculated the same image 
quality measurements again.  

4. The results before and after the denoising were 
comparing in order to evaluate the performance of 
the proposed noise attenuation methodology. 

Using the ROIs of each realization in each dose, the 
evaluation using images quality metrics (PSNR and MSSIM) 
was performed and at the end the values of all results were 
averaged. The results of each dose are presented in Table 1. 

 
Table 1. Average values of image quality indexes calculated for the all 

images in each dose and its respective standard deviation. 

Relative Dose PSNR (dB) MSSIM 

100% 39.01 ± 0.07 0.8975 ± 0.0013 

85% 38.57 ± 0.05 0.8877 ± 0.0010 

70% 37.96 ± 0.05 0.8728 ± 0.0012 

50% 36.28 ± 0.06 0.8233 ± 0.0017 
 
Fig. 3 shows graphically the results presented in Table 1. 

It is possible to see how the reduction of the radiation dose 
can degrade image quality in terms of PSNR and MSSIM 
values. 
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(a) 

(b) 

Figure 3. Values of five realizations of each dose in ter
(dB) and (b) MSSIM before denoising

 
Considering this preliminary evaluation i

establish a goal, that is, how to filter the low
order to have the same quality than the imag
regular radiation dose (100%). 

The proposed denoising method can be 
the best value for the scale factor F (9) used
of the detail coefficients. Empirically, th
found and are presented in Table 2, where th
contains the target values. 

 
Table 2. Evaluation, after filtering, of average the 

of five realizations in each dose, its respective standard
value used. 

Dose PSNR (dB) MSSIM 
100% 39.01 ± 0.07 0.8975 ± 0.0013

85% 38.90 ± 0.05 0.8950 ± 0.0011

70% 38.95± 0.04 0.8963 ± 0.0008

50% 38.40± 0.06 0.8843 ± 0.0011
 
Fig. 4 shows graphically the results pres

It is possible to see how the prop
methodology removed noise from the low
order to present same quality indexes. We
after denoising all images acquired in lo
became more similar, considering PSN
measurements.  
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Figure 4. Values of five realizations of eac
denoising method, in terms of (a) PSNR

 
 The same ROIs showed at Fig. 

now presented, at Fig. 5, after deno
that all ROIs have the same 
microcalcifications were preserved i

 

 
(a) 

 
(c) 

Figure 5. Region of interest showing a clus
extracted from the mammographic images 
levels, after denoising by the proposed me

85%, (c) 70%, and (d) 50% of th
 

 

 

ch dose, after applying the 
R (dB) and (b) MSSIM. 
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in the image. 
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IV. CONCLUSIONS 
Normally, denoising algorithms in wavelet domain aim 

to remove most of the noise of digital images. However, in 
this work, we investigated the use of wavelet transform as a 
tool to allow a reduction of the radiation dose in digital 
mammography. A pre-clinical study using anthropomorphic 
phantom images were conducted and we obtained promising 
results. Results showed that it is possible to remove the 
quantum noise added to the image when the radiation dose is 
reduced to 85%, 75%, and 50% of the standard dose 
provided for our physical phantom. The assessment of 
denoised images using image quality metrics such as PSNR 
and MSSIM confirms that the image quality in images 
acquired with lower radiation dose may preserve image 
quality. 

Since quantum noise is signal-dependent, the Anscombe 
transformation came to be a vital tool to perform a better 
filtering without blurring the image and therefore 
compromise the diagnosis. Related works on the denoising 
of mammographic images using the Anscombe 
transformation can be found in [10,11]. 

Despite of the results obtained in this work, it is 
necessary to go further to better evaluate clinical images in 
terms of blur and how they can affect medical diagnosis, as 
well as establish a methodology where the � parameter will 
be defined automatically according to the radiation dose used 
in image acquisition. 
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