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Abstract. An analytical framework is presented for evaluating the equivalence of parenchymal texture features
across different full-field digital mammography (FFDM) systems using a physical breast phantom. Phantom
images (FOR PROCESSING) are acquired from three FFDM systems using their automated exposure control
setting. A panel of texture features, including gray-level histogram, co-occurrence, run length, and structural
descriptors, are extracted. To identify features that are robust across imaging systems, a series of equivalence
tests are performed on the feature distributions, in which the extent of their intersystem variation is compared to
their intrasystem variation via the Hodges–Lehmann test statistic. Overall, histogram and structural features tend
to bemost robust across all systems, and certain features, such as edge enhancement, tend to be more robust to
intergenerational differences between detectors of a single vendor than to intervendor differences. Texture fea-
tures extracted from larger regions of interest (i.e., >63 pixels2) and with a larger offset length (i.e., >7 pixels),
when applicable, also appear to be more robust across imaging systems. This framework and observations from
our experiments may benefit applications utilizing mammographic texture analysis on images acquired in
multivendor settings, such as in multicenter studies of computer-aided detection and breast cancer risk assess-
ment. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.2.2.024501]

Keywords: digital mammography; parenchymal pattern; robust texture features.

Paper 14107PR received Aug. 13, 2014; accepted for publication Mar. 13, 2015; published online Apr. 3, 2015.

1 Introduction
Breast cancer is the most commonly diagnosed cancer in
American women after skin cancer, with about one in eight
expected to develop invasive breast cancer over the course of
their lifetime.1 With the advent of early cancer detection through
screening and treatment, the five-year survival rate for women
diagnosed with breast cancer in western countries is currently
up to 89%.2 Approximately 95% of screening centers in the
United States utilize full-field digital mammography (FFDM)
systems as their primary screening tool,3 which rapidly replaced
screen-film mammography over the last decade due to advan-
tages of FFDM systems, such as improved image contrast
and dynamic range.4 Mammographic images have extensively
been used in the literature to generate image-based features
for examining the potential risk for breast cancer.5–20 For
example, mammographic percent density (PD%)5,6,15 has been
repeatedly shown to be a strong risk factor for breast cancer.
In addition, it has also been suggested in more recent studies
that parenchymal texture features,7,8 which are measures of the
local distribution of the parenchymal tissue, may also provide
complementary information regarding an individual woman’s
risk for breast cancer.

For studies analyzing parenchymal texture features for breast
cancer risk assessment, one additional factor that needs to be
accounted for is the mammography system used for image
acquisition. With the wide-scale implementation of screening
programs utilizing FFDM systems, large clinical data sets
typically include images acquired from several commercial
FFDM systems built with different detector technologies and
image acquisition parameters. Differences between x-ray systems
introduce inherent differences to the acquired images, which
subsequently affect extracted mammographic features, such as
breast density21 and, as a result, higher-order measures of breast
parenchymal texture. This effect can be more pronounced for
more granular type of features that directly depend on the varia-
tion of image intensity values, such as texture features, com-
pared to more global image measures, such as breast PD%.
For example, Manduca et al.8 noted that accounting for the
parameters used to acquire images from different mammogra-
phy systems is important, specifically with regards to affecting
the numerical values of texture features. This could, in turn, bias
any subsequent investigation of associations between such fea-
tures and any related outcomes of interest, such as the risk of
developing breast cancer.

Motivated by this problem, we propose a statistical frame-
work to evaluate the robustness of texture features across FFDM
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systems from different vendors, focusing on the effect of differ-
ent x-ray systems on image intensity and texture. We use a
physical breast phantom (Gammex 169 “Rachel,” Madison,
Wisconsin), which enables the imaging of a consistent (i.e.,
ground truth) parenchymal tissue pattern across different sys-
tems, allowing us to directly evaluate any added system-induced
effects on image intensity and texture. To demonstrate proof-of-
concept and be applicable to the clinical setting, we compare
three FFDM systems (Senographe 2000D and Senographe DS,
General Electric Medical Systems, Milwaukee, Wisconsin; and
Selenia Dimensions, Hologic Inc., Bedford, Massachusetts)
operated at the clinical automated exposure control setting
and design a series of experiments to evaluate whether the dis-
tributions of a panel of different texture features are robust and
statistically equivalent across these different imaging systems.
While our framework is presented here using three specific im-
aging systems from two vendors and a selected set of texture
features previously used for breast cancer risk assessment, our
method can, in principal, generalize across a broader range of
image acquisition systems and features. As such, it could have
value for studies utilizing mammographic feature analysis in
a multivendor setting, such as studies focusing on breast cancer
risk assessment, breast tissue characterization, and computer-
aided diagnosis.

2 Materials and Methods

2.1 Breast Phantom Imaging

An anthropomorphic breast phantom22 (Gammex 169 “Rachel,”
Madison, Wisconsin) was imaged on three FFDM systems.
The first two systems, the Senographe 2000D and DS, utilize
equal-sized, indirect flat panel detectors with a common spatial
resolution of 0.1 mm∕pixel, although the GE DS has a smaller
x-ray tube relative to GE 2000D. In contrast to these systems, the
Selenia Dimensions utilizes an amorphous selenium direct flat
panel detector with a higher spatial resolution of 0.07 mm∕pixel.
Last, the three units have different automated exposure control
systems, resulting in different dose performances.

To account for system noise effects and better assess inter-
system differences, digital mammograms of the Rachel phantom
were acquired five times on each FFDM unit, with no physical
movement of the phantom during the image acquisition process.
The raw (FOR PROCESSING) images stored at the common
vendor-specified 14-bit gray-level depth were used for sub-
sequent analysis. The GE systems utilized an Rh/Rh target/filter
combination and the Hologic system utilized a W/Rh combina-
tion. Acquisition parameters were kVp ¼ 29 and mAs ¼ 71 for
GE 2000D, kVp ¼ 29 and mAs ¼ 90 for the GE DS system,
and kVp ¼ 31 and mAs ¼ 160 for the Hologic Selenia
Dimensions, when using the automated exposure control setting
for each model digital mammography machine.

2.2 General Statistical Framework for Robust
Feature Identification

For the purposes of our study, we define a robust texture feature
to be a feature for which the distributions of the corresponding
feature images from a given pair of systems are statistically
equivalent. Specifically, given a texture feature, the process to
identify whether it is robust can be divided into three main steps
(Fig. 1). First, a series of phantom images are acquired from
all mammography systems and the breast region is segmented.

Image intensity values are first log-transformed to account for
the relationship between raw gray-level values and exposure,
then inverted so that radio-opaque foreground objects (i.e.,
the breast) are of a higher pixel intensity than the background
(i.e., air), and, finally, are normalized by a z-score transforma-
tion23 within the breast region. Briefly, z-score normalization is
a linear transformation of image pixels, or more generally any
distribution, so that the average value of the distribution of
image pixels is made to be zero and the standard deviation
of the distribution of values is one. In practice, z-score normali-
zation has the effect of aligning different histograms of different
images without altering the shape of their distribution.24

For each log-transformed, z-score normalized image, texture
features are generated using automated computerized analy-
sis25,26 from each of the five images acquired on each digital
mammography system, generating a set of five pixel-value
distributions per each texture-parameterization-system combi-
nation. Next, these distributions are compared across acquisition
systems via a series of nonparametric equivalence tests,27 testing
the hypothesis that the median of the differences in texture fea-
ture values across acquisition systems is within a prespecified
equivalence range.27 Details of the procedure are provided in
Sec. 2.6. All statistical analysis in this study was performed
with SAS 9.4 statistical computing software.

2.3 Image Preprocessing

As the region occupied by the breast phantom covers only a
fraction of the total image field [Fig. 2(a)], we perform a pre-
processing step to (1) remove the phantom bounding box from
any subsequent analysis and (2) segment the breast region
[Figs. 2(b) and 2(c)]. The bounding box is cropped based on
the detection of the box boundary [shown in Fig. 2(a)]. Given
the differences in the edge response and spatial resolution

Fig. 1 Workflow of our statistical framework for texture feature equiv-
alence assessment. IS , digital mammography image acquired from
system S; IS;norm, IS after image intensity normalization; FS;T , texture
feature image for system S, texture feature T .
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between the three systems, the breast region is segmented by
using intensity thresholding in each phantom image, which is
then used for the analysis of all images acquired by that system.

2.4 Texture Feature Generation

We used an automated image analysis pipeline25 that can gen-
erate a corresponding texture feature image for each texture
descriptor. Specifically, we use a lattice-based strategy, where
at each lattice point [shown in blue in Fig. 3(a)], a texture feature
value is calculated within the local square region [shown in red
in Fig. 3(a)] surrounding the lattice point. Both the lattice size L
(i.e., the distance between neighborhood lattice points) and
the local window size W are parameters that can be optimized
for texture feature generation. In our study, the lattice size and

the local window size are set to be equal. Five different window
sizes W, equal to 15, 31, 63, 127, and 255 pixels2, were
evaluated to capture parenchymal texture patterns at different
granularities.

The texture features used in our study can be broadly catego-
rized into four groups: (1) gray-level histogram features;28

(2) co-occurrence features;29,30 (3) run-length features;31,32

and (4) structural features.20,33–35 All features and their corre-
sponding shorthand notations are summarized in Table 1
(detailed mathematical notations are also included in the
Appendix). These features were selected in our study for two
main reasons. First, most of these features have been widely
used for mammographic image analysis and shown to have
value specifically for breast tissue characterization in breast
cancer risk assessment.17,34,36 Second, features capturing the
local tissue architecture, such as the local binary pattern
(LBP)33 and the edge enhancing index,35,37 are relatively more
recent texture features. Traditionally, these features have been
used in computer vision,33,37,38 while recently they have also
been applied for mammographic pattern analysis and breast
cancer risk assessment.35

2.5 Parameters in Texture Feature Generation

These texture features are computed using certain parameters,
summarized into two main categories: (1) parameters that are
involved in the numerical implementation and can be decided
depending on numerical precision, computational cost, and
related factors and (2) parameters introduced in the mathemati-
cal computation directly related to inherent properties captured
by the feature (e.g., co-occurrence pixel distance, etc.).

In general, there is no single best choice for parameters
within the first category, due to trade-offs between precision
and efficiency. Features in groups 1 to 3 in Table 1 all depend
upon such a parameter, specifically the number of histogram
bins. In this study, this parameter was set to a fixed value of
128 based on previous studies.28 For features with parameters
in the second category, we describe in detail our approach
for the co-occurrence, LBP, and edge enhancing index features.

Fig. 2 Raw digital mammogram of the Rachel phantom acquired on GE 2000D: (a) the original raw
phantom image, (b) exclusion of the breast phantom bounding box, shown after the inverse-log trans-
formation for visualization, and (c) the binary mask of the breast region.

Fig. 3 (a) The lattice scheme for texture image generation and
(b) a gray-level histogram (STD) image.
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Co-occurrence features describe the spatial relationship
between pixels and are based on the gray-level co-occurrence
matrix (GLCM).29 Given an image f, an N by N GLCM matrix
G ¼ gði; jÞ is defined as

gði; jÞ ¼ jfðx1; y1Þ; ðx2; y2Þjfðx1; y1Þ ¼ i; fðx2; y2Þ
¼ j; x2 − x1 ¼ lj cos θj; y2 − y1 ¼ lj sin θjgj; (1)

where N is the number of gray levels used to describe image f, l
is the pixel offset length, and θ is the offset angle. N is com-
monly chosen as a power of 2, typically between 16 and
256. In our experiments, N was chosen equal to 128 to balance
computational precision with efficiency. The combination of
parameters l and θ determines the search direction and the
neighborhood size of each pixel pair. Features are typically cal-
culated using the same offset length l along four directions (0,
45, 90, and 135 deg) and then averaged, based on the assump-
tions that these features are orientation invariant39,40 and that one
single direction might not give sufficient texture information.30

With respect to the offset length l, in several studies, it is chosen
by default to be equal to 1 pixel, however, this is not always
justified based on its actual physical dimensions.7,41 Here
we theorize that the proper selection of l is important for the
robustness of the corresponding texture features, as it may be
associated with the blurring effect, and therefore, artificially
introduced texture, in FFDM systems using an indirect-conver-
sion detector. To evaluate such effects, we varied the offset
length l from 1 to 13 pixels (i.e., 0.1 mm up to 1.3 mm) by
using 2-pixel increments.

LBPs33,38 capture the relationship between central and neigh-
boring pixels. Given an image f, the LBPP;R value at pixel
ðxc; ycÞ is defined as

LBPP;Rðxc; ycÞ ¼
XP−1
p¼0

sðgp − gcÞ2P;

ðxp; ypÞ ¼
�
xc þ R cos

�
2πp
P

�
; yc − R sin

�
2πp
P

��
;

gc ¼ fðxc; ycÞ; gp ¼ fðxp; ypÞ; p ¼ 0; : : : ; P − 1;

sðxÞ ¼ 1; x ≥ 0; sðxÞ ¼ 0; x < 0: (2)

The two parameters, neighborhood size R and number of neigh-
borhood pixels P, define the LBP.18 Previous studies have
shown that the performance of LBP features in pattern detection
varies with the change of parameters R and P. The common
choices of R in previous studies in computer vision include
1, 2, and 3 pixels.33 In our study, three pairs of ðR; PÞ values
were used, namely (1, 8), (2, 20), and (3, 36) pixels.

Finally, the edge enhancing index is based on edge enhanc-
ing diffusion,42 which preserves and enhances edge structures
within an image. The flow-like structures within the breast tissue
suggest that this type of feature could be an appropriate descrip-
tor for characterizing the structural properties of the parenchy-
mal pattern.

Given an image f, the edge enhancing index is defined as

EσðfÞ ¼
�

λ1 − λ2
λ1 þ λ2 þ η

�
2

: (3)

Here, λ1 and λ2 with λ1 > λ2 are eigenvalues of the diffusion
tensor matrix D defined as

D ¼ 1

ð∂xfσÞ2 þ ð∂yfσÞ2

×
�
c1ð∂xfσÞ2 þ c2ð∂yfσÞ2 ðc2 − c1Þ∂xfσ∂yfσ
ðc2 − c1Þ∂xfσ∂yf c1ð∂yfσÞ2 þ c2ð∂xfσÞ2

�

fσ ¼ f � Gσ; c2 ¼ e−½ð∂xfσÞ2þð∂yfσÞ2�∕k2 ; c1 ¼
1

5
c2

Table 1 A list of all texture features analyzed in our study.

Feature class Feature name Notation

Group 1
Gray-level histogram

Max MAX

Min MIN

Mean MEAN

Sum SUM

Entropy ETP

Kurtosis KTS

Sigma STD

Skewness SKEW

5th percentile 5TH

5th mean 5THM

95th percentile 95TH

95th mean 95THM

Group 2
Co-occurrence

Cluster shade CSD

Energy ENG

Entropy CETP

Inertia INT

Correlation COR

Haralick correlation HCOR

Inverse difference moment IDM

Group 3
Run length

Grey-level nonuniformity GLN

Run-length nonuniformity RLN

Run percentage RP

High gray-level run emphasis HGLRE

Long run emphasis LRE

Low gray-level run emphasis LGLRE

Short run emphasis SRE

Group 4
Structural features

Local binary pattern LBP

Edge enhancing index EEI

Fractal dimension FD
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When λ1 ≈ λ2, Eσ ≈ 0, and when λ1 ≫ λ2, Eσ ≈ 1 and η is an
empirical normalizing factor set equal to 10 for this study.
The parameter evaluated in our study is the Gaussian kernel
size σ. Gaussian smoothing (i.e., f �Gσ) is used as a common
image preprocessing step to remove image noise before image
analysis and the kernel size determines the degree of smoothing
(i.e., the extent of image details that are preserved). In our study,
Gσ was varied from 1 to 15 pixels.

2.6 Statistical Analysis

To assess the robustness of texture features across any two
FFDM systems (i.e., pair-wise comparison), the distributions
of texture feature values were compared via a series of nonpara-
metric equivalence tests, testing the hypothesis that the median
of the differences, Δ, in texture feature values across the two
acquisition systems is within an equivalence range equal to
the maximum intrasystem variation of the two systems being
compared pair-wise. For each system, the intramachine variation
was determined by the maximum 95% confidence interval (CI)

resulting from the
�5
2

�
intrasystem comparisons. The test sta-

tistic Δ is computed as follows: given observations from two
independent acquisition systems, xi for i ¼ 1; : : : ; n and yj for
j ¼ 1; : : : ; m, respectively, a difference Zij is calculated
between each pair ðxi; yjÞ. There are m � n such differences.
The test statistic Δ is equal to medianfZijg and is equivalent
to the Hodges–Lehmann statistic.43

Intra- and intersystem comparisons for each different window
size utilized different numbers of observations. Comparisons of
values derived from the larger window sizes (e.g., 255 and
127 pixels2) resulted in smaller sample sizes. This is because
as the lattice size increases, larger amounts of the image (in
intensity space) are represented by each pixel in feature space,
thus resulting in a smaller number of feature space pixels needed
to represent the entire image. These smaller sample size com-
parisons were carried out via a nonparametric equivalence
test procedure in which data-derived confidence intervals were
utilized.27 The derivation of these confidence intervals can be
briefly described as follows. First, an empirical distribution
for the independent difference Zij is computed as F̂ðzÞ ¼
ð1∕mnÞPij Cðz − ZijÞ ¼ ð1∕mnÞSðzÞ, where cðzÞ ¼ 1, 1∕2,
0 for z > 0, z ¼ 0, z < 0, respectively. General U-statistic theory
implies the asymptotic standard normality of the statistic,

TðΔÞ ¼ ½F̂ðΔÞ − ð1∕2Þ�∕
n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V̂½FðΔÞ�
q o

¼ ½SðΔÞ − ðmn∕2Þ �∕n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂½SðΔÞ�

q o
for any Δ with FðΔÞ ¼ ð1∕2Þ. Confidence inter-

val bounds are then defined as

CLL ¼ supfΔjTðΔ�Þ ≤ ð−uαÞ ∀Δ� < Δg; (4)

CLU ¼ inffΔjTðΔ�Þ ≥ ðþuαÞ ∀Δ� > Δg; (5)

where uα denotes the (1 − α) percentile of the standard normal
distribution. Computing the distribution of the independent
differences directly from the data and utilizing them to build
the CIs for the test statistic allows us to assess distributional
differences without making any assumptions regarding their
shape. Finally, comparisons for the smaller window sizes (i.e.,
63, 31, and 15 pixels2) resulted in much larger sample sizes
rendering the empirical procedure computationally intractable,

thus, asymptotically derived CIs for the Hodges–Lehmann sta-
tistic43 were utilized.

Intersystem robustness was assessed according to the follow-
ing four category scale: (1) features for which the intermachine
CI was entirely contained within the specified equivalence
bounds were deemed very robust (VR), implying that the varia-
tion between the systems being compared is not significantly
different from the intramachine variation; (2) cases in which
the intermachine CIs were not fully contained within the equiv-
alence bounds, but still crossed Δ ¼ 0 [indicating that the test
statistic is not significantly (at α ¼ 0.05) different from zero,
thus implying no significant difference in texture feature distri-
butions across systems] and for which the intermachine test
statistic was contained in the intramachine CI, were deemed
robust (R); (3) cases for which only one of the criteria described
in (1) or (2) were met were deemed less robust (LR); and
(4) cases that did not meet any of the criteria described in
(1), (2), and (3) were deemed not robust (NR).

3 Results
Results of the equivalence assessment comparing the distribu-
tions of all texture features between each pair of systems are
provided, where the degree of feature equivalence between the
GE 2000D-GE DS, Hologic Selenia Dimensions-GE 2000D,
and Hologic Selenia Dimensions-GE DS comparisons are shown
in Tables 2, 3, and 4, respectively.

In general, gray-level histograms and structural features
appear to be more robust than co-occurrence and run-length tex-
ture features, while smaller window sizes tend to result in fewer
robust texture features. Larger window sizes (i.e., ≥63 pixels2)
appear to provide generally more robust texture features. The
majority of structural texture features found to be VR appear
in the LBP subcategories of all three tables. The effect of
increased window size is most evident in the co-occurrence
and run-length features of all three comparisons, but is also ap-
parent in the gray-level histogram features of the GE 2000D-GE
DS comparison, which exhibits VR features for window sizes of
127 and 255 pixels2. The fractal dimension feature also appears
to benefit from increased window size as the majority of the VR
features for this section are for the 63 and larger window sizes.
The edge enhancing index features are least robust across the
Selenia-GE 2000D systems, marginally more robust for the
Selenia-GE DS systems, and most robust for the GE 2000D-
GE DS comparison. Last, few co-occurrence features were
found to be robust when computed at an offset length of 1.
Figure 4 provides texture maps and histograms of the inverse
difference moment features on the three systems computed at
offset length 1 and window size 63, illustrating this finding.

Tables 5–7 show the effect of the offset length parameter, l,
used in the computation of the GLCM for the co-occurrence
texture features, when a representative window size is fixed
at 127 pixels2 for the three pair-wise system comparisons.
Overall, co-occurrence features tend to be more robust across
the Selenia-GE 2000D comparison, where VR designations
appear for the majority of features and for all offset lengths.
While cluster shade and Haralick correlation are robust across
all comparisons and for all offset lengths, the correlation feature
is least robust across the Selenia-GE DS comparison where
the feature is found to be NR for all offset lengths except 1.
Increasing the offset length appears to benefit robustness among
the entropy, energy, inertia, and inverse difference moment
features, and is most apparent across the Selenia-GE DS and
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Table 2 Feature robustness between the GE 2000D and GE DS sys-
tems. VR, very robust; R, robust; LR, less robust; NR, not robust.

Feature group Feature Parameter

Window size (W , pixel)

15 31 63 127 255

Gray-level
histogram

5TH R R R R R

5THM NR R R R VR

95TH R R R VR VR

95THM R R R VR VR

ETP NR NR R VR VR

KTS NR NR R VR VR

MAX NR R R R R

MEAN R R R VR VR

MIN NR LR R R VR

STD NR NR R R R

SKEW LR R R VR VR

SUM R R R VR VR

Co-occurrence CSD Offset length
l ¼ 1 pixel

NR R R R VR

COR NR NR NR R R

ENG NR NR NR NR R

ETP NR NR NR NR NR

HCOR NR NR R R VR

INT NR NR NR NR NR

IDM NR NR NR NR NR

Run length GLN LR LR R R R

HGLRE R NR R VR VR

LRE NR NR NR NR LR

LGLRE NR NR NR VR VR

RLN NR NR NR NR NR

RP NR NR NR NR LR

SRE NR NR NR NR LR

Structural LBP R ¼ 1, P ¼ 8 VR VR VR R R

R ¼ 2, P ¼ 20 VR R VR R R

R ¼ 3, P ¼ 36 VR R R R VR

EEI R ¼ 1 NR LR R R R

R ¼ 5 R R R VR NR

R ¼ 10 R R R R R

R ¼ 15 LR R R R VR

FD NR NR NR VR NR

Table 3 Feature robustness between the Hologic Selenia
Dimensions and GE 2000D systems. VR, very robust; R, robust;
LR, less robust; NR, not robust.

Feature group Feature Parameter

Window size (W , pixel)

15 31 63 127 255

Gray-level
histogram

5TH VR VR VR VR R

5THM R VR VR VR VR

95TH R R R R R

95THM R R R R R

ETP NR NR NR R R

KTS NR NR R R R

MAX R R R LR R

MEAN R R R R R

MIN NR R VR VR R

STD NR NR NR LR R

SKEW NR R R VR VR

SUM R R R R R

Co-occurrence CSD Offset length
l ¼ 1 pixel

NR LR NR R R

COR NR R NR LR R

ENG NR NR NR NR R

ETP NR NR NR NR LR

HCOR R NR NR R R

INT NR NR NR NR NR

IDM NR NR NR NR NR

Run length GLN NR NR NR R R

HGLRE NR R NR VR R

LRE NR NR NR NR R

LGLRE NR NR NR NR LR

RLN NR NR NR NR R

RP NR NR NR NR NR

SRE LR NR NR NR NR

Structural LBP R ¼ 1, P ¼ 8 VR VR VR VR NR

R ¼ 2, P ¼ 20 VR VR VR VR NR

R ¼ 3, P ¼ 36 VR VR VR VR NR

EEI R ¼ 1 NR LR R LR LR

R ¼ 5 NR NR NR NR NR

R ¼ 10 NR NR NR LR LR

R ¼ 15 NR NR NR LR LR

FD NR NR NR VR LR
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GE 2000D-GE DS comparisons. Figure 5 provides texture maps
and histograms of the inertia feature on the three systems com-
puted at offset length 7 and window size 127.

4 Discussion
The question of how to most appropriately normalize mammo-
graphic images obtained from different vendor systems and
acquisition physics parameters for subsequent image analysis and
feature extraction is an important active area of research. In our
study, z-score normalization was applied to the log-transformed

Table 4 Feature robustness between the Hologic Selenia
Dimensions and GE DS systems. VR, very robust; R, robust; LR,
less robust; NR, not robust.

Feature group Feature Parameter

Window size (W , pixel)

15 31 63 127 255

Gray-level
histogram

5TH R R R VR VR

5THM R R R R R

95TH NR R R R R

95THM NR LR LR NR R

ETP NR NR NR VR VR

KTS VR R R R R

MAX NR NR NR NR LR

MEAN VR R R R R

MIN LR R R R R

STD NR NR NR NR R

SKEW NR NR R VR VR

SUM VR R R R R

Co-occurrence CSD Offset length
l ¼ 1 pixel

NR NR R VR VR

COR NR NR NR NR R

ENG NR NR NR NR R

ETP NR NR NR NR R

HCOR NR NR NR LR R

INT NR NR NR LR R

IDM NR NR NR LR R

Run length GLN NR NR NR R R

HGLRE NR NR R R VR

LRE NR NR NR R VR

LGLRE NR LR R NR VR

RLN NR NR NR VR R

RP LR NR NR R R

SRE LR NR NR R R

Structural LBP R ¼ 1, P ¼ 8 VR VR VR R LR

R ¼ 2, P ¼ 20 VR R VR R R

R ¼ 3, P ¼ 36 VR R VR R R

EEI R ¼ 1 NR NR LR VR R

R ¼ 5 NR NR NR NR VR

R ¼ 10 NR NR NR LR LR

R ¼ 15 NR NR NR LR LR

FD R R VR VR LR

Fig. 4 Example feature maps [(a), (c), and (e)] and feature-value his-
tograms [(b), (d), and (f)] of the co-occurrence inverse difference
moment feature computed on the GE 2000D [(a) and (b)], GE DS
[(c) and (d)], and Hologic Selenia Dimensions [(e) and (f)] digital mam-
mography systems using a window size of 63 pixels2 and offset of
l ¼ 1 pixel.

Table 5 Effect of offset length, l , on feature robustness between the
GE 2000D and GE DS systems for the co-occurrence texture features
computed at window size 127. VR, very robust; R, robust; LR, less
robust; NR, not robust.

Feature

Offset length (l , pixel)

1 3 5 7 9 11 13

Co-occurrence CSD R R R R R R R

COR R R R R R R R

ENG NR NR NR R R R R

ETP NR NR LR R R R R

HCOR R R R R R R R

INT NR NR NR R R R R

IDM NR NR LR R R R R
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images in order to remove linear differences in gray-level
intensities between the various FFDM systems evaluated. Both
log-transformation and z-score normalization are commonly
utilized preprocessing steps when dealing with raw, FOR
PROCESSING, mammograms as a means to alleviate interscan
differences between studies via histogram alignment, while still
maintaining the overall pattern, spatial relationship, and relative
contrast of the pixels,24 all of which are important in texture
analysis. Our results suggest that the framework proposed in
this work will be beneficial for studies utilizing texture analysis
in digital mammography in clinical, multisite, multivendor data
sets, including studies investigating breast cancer risk assess-
ment, tissue classification, and computer-aided diagnosis.

As our study focuses on the effect of detector differences
on texture quantification and not necessarily on classification
tasks such as risk assessment using such textures, it is difficult
to compare our extracted texture measures directly to prior
work, although comparison of parameter selection choices can
be reported. In previous studies using co-occurrence features,

the offset length was generally chosen heuristically. For
example, in mammographic imaging research, l is often chosen
between 1 and 10 pixels with 1 being the most common value,
such as in the work by Khuzi et al.30 for mass identification and
Li et al.7 for texture analysis of mammographic parenchymal
patterns. Our results suggest that if the offset length is gradually
increased to 7 pixels or larger, the majority of inherent system
effects can be alleviated. The effects of the window size W and
the offset length l on the texture feature images are shown in
Figs. 6 and 7. For smaller window sizes, more granular features
are obtained, while for larger windows, more smoothed (i.e.,
blurred) texture images are generated.

This observation may be partly explained via examination of
the modulation transfer function (MTF) of the imaging sys-
tem,44 a measure of its inherent spatial resolution. The MTF
is unity at the lowest spatial frequency and drops with increasing
spatial frequency. Both of the GE systems in our study use indi-
rect conversion detectors (i.e., cesium phosphor with thin-film
transistor). Compared to a direct conversion process, such as the
one utilized in the Hologic Selenia Dimensions system evalu-
ated in our study, blurring effects are introduced by phosphor
luminescence and can cause loss of the spatial resolution,
which may be alleviated by the use of smoothed (i.e., less
granular) texture features that do not consider the spatial relation
of pixels (e.g., first-order histogram statistics), intensity-invari-
ant structure-based features, and larger lattice window sizes.
Furthermore, when taking this blurring effect into consideration,
the differences between texture images for the two GE systems,
and between the GE and Hologic systems, can potentially be
enhanced within relatively small pixel neighborhood sizes, as
pixels within such a small neighborhood can be highly spatially
correlated, which could be the case when choosing a small
offset length (e.g., l ¼ 1 pixel) in the co-occurrence texture

Table 6 Effect of offset length, l , on feature robustness between the
Hologic Selenia Dimensions and GE 2000D systems for the co-occur-
rence texture features computed at window size 127. VR, very robust;
R, robust; LR, less robust; NR, not robust.

Feature

Offset length (l , pixel)

1 3 5 7 9 11 13

Co-occurrence CSD R R R R R R R

COR LR NR NR NR NR NR NR

ENG NR R R R LR LR LR

ETP NR R VR R R R R

HCOR R R R R R R R

INT NR LR VR VR VR VR VR

IDM NR NR VR R LR LR LR

Table 7 Effect of offset length, l , on feature robustness between the
Hologic Selenia Dimensions and GE DS systems for the co-occur-
rence texture features computed at window size 127. VR, very robust;
R, robust; LR, less robust; NR, not robust.

Feature

Offset length (l , pixel)

1 3 5 7 9 11 13

Co-occurrence CSD VR VR VR VR VR VR VR

COR NR NR NR NR NR NR NR

ENG NR NR NR NR NR NR NR

ETP NR NR NR NR NR NR LR

HCOR LR LR LR LR LR LR LR

INT LR LR LR LR R R R

IDM LR VR VR R R R R

Fig. 5 Example feature maps [(a), (c), and (e)] and feature-value his-
tograms [(b), (d), and (f)] of the co-occurrence inertia (INT) feature
computed on the GE 2000D [(a) and (b)], GE DS [(c) and (d)], and
Hologic Selenia Dimensions [(e) and (f)] digital mammography sys-
tems using a window size of 127 pixels2 and offset of l ¼ 7 pixels.
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feature calculation. This interpixel correlation is also likely to
affect the robustness of many of the gray-level run-length fea-
tures: as the correlation properties differ between images, so
will the gray-level runs in an image as they are, in essence, rep-
resentative of pixel-adjacency relationships. Similarly, as the
lattice window size W increases, more features are labeled as
robust between the three systems. This does not necessarily
imply that features generated using a coarser lattice scheme
(e.g., 63 pixels or larger) or larger co-occurrence offset length
l will perform better in tissue characterization or breast cancer
risk assessment. As the images are essentially smoothed when

analyzed with such coarser parameters, image noise may be
removed, implying less confounding results due to system
effects; however, the performance of these features for tissue
characterization may be reduced, and this will need to be further
investigated in future research studies.

One interesting finding from our study is the impact of
vendor normalization on apparent gray-level values in an image.
One potential explanation is that these differences are due to the
fact that x-ray projection images are inherently not calibrated,
as are most medical imaging modalities with a few exceptions,
such as computed tomography images. In practice, this leads to

Fig. 6 Illustration of the effect of the window size (W ) on the texture feature images. Representative
examples shown in each row, from left to right, for GE 2000D raw images (after -log transformation)
and corresponding texture feature images with increasing window sizes of 15, 31, 63, and
127 pixels2 for texture features (a) STD (gray-level histogram); (b) GLN (run length); (c) EEI (structural).
The texture feature images are generated from z-score normalized raw images acquired on the GE
2000D system.

Journal of Medical Imaging 024501-9 Apr–Jun 2015 • Vol. 2(2)

Keller et al.: Parenchymal texture analysis in digital mammography. . .

Downloaded From: http://spiedigitallibrary.org/ on 07/15/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



vendor-specific mapping of observed x-ray attenuation values
to gray-level pixel values using proprietary algorithms. This
mapping can vary between the different generations of a given
system, as is observed in this study, as well as between different
vendors of a given modality. The existence of such differences
demonstrates the necessity of running studies such as ours
and the use of a consistent normalization scheme (i.e.,
log-transformation followed by z-score normalization) when
investigating imaging features dependent on gray-level values,
especially when images are acquired from a variety of data
sources, in order to ensure that observed differences in an
imaging feature are not affected by underlying confounding
and bias.

One should note that although the phantom was not moved
between the five acquisitions of a single system, it was physi-
cally moved between the three systems, and thus, the mammo-
grams taken by the three systems were not spatially aligned in
any systematic way, as, for example, by the means of image
registration. In that context, our results also suggest that when
a whole-breast texture analysis approach is taken, the exact
alignment of the lattice regions of interest, and to a lesser extent,
the dose and system resolution differences, seem to have a neg-
ligible impact on the robustness of a significant subset of fea-
tures. This is likely due to the fact that any small variations in
texture over the breast are averaged out when analyzing the
entire breast, and supports the notion and utility of whole-breast

Fig. 7 Co-occurrence feature energy with varying window size and offset length. Each row indicates
one window size (31, 63, 127 pixels2) and each column indicates one offset length (1, 5, 9 pixels).
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texture analysis. One limitation of our study is that while we do
compare several detectors with different technological proper-
ties, two of the three systems evaluated, specifically the GE
2000D and DS, were developed by the same manufacturer.
In addition, we only evaluate a single system with a direct
detector, the Hologic Selenia Dimensions, and only utilize one
physical phantom as ground truth for parenchymal texture in
our analysis.

Last, one issue common to studies evaluating many metrics
simultaneously is that of multiple comparisons. However,
hypothesis testing for equivalence via a CI-based approach
somewhat mitigates this multiplicity issue. A multiple-compari-
son adjustment (e.g., a Bonferroni type of approach) in this
setting would imply the use of a wider CI for interscanner
differences than the commonly used 95% CI. However, based
on the definitions of robustness defined in our work, the use
of wider CIs would have systematic effects on the results
that would most likely and for the most part leave our findings
unchanged. Specifically, given any arbitrarily wider CI as a
multiple-comparisons correction, VR features would at most
become R as the test statistic would still remain in the intrasys-
tem CI and the wider CI would remain crossing Δ ¼ 0 even if
the entire CI was no longer contained within the intrasystem CI.
In contrast, NR feature CIs could at most become LR by cross-
ing Δ ¼ 0, but a wider CI will not alter the point estimate of the
test statistic nor allow for the CI to shift to be entirely contained
within the intrasystem CI if it was not already. As such, even in
the presence of multiple comparisons correction, the relative
robustness categories of the features would likely hold, particu-
larly in the case of NR features as they cannot, by definition,
meet the criterion for R or VR features. The fact that data-driven,
feature-specific margin parameters are used to define equiva-
lence also minimizes the multiple-comparisons issue as the
number of family-wise comparisons is drastically reduced rel-
ative to the case where only a single, study-wide margin is
utilized.

Overall, the comparison between these imaging systems with
a specific phantom serves as a proof-of-concept for the utility of
our approach, and in principal, our proposed statistical frame-
work could generalize to additional imaging systems and breast
phantoms. For example, while the Rachel phantom used in this
work was designed as a craniocaudal view phantom, extension
of this analysis to include mediolateral-oblique view mammo-
grams and phantoms, which may include the chest wall,
would primarily depend on accurate delineation of the breast
area so as to exclude the pectoralis muscle and would require
no alterations to the proposed framework itself. Furthermore,
while our experiments focus on detector differences when mam-
mograms are acquired using an x-ray dose estimated using the
standard automated exposure control setting, there exists the
option to also perform low-dose analyses, such as with tomosyn-
thesis projection data, or to acquire texture from other breast
screening modalities altogether, such as with MRI and whole-
breast ultrasound. As such, future work will, therefore, need
to consider dose and intermodality differences in addition to
model and detector differences within a given modality. In
addition, our framework could also be used to examine a
broader range of texture features and other parenchymal
descriptors for different computation parameters than those
considered in this work. Ultimately, optimization of these fea-
tures should also consider the specific context of the clinical
application at hand, as for example examining the performance

of these features in breast cancer risk assessment for different
feature extraction parameters.

5 Conclusion
We proposed a statistical framework to evaluate the robustness
of texture features across different FFDM imaging systems,
focusing specifically on the effect of different x-ray systems
on image intensity and texture. Our results suggest that proper
choice of feature extraction parameters is crucial in generating
robust texture features. The z-score normalization can alleviate
linear differences in intensity profiles between different imaging
systems. Once the images are normalized, gray-level histograms
and structural features appear to be more robust than co-occur-
rence and run-length texture features. For all texture features,
larger window sizes (i.e., >63 pixels2) tend to result in more
robust texture features. Specifically for co-occurrence texture
features, a larger offset length (i.e., >7 pixels) also appears
to generate features more robust to inherent imaging system
effects. The framework proposed in this work will be beneficial
for studies utilizing texture analysis in digital mammography in
clinical, multisite, multivendor data sets, including studies
investigating breast cancer risk assessment, tissue classification,
and computer-aided diagnosis.
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processing, such as image segmentation, classification, and feature
extraction using various breast imaging modalities.
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