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Purpose: This work proposes an accurate method for simulating dose reduction in digital mammog-
raphy starting from a clinical image acquired with a standard dose.
Methods: The method developed in this work consists of scaling a mammogram acquired at the
standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues
relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain,
and the effect of dose reduction on the detective quantum efficiency. The scaling process takes
into account the linearity of the system and the offset of the detector elements. The inserted noise
is obtained by acquiring images of a flat-field phantom at the standard radiation dose and at the
simulated dose. Using the Anscombe transformation, a relationship is created between the calculated
noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray
level characteristics as an image acquired at the lower-radiation dose.
Results: The performance of the proposed algorithm was validated using real images acquired with an
anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256
nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated
lower-dose images and compared these with the real images. The authors evaluated the similarity
between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images
and real images acquired with the same dose. The maximum relative error was less than 2.5% for
every ROI. The added noise was also evaluated by measuring the local variance in the real and
simulated images. The relative average error for the local variance was smaller than 1%.
Conclusions: A new method is proposed for simulating dose reduction in clinical mammograms.
In this method, the dependency between image noise and image signal is addressed using a novel
application of the Anscombe transformation. NNPS, PS, and local noise metrics confirm that this
method is capable of precisely simulating various dose reductions. C 2016 American Association of
Physicists in Medicine. [http://dx.doi.org/10.1118/1.4948502]
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1. INTRODUCTION

To validate studies of radiation dose reduction, it is necessary
to have a set of clinical images acquired from the same
patient at different radiation levels. The availability of such
images is limited, since these require repeated irradiation of
patients. One way to overcome this limitation is to use realistic
breast phantoms; anthropomorphic phantoms are capable of
mimicking the appearance of breast tissues, either as physical
models1,2 or through digital simulation.3–5

Another approach to validate dose reduction methods
is to simulate the reduced dose by postprocessing clinical
images.6–12 In fact, this method is used frequently when
studying the influence of dose reduction on the detection of

breast lesions.13–15 Saunders and Samei6 proposed a method
to simulate different exposures that uses a noiseless image
as input. However, it is not possible to acquire noiseless
clinical images. Furthermore, the method is based on a radially
symmetric noise power spectrum (NPS),16 which does not
account for the anisotropic noise in digital mammograms.

Båth et al.7 presented a method capable of simulating dose
reduction in radiographic images using information extracted
from the 2D NPS, therefore accounting for the anisotropic
behavior of the noise. However, the method is based on the
assumption that the detective quantum efficiency (DQE)16 is
approximately constant over the range of doses simulated.
In digital mammography, the additive noise has a relevant
influence on the DQE for low doses.17
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Kroft et al.8 argued that to be clinically useful, the noise
simulation algorithm has to be simple. With this argument,
they proposed an alternative approach for measuring the
amount of noise to be added to the image, discarding the
NPS. This method was based on the local standard deviation
of the image. However, as shown by the authors themselves,9

although the simulated images have the same local standard
deviation as real images, they have different NPS. Since the
standard deviation is not a good metric of the image noise
when comparing images with different NPS,18 the clinical
application of this method is questionable.

In recent work, Svalkvist and Båth10 presented a modifi-
cation of the method proposed by Båth et al.7 that accounts
for the DQE variation with dose. However, as pointed by
the authors themselves,10 the method does not account for
local variations in pixel gain, caused by the nonuniformities
between detector elements.

Other methods have also been proposed recently,11,12 based
on the NPS. However, to account for the spatial dependency
of the variance, these methods propose the application of
algorithms to remove flat-field corrections before simulating
the dose reduction, to eliminate the spatial dependency of the
noise.

A new method for simulating dose reduction in digital
mammograms is proposed in this paper. The method is
based on the local simulation of noise calculated using the
local variance of uniform images. It can be applied to flat-
fielded clinical images and accounts for the anisotropy of
the noise and DQE variations. The method is based on
a novel idea of inserting noise after applying a variance-
stabilizing transformation (e.g., Anscombe transformation).
In the variance-stabilized domain, noise is independent of
the mean pixel value; therefore, the inserted noise can be
modeled based only on the spatial dependency of the variance,
thus accounting for the flat-field corrections. The dependency
between the noise mask and the pixel value is created when
the inverse transformation is applied.

2. BACKGROUND ON THE ANSCOMBE
TRANSFORMATION

The Anscombe transformation is a variance-stabilizing
transformation that converts a random variable with Poisson
distribution into an approximately Gaussian distribution, with
zero mean and unity variance.19 Let the degraded image,
g(x,y), at spatial coordinates x and y , be the random variable.
The Anscombe transformation applied on g(x,y) is given by
the following:

F. 1. Schematic of a common application for the Anscombe transformation.

A{g(x,y)} = 2


g(x,y)+ 3

8
. (1)

The original inverse transformation proposed by the author19

is biased for small counting values (λ < 10); therefore in
applications where the counting values are small, the results
obtained after using the inverse transformation are different
from the expected values. In recent work, Mäkitalo and Foi20

proposed a new approach for the inverse transformation,
without any bias for small counts. Although counting values
are considerably higher in mammography images (λ≫ 10),
in this work, we used the unbiased exact inverse, available
online.21

The Anscombe transformation has been commonly
explored in the field of image denoising, where a noisy
image g(x,y) is filtered in the Anscombe domain using filters
designed to treat Gaussian signal-independent noise.22,23

Figure 1 illustrates the rationale for this transformation;
the Anscombe transformation transforms the image noise into
signal-independent noise.

The new approach consists on adding signal-independent
noise to the image in the Anscombe domain and applying the
inverse transformation afterward. Figure 2 shows a schematic
of the new application.

Let Im(x,y) be the noiseless original image and η(x,y)
be a mask containing signal-independent noise. The image
contaminated by signal-dependent noise, ImNoisy(x,y), is
given by

ImNoisy(x,y)=A−1{A {Im(x,y)}+η (x,y)} . (2)

In the particular case when η (x,y) is a Gaussian signal-
independent noise mask with unity variance and zero mean,
the inserted noise will follow the Poisson distribution.

As a preliminary empirical test of this method, we created
a 512× 512 pixel synthetic image containing three distinct
regions with various gray levels. Each region simulates a
counting process with a different mean (λ). The Anscombe
transformation was applied to the synthetic image and
a Gaussian signal-independent mask with zero mean and
unity variance was added to the image in the Anscombe
domain. After applying the inverse transformation proposed
by Mäkitalo and Foi,20 a dependency was created between the
noise mask and the signal. Figure 3 illustrates the results of

F. 2. Novel application for the Anscombe transformation.
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F. 3. Top-left: synthetic noiseless image [Average signal: (I) 60 000 (II)
30 000 (III) 1000]. Top-center: Gaussian signal-independent noise (zero
mean and unity variance). Top-right: noisy image after addition in the
Anscombe domain and inverse Anscombe transformation. Bottom: Poisson
signal-dependent noise subtracted from the noisy image. Contrast and bright-
ness were improved for better visualization.

this process. Note that after processing, the noise is signal-
dependent.

Table I shows the standard deviation (std) from each
simulated stripe from Fig. 3 (bottom), along with the average
signal (λ) in that region and the expected theoretical standard
deviation for a Poisson distribution, calculated24 using

std(X)=√λ, (3)

where X is a region of the image with average signal of λ.
Table I illustrates the potential of using the Anscombe

transformation to contaminate a noiseless image with signal-
dependent noise. However, three problems are associated
with the use of this method for simulating noise in digital
mammography images acquired with lower-radiation dose.
First, a clinical mammogram must be used as input for
the proposed method. However, such an image cannot be
used as a noiseless approximation of the signal once it
has been contaminated with noise from the acquisition
system.

Second, the method produces unscaled pure Poisson noise.
In clinical mammography, very few systems use photon-

T I. Comparison between theoretical std and measured std obtained
using the inverse Anscombe transformation to convert Gaussian signal-
independent noise into Poisson signal-dependent noise.

Region
Average signal (λ)

(from Fig. 3, top-left)
Measured std

(from Fig. 3, bottom)
Expected std
[from Eq. (3)]

I 60 000 245.4 245.0
II 30 000 173.0 173.2
III 1 000 31.6 31.6

counting detectors; most systems use energy integrating
detectors. Therefore, the noise added in the Anscombe domain
should be different from a Gaussian with unity variance and
must be estimated. Finally, the noise found in mammograms
depends on the position of the pixel on the field, due to the
flat-fielding process, which corrects the nonuniformity of the
field caused by the heel effect and the oblique incidence of
x-rays.17

In Sec. 3, we address each of these problems and present
ways to solve them using the new algorithm proposed in this
work.

3. MATERIALS AND METHODS
3.A. Method

Let Yo(x,y) be a clinical mammogram at coordinates x and
y . To simulate a low-dose mammogram (Ysim(x,y)) acquired at
the simulated dose Dsim, it is necessary to acquire two uniform
images [Ho(x,y) and Hsim(x,y)] at the original and simulated
doses, respectively. These uniform images determine how
much noise must be added to the clinical image acquired at
the original dose to ensure that the noise is correctly simulated
for the lower-dose acquisition.

The proposed method consists of three steps. In the first
step, all of the images are linearized and the images acquired
at the original dose are scaled by the dose reduction factor.
The second step is to simulate the noise distribution at each
pixel of the image, using local information extracted from
the uniform images acquired at the different doses. Lastly, a
dependency is created between the simulated noise and the
clinical image acquired using the standard radiation dose to
generate the simulated low dose image.

This processing method assumes that the input images
are in the raw format. The raw format, identified as “for
processing” in the DICOM header of the image, contains
image data which is minimally processed, lacking processing
to improve tissue contrast for easier interpretation by the
radiologist. Figure 4 shows an overview of the proposed
method.

Section 3.A is divided into three subsections where each
step of the algorithm will be explained in more detail. Indexes
L, S, and A indicate that the associated variables are linearized,
scaled, and in the Anscombe domain, respectively.

3.A.1. Linearization and scaling

Images acquired with lower-radiation dose have lower
overall signal, as compared to standard-dose mammograms.
Therefore, initially we need to adjust the gray level of the
clinical mammogram to match the simulated lower-dose
acquisition. If we consider an x-ray system where the radiation
dose is the input variable and the mean pixel value is the
output, it is possible to scale the gray level of an image
acquired by this equipment as long as the relation between
these quantities is linear.

Although the relationship between mean pixel value and
radiation dose usually has an offset, it is possible to remove this

Medical Physics, Vol. 43, No. 6, June 2016
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F. 4. Overview of the method proposed in this work.

value.7 One simple way to correct this problem is to subtract
the offset from the image before the processing is performed,
and then to add the offset back after all the processing steps are
complete. To find the offset, we acquire at least two uniform
images at different radiation doses using the equipment to
be simulated. Then, we calculate a linear regression to find
the relation between dose and mean pixel value of the
uniform images. The constant term of the regression is the
photodetector offset.

After linearizing the image, it is possible to scale the gray
levels to simulate the distribution of an image acquired at a
lower-radiation dose. Thus, pixel is multiplied by a constant
term, hereby denoted the reduction rate (α). This constant can
be calculated as the ratio between the current-exposure time
product of the full dose mammogram and the current-exposure
time product of the reduced-dose mammogram. Therefore, the
linearized scaled image

�
Y L,S(x,y)� is given by

Y L,S (x,y)= αY L(x,y). (4)

3.A.2. Noise calculation

Since clinical mammograms intrinsically contain noise, it
is vital to have information about the amount of noise present
in an image acquired by the particular system that will be
simulated. Using a uniform image exposed with the same
parameters as the clinical image, it is possible to obtain a
good approximation of the noise present in the clinical exam.
The second challenge is to measure the noise present in the low
dose configuration. Again, this information can be extracted
from a uniform image acquired at the simulated radiation dose.
Due to the flat-fielding process, the noise in a mammogram

is also a function of the spatial position in the detector array.
Thus, the noise must either be simulated locally or the flat-
field correction must be removed. In this work, we propose
a local method, which allows the simulation of flat-fielded
images.

Traditionally, the expected local standard deviation of the
noise to be added to the original image is calculated as follows:

σsim(x,y)=


σ2
HL

sim
(x,y)−σ2

HL,S
o

(x,y), (5)

where σsim(x,y) is the expected local standard deviation
of the noise, σ2

HL
sim
(x,y) and σ2

HL,S
o

(x,y) are the variance
masks calculated locally using a square window that runs
through HL

sim and HL,S
o , respectively. To create the noise

mask, an array of randomly generated Gaussian noise with
zero mean and unity variance, the same size as the clinical
image, is multiplied by the standard deviation calculated using
Eq. (5). Next, the noise mask is added to the scaled clinical
mammogram Y L,S

o .
There are two problems associated with this simple way

to incorporate the noise. First, the quantum noise present
in digital mammograms is signal-dependent, i.e., its local
variance depends on the local mean of the signal. The noise
calculated above is not dependent on the signal found in the
clinical image, thus a dependency must be created before
adding them together. Second, quantum noise cannot be
described as a uniform additive fraction of the signal.

The following is a new approach for creating signal-
dependent noise that is additive to the signal. Figure 5 shows
an overview of this noise creation process, in which the

F. 5. Overview of the noise creation process where H L,S
o (x, y) is the uniform image acquired with full dose after linearization and scaling; H L

sim(x, y) is the
uniform image acquired with the simulated dose after linearization and σsim(x, y) is the standard deviation mask as calculated from Eq. (5). N (x, y) is the noise
mask with the local variance modulated by σsim(x, y).

Medical Physics, Vol. 43, No. 6, June 2016
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F. 6. Novel method for creating dependency between noise and signal, whereY L,S
o (x, y) is the clinical mammogram acquired with full dose after linearization

and scaling process, N (x, y) is the noise mask calculated previously, H L
sim is the mean pixel value of the uniform image acquired with the simulated dose.

Anscombe transformation is used to incorporate the calculated
noise to the clinical image.

3.A.3. Signal-dependency and additivity

When the Anscombe transformation is applied to a signal,
Poisson noise is converted to additive signal-independent
noise.19 Therefore, once in the Anscombe domain, the noise
mask can be correctly added to the signal. After applying
the inverse transformation, the dependency between the noise
mask and the signal is also created and the resulting image is
similar to a low-dose mammogram.

The first step to add the noise mask and create the
dependency between it and the scaled clinical mammo-
gram is to apply the Anscombe transformation to both
images, using Eq. (1). However, the Anscombe transfor-
mation must be applied to a signal contaminated with
noise, and the noise mask calculated previously does not
contain any signal.19 Therefore, to allow the correct use
of the Anscombe transformation, a positive DC signal has
to be added to the noise mask prior to the application
of the transformation. The added signal is the mean pixel
value of the uniform image acquired at the simulated dose�
HL

sim(x,y)
�
. Once in the Anscombe domain, it is necessary

to subtract the DC component to get the noise mask.
Equation (6) presents the mathematical expression for the
process,

N A(x,y)=A


N(x,y)+HL
sim


−A


HL

sim


, (6)

where HL
sim is the mean pixel value of the linearized uniform

image acquired at the simulated dose, N(x,y) is the noise
mask calculated as shown in Fig. 5, and N A(x,y) is the noise
mask in the Anscombe domain.

Next, the noise mask and the linearized scaled clinical
image can be added together to generate an image with
additive Gaussian noise in the Anscombe domain. This image
approximates the image obtained if the Anscombe transfor-
mation was applied to a mammographic image acquired with
lower-radiation dose. The next step for our method is to apply
the inverse Anscombe transformation to that image in order
to obtain the simulated image in the spatial domain. Figure 6
shows an overview of the process.

Finally, the last step of the method is to add the offset back
to the image, to guarantee the same behavior as a clinical
image, as follows:

Ysim(x,y)=Y L
sim(x,y)+θ. (7)

3.B. Materials

3.B.1. Images

To assess the performance of the simulation method pro-
posed in this work, a set of FFDM images was acquired using
an anthropomorphic breast phantom, prototyped by CIRS,
Inc. (Reston, VA) and the University of Pennsylvania.25 Four
different technique factors, resulting in four different entrance
doses to the phantom (6.05, 5.29, 4.53, and 3.02 mGy), were
used to validate the simulation method.

F. 7. Slabs of the physical phantom used in this work. The arrow indicates one of the inserted microcalcification clusters.

Medical Physics, Vol. 43, No. 6, June 2016
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F. 8. Magnified region of the phantom containing a cluster of microcalcifications. (a) 6.05 mGy, (b) 5.29 mGy, (c) 4.53 mGy, and (d) 3.02 mGy.

A few reasons are presented to justify why a physical
phantom was chosen to validate this work. First, the physical
phantom allows repeated exposures at different radiation
levels without putting a patient’s health at risk due to radiation
exposure. Second, by using the physical phantom properly
affixed to the breast support, it is possible to avoid any motion
throughout the experiment, obviating the need for image
registration. Finally, physical phantoms are subjected to an
actual x-ray exposure, ensuring that every noise characteristic
found in the clinical situation is found in the image of the
physical phantom. By comparison, in digital phantoms, the
exposure process is simulated using a mathematical model;
therefore the noise behavior is simulated and might have slight
differences when compared to a clinical exposure.

The breast phantom consists of six slabs, each containing
simulated anatomical structures manufactured using tissue
mimicking materials, based upon a realization of the com-
panion breast software phantom.3 The phantom simulates a
450 ml breast, compressed to 5 cm, with 17% volumetric
breast density (excluding the skin). In addition to the normal
breast anatomy, individual pieces of calcium oxalate (99%,
Alfa Aesar, Ward Hill, MA) with different sizes were
placed between slabs of the phantom to mimic a cluster of
microcalcifications. Figure 7 shows a photograph of all slabs
of the anthropomorphic breast phantom used in this study.

A set of phantom images was acquired using a clinical
mammography imaging system (Selenia Dimensions, Ho-
logic, Bedford, MA) at the hospital of the University of
Pennsylvania. First, we acquired one FFDM image of the
phantom using the automatic exposure control (AEC) mode
of the clinical machine. Then, we switched to the manual mode
and acquired four sets of images, containing five images each,
using the same kVp and target/filter combination as provided
by the AEC mode but changing the exposure time in steps
ranging from the original value (standard dose) to half of
the standard dose. Each of these sets had a different current-
exposure time resulting in different values of entrance dose
to the phantom: 6.05, 5.29, 4.53, and 3.02 mGy. These doses
correspond to 100%, 87.5%, 75%, and 50% of the standard
dose provided by the AEC mode for this particular breast
phantom. All images were acquired using the antiscatter grid.
Figure 8 shows one magnified region containing a cluster of
microcalcifications at each exposure configuration used in this
work.

Each exposure configuration was repeated with a uniform
phantom, i.e., a 4 cm thick acrylic block commonly used
for flat-fielding the mammography system. Two uniform

images were acquired for each combination of exposure
parameters.

3.B.2. Metrics

The metrics used to compare the real and simulated images
were chosen taking into account two characteristics of the
image: spatial distribution and power spectrum (PS). Since
noise depends on the position of the pixel in the field,
these metrics were calculated locally inside a 14.3×3.8 cm
(2048×512 pixels) ROI containing the breast to avoid false
statistics from the background. A regular nonoverlapping
square mask with 64×64 pixels (0.45×0.45 cm) was used
to calculate the variance from both simulated and real images.
The center of the mask was shifted by 64 pixels before
calculating each value; therefore, the total number of samples
was 256. Each point was plotted in a graph to allow visual
comparison of the results. Relative error was calculated to
quantify similarity between images and the average difference
was reported along with the 95% confidence interval (C.I.).

The normalized noise power spectrum (NNPS) was used
to analyze noise in the frequency domain. This metric is a
normalized form of the noise power spectrum, defined as
follows:16

NPS(u,v) = lim
Nx,Ny,M→∞

(
NxNy∆x∆y

M

)

×
M

m=1

|F {Im(x,y)−Sm(x,y)}|2, (8)

F. 9. Method used for crossed comparison between simulated and real
images.

Medical Physics, Vol. 43, No. 6, June 2016
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F. 10. Relation between variance and mean throughout the x-ray field.

where Nx and Ny are the ROI dimensions, ∆x and ∆y are the
pixel dimensions in the x and y directions, respectively, S(x,y)
is an approximation of the noiseless signal, M is the total
number of ROI’s used, and F indicates the Fourier transform.
The normalization is performed by dividing the spectra by the
square of the large area signal, as defined by the following:16

NNPS(u,v)= NPS(u,v)
L2 , (9)

where L is the large area signal of the region. The NNPS
was calculated using uniform images, where there is no
information about the breast texture complexity. We also
calculated the normalized PS.

The 1D spectrum was calculated16 and plotted for each
dose reduction to allow visual evaluation of the similarity
between simulated and real images. The mean and the
standard deviation of the difference between the spectra of the
simulated and real images were calculated. This calculation
was restricted to 1.5–7.1 mm−1, where the spectra did not show
strong frequency dependence. The average of the difference

F. 11. Linear regression of the relation between mean pixel value and
entrance dose to the phantom. The linear coefficient is important for the
linearization process.

was calculated and presented along with the 95% confidence
interval. Relative error was also reported.

Comparisons between simulated and real image sets were
performed using the method shown in Fig. 9 in which each
simulated image is compared to each real image, generating
more statistically relevant data.

4. RESULTS
4.A. Preliminary noise analysis

Preliminary investigation of the noise was performed using
uniform images. The graph shown in Fig. 10 shows the ratio
between local noise variance and local mean pixel value.

Equation (3) indicates that a uniform image contaminated
by Poisson noise would have a constant relation equal to one.
However, in Fig. 10, the ratio between noise variance and
mean pixel value ranges from 0.1 to 0.3, depending on the
position in the field. This spatial dependence is a result of the
flat-field correction performed during the system calibration,
which corrects for the heel effect and x-ray oblique incidence.

F. 12. Top-row: magnified view of a region of interest extracted from (a) real image acquired with 5.29 mGy. (b) Simulated image (5.29 mGy). (c) Real image
acquired with 3.02 mGy. (d) Simulated image (3.02 mGy). Bottom-row: residual noise calculated for (e) real image acquired with 5.29 mGy. (f) Simulated
image (5.29 mGy). (g) Real image acquired with 3.02 mGy. (h) Simulated image (3.02 mGy).
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F. 13. Normalized PS for real and simulated images acquired with different radiation doses. In detail: magnified view of the high frequencies of the spectrum.

Figure 10 shows the importance of using a dose reduction
method that is locally adaptive.

4.B. Photodetector offset

The first step in evaluating the new method was calculating
the photodetector offset. To calculate the value, four different
doses were used and the relation between mean pixel
value and entrance dose to the phantom was represented
by linear regression. The uniform images were acquired
imaging a 4 cm uniform PMMA block at four different
exposure configurations, all of them acquired with 29 kVp,
with tungsten anode filtered with rhodium. The current–time
parameter was initially set to 160 mAs, followed by 140,
120, and 80 mAs. Two images were acquired at each
dose.

To calculate the linear regression, the mean pixel value
was calculated in 207 different regions of the uniform images
using a 64×64 pixels window, totaling 1656 measured points.
Figure 11 shows the results.

The offset for the machine used in this study is approx-
imately 44. Although the manufacturer of the mammo-
graphic unit estimates the offset to be 50,26 this value
was measured experimentally to guarantee the correct
linearity of the images, as in our experience, this value can
encompass small nonlinearities found with various imaging
systems.

4.C. Method evaluation

4.C.1. Physical phantom

Examples of simulated and real images of the physical
phantom are shown in Fig. 12. It shows a magnified view of
a region of interest extracted from real and simulated images
at two radiation doses: 5.29 and 3.02 mGy. The magnified
view allows better visualization of the noise in each image.
Along with the ROIs are the residual noise masks calculated
by subtracting the noiseless approximation of the signal from
each image. The “noiseless” signal was approximated by
averaging five realizations for each dose.

Visual analysis of Fig. 12 provides evidence that the
simulated and real images are very similar. However, it is

important to use appropriate metrics to evaluate the proposed
method objectively. Local metrics such as variance are not
a good measurement of similarity when comparing x-ray
images with distinct noise power spectra.18 Thus, NNPS and
PS are used to evaluate the simulation method.

Figure 13 provides a comparison between PS at different
doses for clinical and simulated images. We performed
crossed comparisons between real and simulated images. In
Table II, values are reported after calculating the absolute
percent error between the simulated and real images at each
frequency and averaging them. In addition, it shows the
average difference between simulated and real PS and its
95% confidence interval. For the PS, a regular nonoverlapping
0.90×0.90 cm window was used, resulting in 1600 compari-
sons per dose, 4800 in total.

The averaged error for the PS is less than 2.5%. The
confidence interval of the average difference does not span
zero, indicating that there is a bias in the PS; however, the
average difference is 100 times smaller than the average signal,
showing that the bias is small.

Using the same 0.45× 0.45 cm window, we calculated
the local variance from both simulated and real images
and plotted the different regions in the graph shown in
Fig. 14 (as explained in Sec. 3.B.2). Similarly to the
previous image, in Fig. 14 lines represent clinical images
acquired at different doses while markers identify simu-
lated images. Each point is the average of five different
realizations.

T II. Comparison between PS and variance for the simulated and real im-
ages acquired at three different doses, average difference between variables,
and 95% C.I. of the difference.

Radiation
dose

Calculated
metrics

Average error
(%)

Average difference
[95% C.I.]

5.29 mGy
PS 2.47± 1.78 0.28 [0.26 0.29]× 10−7

Variance 0.81± 0.66 0.28 [−1.01 1.52]

4.53 mGy
PS 2.41± 1.88 0.32 [0.24 0.40]× 10−7

Variance 0.85± 0.70 1.90 [−1.02 2.57]

3.02 mGy
PS 2.15± 1.69 0.19 [0.06 0.32]× 10−7

Variance 1.00± 0.84 0.91 [−0.71 2.93]
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F. 14. Local variance for real and simulated images acquired with different radiation dose.

Again, we performed crossed comparison between clinical
and simulated images. A total of 19 400 comparisons were
averaged and reported at Table II, along with the average
difference and the 95% confidence interval. It is important
to note that averaged errors are less than 1.0% for the local
variance and the confidence interval of the average difference
spans zero, indicating a high correlation between simulated
and real variance.

4.C.2. Uniform images

An additional study was performed using uniform images.
In this section, we present the results of the simulation
method applied to these uniform images, acquired using the
radiograph factors described in Sec. 4.B. This analysis is
important to show that the low frequency components of
the spectrum are not biased by the DC component of the
signal. Two images were acquired at each dose and the results
of the simulation were compared using crossed comparison
as presented in Sec. 3.B.2 for the physical phantom images.
Figure 15 shows the NNPS of clinical and simulated uniform
images at different radiation doses.

The noise insertion resulted in visually similar NNPS
for each simulated dose, as seen in Fig. 15. The second
metric used to compare the uniform images was the local
variance. Figure 16 shows the local variance calculated using
64× 64 pixels (0.45× 0.45 cm) non-overlapping windows
located at different positions of the field.

As expected, the noise variance increases in regions further
from the chest wall. Figure 16 indicates that the simulation
method was capable of approximating the local variance of a
real acquisition.

Table III shows the absolute relative error calculated for
the NNPS and local variance at each radiation dose when
comparing simulated and real uniform images. In addition,
it shows the average difference between simulated and real
noise power spectra, along with the 95% C.I.

The reported averaged error was maintained lower than
3.8% for the NNPS and lower than 3.0% for the local variance,
which indicates that the simulation method is capable of
approximating the characteristics of real acquisitions even
in uniform images, where it is possible to have a good
approximation of the added noise. The confidence interval
of the average difference does not span zero, indicating
that there is a bias on the noise simulation. However,
the values are insignificant when compared to the average
signal.

5. DISCUSSION

A new method for simulating dose reduction in flat-fielded
digital mammograms is proposed in this paper. The method
is based on the local simulation of noise calculated using
the local variance of uniform images. It can be applied to
flat-fielded clinical images and accounts for the anisotropy

F. 15. Normalized noise power spectrum calculated for real and simulated uniform images at different radiation doses.
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F. 16. Local variance calculated for real and simulated uniform images at different radiation doses.

of the noise and DQE variations. The method is based on
a novel idea of inserting noise after applying a variance-
stabilizing transformation (e.g., Anscombe transformation).
In the variance stabilized domain, noise is independent of
the mean pixel value; therefore the inserted noise mask can be
modeled based only on the spatial dependency of the variance,
thus accounting for the flat-field correction. In this way, the
dependency between the noise mask and the pixel value is
created when the inverse transformation is applied.

The proposed method accounts for the anisotropic behavior
of the noise found in digital mammograms, since it uses
2D uniform images for measuring quantum noise. Also, it
accounts for noise present in the input mammogram by
measuring the local variance of a uniform image acquired
at the same radiographic technique. No assumptions regard-
ing the dependency between radiation dose and DQE are
necessary, since noise is measured at the actual simulated
dose. Furthermore, the method is capable of simulating noise
locally, taking into account the spatial dependency between
pixel value and variance along the field, caused by the digital
mammography acquisition system. Such information is lost
when only the NPS is used.

Preliminary analysis of the noise extracted from uniform
images supported the development of the local simulation
method proposed in this work. It is apparent from Fig. 10
that the quotients of the variance and mean pixel value have
different values throughout the field; this is attributable to
the pixel gain calibration that occurs during the acquisition

T III. Comparison between NNPS and variance for the simulated and
real uniform images acquired at 3 different doses, average difference between
variables and 95% C.I. of the difference.

Radiation
dose

Calculated
metrics

Average error
(%)

Average difference
[95% C.I.]

5.29 mGy
NNPS 2.61± 0.75 0.20 [0.13 0.27]× 10−7

Variance 2.78± 0.24 2.06 [2.44 1.68]

4.53 mGy
NNPS 2.35± 0.50 0.07 [0.00 0.15]× 10−7

Variance 2.83± 0.33 1.91 [2.29 1.54]

3.02 mGy
NNPS 3.79± 0.25 0.27 [0.05 0.48]× 10−7

Variance 2.94± 0.25 1.37 [1.55 1.18]

process and the flat-fielding. As discussed above, the simple
insertion of Poisson noise into clinical images does not
accurately simulate dose reduction.

It is important to note that, although the NPS is not used
explicitly by the proposed method when generating the noise
mask, the noise mask image is real and hence intrinsically
contains noise with the correct NPS. The graph reported in
Fig. 14 supports the visual verification of the correspondence
between clinical and simulated images in terms of local
variance. In addition, it is noticeable that lower levels of
radiation produced lower local variance, which is consistent
with the expected behavior from an image contaminated by
quantum noise.

Some limitations and future work are now addressed. The
current version of the simulation method was validated assum-
ing that dose reduction is performed exclusively by a decrease
of the current-exposure time product (mAs), following the
majority of previous methods.6–10 Future work should include
analysis of simulating changes to other parameters such as
tube peak voltage (kVp) and the target/filter combination, as
well as greater reduction in dose, such as that seen in creating
tomosynthesis projection images.

The validation of this method was performed using images
acquired with a-Se detectors. The validity of such method has
to be tested before being applied to other detectors, such as
CsI/TFT, which have significant correlated noise. The method
was tested using a phantom equivalent to a 5 cm breast
using a 4 cm uniform PMMA block. Further studies must
be performed to analyze the influence that the thickness of the
PMMA block might exert on the simulation accuracy.

Another potential application for this method is simulating
various radiation dose levels in virtual clinical trials (VCTs).
Further studies are needed to separate and characterize the
different components of the noise; in this way, it is possible to
simulate the various sources of noise separately.

6. CONCLUSION

To the best of our knowledge, this work presents the first
noise insertion method for simulating dose reduction to be
performed in a variance-stabilizing domain (e.g., Anscombe
domain). The method developed allows the modeled noise to
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account for the spatial dependency of the noise, allowing it to
be applied to flat-fielded images.
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