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ABSTRACT

In this paper, we specify a notion of background tissue complexity (BTC) as perceived by a human observer
that is suited for use with model observers. This notion of BTC is a function of image location and lesion
shape and size. We propose four unsupervised BTC estimators based on: (i) perceived pre- and post-lesion
similarity of images, (ii) lesion border analysis (LBA; conspicuous lesion should be brighter than its
surround), (iii) tissue anomaly detection, and (iv) mammogram density measurement. The latter two are
existing methods we adapt for location- and lesion-dependent BTC estimation. To validate the BTC
estimators, we ask human observers to measure BTC as the visibility threshold amplitude of an inserted lesion
at specified locations in a mammogram. Both human-measured and computationally estimated BTC varied
with lesion shape (from circular to oval), size (from small circular to larger circular), and location (different
points across a mammogram). BTCs measured by different human observers are correlated (p=0.67). BTC
estimators are highly correlated to each other (0.84<p<0.95) and less so to human observers (p<=0.81). With
change in lesion shape or size, estimated BTC by LBA changes in the same direction as human-measured
BTC. A generalization of proposed methods for viewing breast tomosynthesis sequences in cine mode is
outlined. The proposed estimators, as-is or customized to a specific human observer, may be used to construct
a BTC-aware model observer, with applications such as optimization of contrast-enhanced medical imaging
systems, and creation of a diversified image dataset with characteristics of a desired population.

Keywords: Human visual system properties, anthropomorphic numerical observer, virtual clinical trials, QUEST
adaptive threshold seeking

1. INTRODUCTION

Validation of a medical imaging system is challenging due to the large number of system parameters that must be
considered. Conventional methods involving clinical trials are limited by cost and duration, and in the instance of
systems using ionizing radiation, the requirement for the repeated irradiation of volunteers. We are proponents of an
alternative, in the form of Virtual Clinical Trials (VCTs) based on models of human anatomy, image acquisition, display
and processing, and image analysis and interpretation. In a joint effort, a team of researchers at University of
Pennsylvania is working on the first half of this pipeline [7, 8, 9] which includes anatomy and image simulation, and a
team of researchers at Barco is working on the second half which includes display simulation and model observer. Barco
has developed anthropomorphic model observers that predict typical human observers better than commonly used model
observers which are designed after ideal observers with some concessions for computational tractability.

Previously we reported [1, 2] that by embedding properties of human visual system (HVS) as pre-processing steps to a
commonly used model observer (multi-slice channelized Hotelling observer — msCHO [3]), the model observer can
better track the performance of a human observer with changes in viewing distance, display contrast, and browsing speed
when reading digital breast tomosynthesis (DBT) images.
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In this paper, we explore the estimation of the background tissue complexity (a.k.a. anatomical clutter or noise; BTC
hereafter). An automatic BTC estimator is necessary in tracking the performance of a human observer in reading images
at various BTC levels. This is because the human observer’s performance, unlike that of the existing model observers,
varies considerably with BTC in a signal and location known exactly (SKE/LKE) simulation paradigm [4]. A model
observer’s capability of tracking the human observer performance with BTC is especially important when using VCT for
design and/or optimization of contrast enhanced (CE) breast imaging systems. In such systems, the uptake of the lesion
relative to that of the normal fibroglandular tissue and the dose of injected contrast agent affect the perceived BTC and
thus lesion visibility [10, 11, 12]. Moreover, the methods developed for BTC estimation may have application in
automatic measurement of breast density.

We believe that BTC as observed by a human depends on the location and the lesion (shape and size) as explained
below. These dependencies should be considered when designing a computational anthropomorphic BTC estimator.

1.1 BTC is a function of location

The notion of BTC considered here relates to the richness of features in proximity of a target object (i.e., the lesion to be
detected) that hinders the detection or search processes for a human observer. The proximity may be spatial or
spatiotemporal depending on the type of input and viewing. For example, a busy area far from the potential location of a
lesion does not hinder detection, thus it should not affect BTC at that location.

1.2 BTC depends on lesion shape and size

Large distractors (e.g., generated by low-pass noise) do not distract a viewer from detection of a small target object. The
reverse is not necessarily true — small distractor (e.g., small grain noise) can obscure small components of a large target,
making its detection difficult. The shape of the target object can also affect its detection and should be factored in BTC
estimation. For example, a linear structure in the background may cover a circular lesion making it less conspicuous than
an oval lesion with the same area and amplitude at the same location (Figure 1).

Figure 1. A circular lesion (left) and an oval lesion (right), with the same area and amplitude, are superimposed at center
of the same region of a mammogram. For demonstration purpose, the lesion insertion amplitude is large here. When
insertion amplitude is lowered, the circular lesion becomes harder to see since it blends in the linear structure of the

background passing through that location. However, the oval lesion, which protrudes from the linear structure, remains
visible at lower insertion amplitudes.

1.3 Related research

In [13], we introduced a supervised method of BTC estimation for DBT stacks. The differences between consecutive
slices, measured in peak signal-to-noise ratio (PSNR), were used as the input to the estimator. A Hotelling observer
trained with perceived BTC values (one per DBT stack) for a subset of input was used as the estimator. The problems
with this approach are as follows. (i) Supervised training of the estimator may not be practical or desirable in a VCT
scenarios. (ii) This method yields only one estimate of BTC per DBT stack. Hence, it is unusable for mammograms, as it
cannot predict lesion visibility in different locations. Moreover, the result is insensitive to lesion shape and size.
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Maiprize et al proposed a local signal to noise ratio, d;,.,; defined below, as a measure of apparent mammogram density,
hence a metric for potential masking of a lesion [6]:

(1)
2o Ty W) dudv)®
tocal = TNNPS?(u,v) T2(w, v) W2(w, v) du dv

In (1), T is the modulation transfer function, W is the task function, NNPS is the normalized “noise” power spectrum
(noise includes an anatomical component due to breast structure), and (u,v) are spatial frequencies. d,,, is calculated for
non-overlapping regions of interest (ROIs) of the input mammogram. Direct calculation of the NNPS for each ROI is not
possible. Therefore, a model of NNPS [20] is calibrated using the noise measured for each ROI. Considering that the
numerator of (1) is independent of the ROI, for a given mammogram and a given system, dj,., is inversely proportional
to ROI energy (i.e., local energy of the image). Note that this method is unsupervised and local (i.e., provides local
complexity information) and is shown to perform worse the supervised BTC estimator in [13].

To locate anomalies in phantom CT images, Pezeshk et al performed principal component analysis (PCA) over all
overlapping ROIs across various scales, and identified the anomaly ROIs as those far from mean ROI in PCA coordinate
system [14]. They also showed that the phase-only-transform (PHOT), defined below, functions similarly.

F{I} }
IF{THI

In (2), I is the input image, ||.|| denotes absolute value (of complex number), and F and F"' denote forward and inverse
2D Fourier transform. The density of anomalies (considered potential lesions) calculated as such may be used as a local
and unsupervised BTC estimate.

()

PHOT{I} = F‘l{

2. METHODS
2.1 Estimate BTC as pre- and post-lesion perceptual similarity (P*S)

In this method, to estimate BTC, we first superimpose the lesion at the location in question with a fixed amplitude. Next,
we compare the post-lesion and pre-lesion images using structural similarity metric (SSIM), a perceptual image
similarity metric [15], defined below.

3)
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SSIM(x,y) =

In (3), x and y are input signals (e.g., image ROI pre- and post-lesion), ¢ and o indicate average and standard deviation,
0Oxy 18 the signals’ covariance, and C; and C, are small positive constants keeping the denominator non-zero. We
consider the perceptual similarity calculated as such as a predictor of BTC at the given location, for the given lesion.
This is based on the premise that the greater the BTC, the less noticeable adding a lesion will be; thus, the more similar
are the pre- and post-lesion images. For better sensitivity of the estimate, only ROIs centered on the given location are
compared. ROI size may be tuned for the desired estimation accuracy and sensitivity.

2.2 BTC estimator based on lesion border analysis (LBA)

This method is based on the premise that BTC is correlated with the amplitude required to superimpose the given lesion
at a given location conspicuously (i.e., the more complex the background, the higher insertion amplitude needed for
visibility). The superimposed lesion should be brighter than its immediate surround to be conspicuous. For a binary
lesion, the surround is easily defined wherever there is no lesion (Figure 2). Since far regions of background should not
affect local BTC, we use a distance weighting function. Real lesions are not binary (Figure 3). For such lesion, we
calculate the surround mask by inverting the lesion and applying a distance weighting function, yielding an immediate
surround mask. To estimate BTC at a given location, we multiply the background by the immediate surround mask
centered at the location and use the maximum of the product as a predictor of BTC. The distance weighting function may
be tuned for desired estimation performance.
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Figure 2. Derivation of immediate surround mask for a binary lesion (left panel, the white disk) used by LBA estimator
(Section 2.2). Middle: lesion surround is white. Right: Immediate surround mask; Brighter means more weight (thus
more potential impact in determining BTC).

Figure 3. Derivation of immediate surround mask for a non-binary lesion (left) used by LBA estimator (Section 2.2).
Middle: surround mask. Right: immediate surround mask; Brighter means more weight (thus more potential impact in
determining BTC).

2.3 Estimate BTC by local anomaly density

We adapt PHOT, described in Section 1.3 and in [14], to become sensitive to lesion shape and size by calculating the
local average of anomalies (absolute value of PHOT output) with an averaging filter twice the lesion (in spatial size, to
include the activities in lesion proximity, similar to LBA) and normalized, formulated below. This is based on the
premise that detection of a larger lesion involves inspection of a larger neighborhood of the image and possible objects to
be mistaken with the lesion are also larger (i.e., small-grain noise should be suppressed when dealing with detection of a
larger lesion).

(4)
BTC,ap{I,L} = PHOT{I} % Ly,

In (4), BTCpyor{l,L} is the PHOT-estimated BTC map (i.c., the value of each point in the map is set to the BTC estimate
at that point) for image / in luminance domain, and lesion L, PHOT is defined in (2), “*’ denotes convolution, and Ly, is
the lesion expanded twice spatially and normalized (i.e., divided by sum of all pixels).

2.4 Estimate BTC by local energy

Inspired by Mainprize et al (see Section 1.3 and [6]), and similar to PHOT-based estimator derivation (Section 2.3), we
adapt local energy to become sensitive to lesion shape and size by using twice the lesion (in spatial size) and normalized
as the averaging filter, as formulated below. The reasons for selection of such averaging filter is described in Section 2.3.

(%)
BTCEnergy{I' L} = 1% % Ly, — (I * sz)z

In (5), BT Cpnergyi4,L} is Energy-estimated BTC map for image / in luminance domain, and lesion L, ‘*’ denotes
convolution, and L, is the lesion expanded twice spatially and normalized (i.e., divided by sum of all pixels).
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2.5 Human measurement of BTC

To measure BTC at a specific point, p, a human observer may adjust the insertion amplitude of the given lesion until it
becomes visible. To find the insertion amplitude corresponding to threshold visibility, we use QUEST [16], an adaptive
threshold seeking procedure. As compared to adjusting the amplitude manually, QUEST is more convenient for the user
and yields a more accurate threshold as well as its confidence interval. We use a Matlab implementation of QUEST
available from http://psychtoolbox.org with the default value of parameters and 41 trials per threshold measurement (40
is the typical number of trials used in QUEST example; we added one for reasons explained below).

The experiments are conducted on a Barco Uniti display (MDMC-12133) to ensure low noise and consistent
presentation, provided by RapidFrame ", and Color Per-Pixel-Uniformity . In each trial, two panels are displayed; on
one panel a square mammogram region centered at p is shown, and on the other panel the same region with lesion
superimposed to the center at the insertion amplitude being tested is shown. When p is too close to mammogram margin,
the rest of the square region is filled with a mirror of mammogram along the nearest edge (using Matlab’s padarray
symmetric option) to preserve the observed texture continuity (see Figure 4 as an example, where the top quarter of each
ROI shown is filled by mirroring). The two panels are separated by one fifth of a panel width. The panels together with
margins extend to about 15 visual degrees and are uniformly filled with average luminance of the region being displayed
where there is no visual information for optimal eye adaptation. That is because Barten noted that a surround luminance
different from that of the target object adversely impacts effective contrast sensitivity [18]. Lesion apparent size is about
one fourth to half a degree which is the target object size for optimal visibility (spatial CSF remains flat and at its peak at
about 0.1 to 1 degrees in typical viewing conditions [19]).

In the first trial of each experiment the lesion is shown with maximum possible amplitude to familiarize observer with
the shape, size and location (i.e., center of panel) of lesion (Figure 4). When adding lesion, care was taken to avoid
clipping (all pixel values remain between 0 and 1 modifying addition result), and that scaling (to affect insertion
amplitude) and addition are performed in luminance domain (not in pixel value). The task assigned to the human
observer is to pick the panel with the lesion. Input choices are left, right or ‘don’t know’. The order of the panels (left or
right) is chosen randomly by the experiment program, which compares observer’s input to the actual location of lesion
panel and based on this information (i.e., answered correct or incorrect) generates the next amplitude to be tested. A
‘don’t know’ input is assumed to be an incorrect response.

Figure 4. Example of what is shown to the human observer, at an apparent size of about 15 degrees, in one trial of a
threshold measurement experiment. Observer’s task is to pick the panel that has a lesion at the center (left in this
example).
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QUEST generates the probability distribution function (PDF) for the threshold being measured. In each experiment, we
record mean and standard deviation of the threshold PDF.

2.6 Evaluation

For a given mammogram, we generate BTC maps using P’S, LBA, PHOT-based, and energy-based estimators described
above. The pixel value at each point in the map is set to the BTC estimate using a certain method for the mammogram at
that point and for the given lesion. We inspect the proposed methods by checking variation of their maps with location,
and lesion shape and size, per the design criteria set out in Section 1. For the BTC maps to become comparable, we
perform histogram equalization on the maps generated by each method. Thus, each the value at each point becomes
approximately (because number of bins used in histogram equalization is smaller than the number of possible BTC
values) proportional to the BTC rank within the maps generated by each method.

We compare the proposed methods against the human observers as follows. Since measuring BTC for a human is time
consuming, generation of full BTC maps (for comparison against maps by proposed methods) using a human observer is
not practical. Assuming that the proposed methods are good estimators, the BTC maps they generate are highly
correlated. Thus, we use the computationally generated maps to pick a set of interesting points for BTC estimation by
human as follows:

@) The point with the highest sensitivity to shape (i.e., the map for small circular and oval lesions differ most),
(i1) The point with the highest sensitivity to size (i.e., the map for small and large circular lesions differ most),
(iii) The point where one BTC estimate most greatly exceeds the maximum of the other three (e.g.,

arg max {BTCppor-based — MaX {BTCrpergy-vaseds BTCrga, BTCpss} }, where both max operators are point-wise
and across all pixels), and

(iv) The point where the minimum of three BTC estimates most greatly exceeds the fourth (e.g.,
arg max {min {BTCgnergy-based> BTCrpa, BTCpss} — BTCpor-vasea}, Where max & min operators are point-
wise and across all pixels).

Since we proposed four methods, human observer has to estimate BTC at maximum (assuming no redundancy) sixteen
points with the small circular lesion, at four points in category (i) with the oval lesion, and at four points in category (ii)
with the large circular lesion.

To check our assumption on good quality of the proposed BTC estimators, in addition to the interesting points above, we
measure BTC on ten randomly picked points and inspect the correlation of the measurements with the BTC estimates by
proposed methods at those points.

3. RESULTS

We generated BTC maps using the computational estimators of Section 2 for the lesions and the mammogram shown in
Figure 5. Partial BTC maps corresponding to the dashed part of the mammogram are shown in Figure 6. Pearson
correlation coefficients of full BTC maps for small circular lesion are reported in Table 1. Correlation coefficients
between BTC maps generated for different lesions are given in Table 2. At different sets of points defined in Section 2.6,
the correlation coefficients between measured (by two human observers) and estimated BTC values (by proposed
methods) for the small circular lesion are calculated and presented in Table 3. Correlation coefficients between the two
human readers at various sets of points are also listed in Table 3. The difference between estimated BTC for lesions of
different shape or size, as well as the corresponding difference of BTC values measured by human for category (i) and
(ii) points defined in Section 2.6 are listed in Table 4. When the (human and estimator) differences are in the same
direction (i.e., both positive or both negative) the corresponding p-values are listed as well. The p-values are calculated
using the standard deviation of threshold (i.e., human measured BTC, about 0.07 for the values reported) provided by
QUEST, on the premise that the BTC measurements are independent for different lesions (i.e., variance of difference is
equal to sum of variances).
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Figure 5. Top: Lesions used in the experiments, enlarged. Original sizes are 29 x 29, 41 x 41, and 21 x 41 pixels.
Bottom: mammogram used in the experiments. Partial BTC maps shown in Figure 6 correspond to the dashed portion.

Table 1. Pearson correlation coefficient between full BTC maps generated by the proposed BTC estimators.
BTC estimator | P’S LBA | Energy-based

PHOT-based | 0.8433 | 0.9485 0.9054
P’S 0.8941 0.8882
LBA 0.9222
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Figure 6. Rows from top: partial BTC maps generated by PHOT-based, P’S, energy-based, and LBA estimators.
Columns from left: lesion used for BTC estimation: small circular, large circular, and oval lesion.

Table 2. Pearson correlation coefficients between BTC maps generated for different lesions for different proposed BTC

estimators.
BTC estimator | Oval & small circular | Small & large circular | Oval & large circular
PHOT-based 0.995 0.9899 0.9931
P’S 0.9685 0.9621 0.9656
LBA 0.9607 0.9287 0.9479
Energy-based 0.9742 0.9586 0.9707
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Table 3. Pearson correlation coefficients between estimated and human measured BTC values for small circular lesion at
different sets of points defined in Section 2.6. Maximum correlations between humans and computational estimator for
each set of points are shown in bold face.

Point set Observer B | PHOT-based P’s Energy-based LBA
) Observer A 0.665 0.8095 0.7906 0.7327 0.7336

Random; 10 points
Observer B 0.611 0.5801 0.7098 0.4767
Cat (i) & (ii), i.e. lesion | Observer A 0.425 0.0246 0.2334 0.0033 0.5355
sensitive; 8 points Observer B 0.6564 0.1464 0.5428 0.2894
Cat (iii) & (iv), i.e. Observer A 0.9513 0.4399 -0.503 -0.2084 0.305
method sensitive; 8 points | Observer B 0.3981 -0.606 -0.1603 0.369
. Observer A 0.7059 0.5522 0.2345 0.2124 0.5017

All 26 points

Observer B 0.5158 0.0979 0.2913 0.4003

Table 4. Sensitivity of BTC estimates by proposed methods with respect to change in lesion shape and size, compared to
the difference in BTC measured by Observer A, in category (i) and (ii) points defined in Section 2.6. The p-values are
listed when measured and estimated BTCs differences are in the same direction (i.e., both are positive, or both are
negative, meaning measured & estimated BTC increase or decrease by change in lesion shape or size).

Oval vs small circular lesion Large vs small circular lesion
BTC estimator BTC B.TC p-Vflllle, BTC B.TC p-v?lue,
measurement estimate if measurement estimate if
difference difference | sensitive difference difference | sensitive
PHOT-based -0.0484 0.1746 0.0088 0.2222 0.4461
P’S -0.027 -0.3968 0.3406 0.0175 -0.4762
LBA 0.0164 0.6825 0.4027 0.0028 0.7619 0.4856
Energy-based -0.033 0.5397 0.05 0.5079 0.2239

4. DISCUSSION

The design criteria regarding BTC estimate dependence to location and lesion size and shape are met by all of the
proposed methods as described below. In Figure 6, it may be observed none of the partial BTC estimate maps shown is
constant (i.e., they vary with location). BTC changes with location in all proposed methods satisfy our expectation
(smaller BTC estimate in darker lower activity areas in top right corner of the mammogram and the partial maps).
Variations with lesion shape and size exist but are more subtle—the BTC maps in Figure 6 slightly differ across columns
corresponding to different lesions. The most prominent differences between BTC maps for different lesions are perhaps
in the third row, which corresponds to energy-based BTC estimator. Moreover, the sensitivity to lesion size and shape
may be observed in Table 2, where the correlation coefficients between the BTC maps generated by each method for
different lesions are listed—though the correlations are strong, none of them is one. Based on Table 2, LBA estimator is
the most sensitive to shape and size changes. This observation is further reinforced by human BTC measurements (Table
3 and Table 4, to be discussed later in this section).

It may be observed that the BTC maps generated by the proposed methods are highly correlated. This was assumed in
developing our evaluation method, and can be verified by inspection of each column of Figure 6 (partial BTC maps for
the same lesion are generally similar), and from Table 1, where the lowest correlation of full BTC maps is still rather
high (0.8433, between PHOT-based and P’S for small circular lesion).

BTC measured by a human observer as described in Section 2.5 varies from one observer to another. This may be
observed in Table 3, ‘Observer B’ column: the correlation between BTC measurements by human observers A and B at
26 points are about 0.7. Therefore, a non-personalized BTC estimator, such as those proposed herein, is unlikely to
produce estimates perfectly correlated to the measurements by a specific human observer. Keeping that in mind, based
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on the first major row of Table 3, all proposed methods are good BTC estimators from Observer A’s viewpoint, and
energy-based estimator is good from Observer B’s viewpoint. It is interesting to note that for the special points defined in
Section 2.6, corresponding to 2™ and 3™ major rows in Table 3, the inter-observer correlation is either significantly lower
or higher; i.e. these points bring out agreement or disagreement in the observers, thus can help stratify BTC notions
pertaining to the different varieties of human observers.

Figure 7. ROI at the center of which Observer B measured a BTC much higher than Observer A. We theorize that
Observer B needed the extra amplitude to distinguish the superimposed lesion (not shown here) from structures nearby (a
small lesion-like structure the left of the center, and a larger one immediately under the center).

We noticed that BTC measurements from Observer A were almost always lower (when higher, differed little) than those
from Observer B. This may suggest that Observer A enjoys a more acute vision since she/he needed lower lesion
amplitude for visibility (Figure 7). This may suggest that the proposed BTC estimators are better predictors of human
observers with acute vision. In terms of sensitivity to lesion shape and size (i.e., correlation for category (i) and (ii)
points listed in 2™ major row of Table 3), LBA is the best estimator for Observer A (as observed in Table 4, discussed
later in this section, and Table 2), and PHOT-based estimator is best for Observer B. PHOT-based estimator is perhaps
the best overall choice for predicting both readers as it has the highest number of bold face correlation coefficients (i.e.,

row maximums) under its column.

Figure 8. ROIs at the centers of which P*S estimated a muc
theorize this is due to a dark region on or in immediate proximity of the center that aid human observers in lesion
detection but disturb estimation by P*S. See the text for an explanation.

h higher BTC than what measured by human observers. We

The relatively large absolute value but negative correlation between human observers and P*S in the 3™ major row of
Table 3 is curious. Upon close inspection, we noted that points with high BTC estimates by P’S but low measured BTC
by observers are the culprits. It may be observed that in such points (Figure 8) there is a dark area close to the center that
a human observer can use to detect the lesion rather easily; even a low lesion amplitude can visibly affect such a dark
area. P°S, however, considers the disturbance caused by adding the lesion in the whole ROI, and not just the dark region.
Moreover, the culprit points are on a high activity region but SSIM is formulated in such a way to discount the
perceptual difference in a high activity area. Thus, lesion insertion in such areas will be less noticeable in terms of SSIM.
Note that the energy-based method also correlates negatively with the human observers for the same points (cf. the 3™
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major row of Table 3 under ‘Energy-based’), perhaps for the same reason (i.e., nearby dark spot in a high activity
region).

When a personalized BTC estimator is desired, one might combine different estimators to better match the measurements
by a specific human observer. For example, a linear combination of the proposed estimators matching (in least squares
sense) Observer A measurements on ten random points (same as the set mentioned in Table 3 major row 1) has an
improved correlation of 0.8631 (from 0.8095, by PHOT-based estimator); similarly correlation with Observer B can be
improved to 0.7976 (from 0.7098, by energy-based estimator).

We gauge the sensitivity of the proposed estimators to change in lesion size and shape as follows. We asked a human
observer to measure BTC at points where each estimator was most sensitive to change in lesion shape or size (i.e.,
category (i) and (ii) points defined in Section 2.6). We inspect whether or not the measured BTC increases with the
change in lesion size and do the same with the BTC estimates for the same point. If both measured and estimated BTC
increase (or decrease) with the change in lesion size, we consider the estimator sensitive to lesion size (specifically
sensitive to change from small to large circular lesion). Sensitivity to lesion shape (from small circular to oval lesion
with the same area) is derived similarly. The results are listed in Table 4 (p-value is given for lesion sensitive methods).
As noted before (in Table 2 and Table 3 analyses), LBA is sensitive to both lesion shape and size. Statistically stronger
results may be reached, if BTC for different lesions is measured at more points by human observers and/or if BTC can be
measured more accurately (e.g., by lowering threshold standard deviation, using larger number of trails in each run of
QUEST).

Estimator LBA is not far from an anthropomorphic model observer [13]: if the area within the immediate surround mask
is brighter than BTC (i.e., maximum luminance with the immediate surround mask) by a certain margin and satisfies
some other criteria (e.g., small gradient), it may be announced as a lesion. For a known lesion (SKE), this method may
be used as the basis of an anthropomorphic search mechanism.

S. CONCLUSION

BTC estimated by proposed methods, as well as BTC measured by a human observer discussed in Section 2.5, are
sensitive to lesion location, size and shape. BTC estimators correlate with each other and correlate with human measured
BTC as well. Therefore, all of the proposed methods, as-is or customized to a specific human observer, may be used to
construct a BTC-aware model observer, with applications such as optimization of contrast-enhanced medical imaging
systems, and creation of a diversified image dataset matching a desired population.

None of the proposed BTC estimators correlates with human observers perfectly. This is reasonable since the human
observers do not agree on their measurements either; they measure different BTC values for at the same points of the
same mammogram and for the same lesion. From the proposed methods, LBA sensitivity to changes in lesion shape and
size is the closest to human observer and PHOT-based BTC estimates have highest correlation with measured BTC by
humans. A combination of proposed BTC estimators (e.g., linear least squares) can better predict a specific human
observer, though this requires training. Alternatively, free parameters of each of the proposed methods (i.e., weights of
the three components of SSIM used in PS, size and shape of localization kernels in energy- and PHOT-based estimators,
size and shape of immediate surround mask in LBA) may be optimized for a specific human observer. Doing so also
requires training.

To handle DBT stacks and browsing in time, the proposed methods may be generalized as follows. For LBA, a
spatiotemporal immediate surround mask may be devised. For P’S, a 3D generalization of SSIM should be used to
estimate perceptual similarity of pre- and post-lesion ROIs. For PHOT-based method, 3D (inverse) Fourier transform
and a spatiotemporal lesion-dependent localization kernel may be used. The latter may be also used to generalize the
energy-based BTC estimator to process DBT.

In the course of our experiments, we noted a set of points at which observers highly agreed on measured BTC, as well as
a set of points at which observers highly disagreed on measured BTC. This may suggest that the decision on BTC
(equivalently, visibility of given lesion in a given complex background) is not atomic and has to be broken apart to yet
unknown sub-decisions, to accurately model of a specific human observer.
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5.1 Limitations

For lesion insertion, both in proposed estimators and in measuring BTC by human observer, we used a simple additive
superimposition. A more realistic lesion insertion model (e.g., [21]) depends on the modality and perhaps even the
specific medical imaging system being modeled, and can generate artifacts that can affect estimated or measured BTC.
Such artifacts, for example, may make the lesion more conspicuous in certain locations, thus lowering measured or
estimated BTC. We theorize that our methods and conclusions remain valid by considering the realistically inserted
lesion (i.e., including artifacts) as the new lesion since we rely on near (visibility) threshold phenomenon in BTC
estimation and measurement.

Our proposed method of BTC measurement by human is slow (full measured BTC map is impractical and we resorted to
measuring at a few points only) and not precise (measured BTC values have large standard deviation, causing large p-
values in Table 4). We suspect simultaneous improvement in precision and speed of measurement may not be possible
for the notion of BTC introduced herein, though each can be improved at the expense of the other: To speed up
measurements, instead of adaptive threshold measurement by QUEST through several trials, the observer may adjust the
insertion amplitude so that the lesion becomes “just-noticeable.” The problem with this approach is that the threshold
may change over time (due to fatigue), thus may not be reproducible. Precision of BTC measurement may be improved
by repeating our current method (based on QUEST) several times, averaging the results, and/or by increasing the number
of trials per QUEST run.
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